Influence of varying nitrogen levels on crop productivity, profitability and resource-use efficiency in \textit{Bt}-cotton (\textit{Gossypium hirsutum}) in semi-arid region of Afghanistan

GHULAM HABIB NOORI1, ANIL K CHAUDHARY2 and ANCHAL DASS3

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 13 September 2018; Accepted: 26 October 2018

Key words: \textit{Bt}-cotton, Nitrogen dose, Partial factor productivity, Profitability, Resource-use efficiency, Water-use efficiency

Cotton (\textit{Gossypium hirsutum} L.) is one of the most important commercial crops of Afghanistan mainly grown for fiber production; however, its seeds are used as source of edible oil while cotton cake is used as animal feed. With the collapse of the cotton industry in the last four decades due to war, cotton planting has declined drastically in the country resulting in low cotton production (Noori 2018). There are many production constraints resulting in low cotton productivity in the country like poor irrigation infrastructure, low rainfall, less availability of improved variety seeds, sub-optimal fertilizer use especially nitrogen (N) and poor weed management practices etc. (Ibrahimi et al. 2017; Noorzai et al. 2017; Noorzai and Choudhary 2017). At present, the Afghan government is giving prime emphasis to cotton cultivation keeping in view its quality production and congenial agro-climatic conditions in some parts of the country. However, this crop is grown extensively using conventional local cultivars with sub-optimal or over-doses of fertilizer N which adversely affects the cotton productivity and profitability. Moreover, the optimum N application dose for conventional cotton in general and \textit{Bt}-cotton in particular has not yet been standardized so for cotton growing areas in Afghanistan. Thus, to promote the cotton cultivation with enhanced productivity in Afghanistan we need to use high yielding cultivars like \textit{Bt}-cotton with redesigned agronomic practices specifically fertilizer N management (Blaise et al. 2014). Therefore, an attempt was made to assess the optimum N dose for \textit{Bt}-cotton besides its yield performance vis-à-vis resource-use efficiency under varying N levels in semi-arid region of Afghanistan.

A field experiment was conducted during \textit{kharif} 2017 at Research Farm of Afghanistan National Agricultural Science and Technology University (ANASTU), Kandahar, Afghanistan (31°30’ N Longitude; 65°50’ E Latitude; 1010 m Altitude) to study the effect of varying N levels viz. 0, 30, 60, 90, 120, 150, 180 and 210 kg N ha$^{-1}$ (N$_0$, N$_{30}$, N$_{60}$, N$_{90}$, N$_{120}$, N$_{150}$, N$_{180}$ and N$_{210}$) on productivity, profitability and resource-use efficiency of \textit{Bt}-cotton (\textit{Gossypium hirsutum} L.) in semi-arid conditions of Afghanistan. Geographically, Kandahar is situated in southern Afghanistan having semi-arid hot climate with extreme cold and hot situations. The mean weather data were recorded from Meteorological Observatory located at ANASTU, Kandahar during crop season (Fig. 1). The experiment was conducted in randomized block design replicated thrice in a sandy-clay loam soil having slightly alkaline pH (7.2). Using LaMotte Garden Guide Soil Test Kit–5679-01 (LaMotte Soil Testing Kit, Chestertown, Maryland, USA), the soil was characterized as low in available N, medium in P$_2$O$_5$ and high in K$_2$O content. The size of each gross and net-plot was 6.0 m \times 4.5 m (27 m2) and 4.5 m \times 3.6 m (16.2 m2), respectively. The N was supplied through urea (46% N) in two equal splits i.e. first at sowing and remaining half N at appearance of flowering in \textit{Bt}-cotton. A blanket dose of 60 kg P$_2$O$_5$ ha$^{-1}$ was applied through triple super phosphate (45% P$_2$O$_5$) and 40 kg K$_2$O ha$^{-1}$ through potassium sulphate (50% K$_2$O) applied at sowing time in direct-seeded \textit{Bt}-cotton. The \textit{Bt}-cotton cultivar Bt-3700 was sown manually using seed @ 5 kg ha$^{-1}$ with plant spacing of 75 cm \times 45 cm at 3-4 cm depth on 21st May, 2017 and harvested on 21st October, 2017. The seedlings of the cotton emerged within 5–6 days after sowing (DAS) and the gap filling was done at 12 DAS. Different intercultural operations were done as and when necessary following standard package of practices (Choudhary et al. 2015). Two hand-weeding were done during growing season at 30 and 50 DAS. Pre-sowing irrigation was given to aid land preparation for cotton seed sowing. The crop yield, production-efficiency and monetary-efficiency were estimated using standard procedures (Rana et al. 2014, Kumar et al. 2015). Optimum economic N dose was calculated through the formula [optimum N dose = $[(q/p-b)/2c]$; where, q is the unit cost of fertilizer used in AFN/kg (AFN 43.8 kg$^{-1}$), p is the unit price of economic yield of cotton i.e. seed cotton yield in AFN/kg (AFN 40.8 kg$^{-1}$) and b and c are the constants determined from the

1Department of Agronomy, Afghanistan National Agricultural Science and Technology University, Kandahar. \(2^2\) (e-mail: anilhpau2010@gmail.com), Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
resultant regression equation. The regression equation was fitted for the yield variation in cotton in relation to different N-levels. The regression equation was quadratic in nature (Y = \(-0.0421 \times x^2 + 18.132 \times x + 2017.1; R^2 = 0.7625\)). The economic study w.r.t. cost of cultivation, gross returns, net returns, benefit: cost ratio (B: C ratio) were computed using standard procedures as suggested by Jalali and Choudhary (2018). The gross returns were calculated using prevalent market price of the seed (AFN 78 kg\(^{-1}\)), lint (AFN 27 kg\(^{-1}\)) and stalk (AFN 5 kg\(^{-1}\)) using standard procedures. A total of 18 irrigations 60 mm depth each were applied to the crop. The profile water contribution was not taken into consideration for seasonal water-use estimation in current study. Thus, total seasonal water-use was 1080 mm. Water-use efficiency (WUE) was computed using standard procedures (Choudhary et al. 2006). Partial factor productivity (PFP) (kg ha\(^{-1}\) kg\(^{-1}\)) of applied (N, P, K) was calculated using formula as suggested by Choudhary and Suri (2018). The experimental data were subjected to statistical analysis as per standard methods suggested by Rana et al. (2014). The data in Table 1 revealed that the highest seed cotton yield (3175.3 kg ha\(^{-1}\)) was recorded using N @ 210 kg ha\(^{-1}\) which was followed by N\(_{180}\), N\(_{150}\), N\(_{120}\), N\(_{90}\), N\(_{60}\), N\(_{30}\) and N\(_{0}\). Partial factor productivity of applied-N (PFP\(_N\)) was significantly higher when N was applied @ 30 kg ha\(^{-1}\); thereafter, it showed a gradual decline till N @ 210 kg ha\(^{-1}\) owing to decline in rate of seed cotton yield increase over per unit increase in N application rate (Table 2). Partial factor productivity of applied-P (PFP\(_P\)) and applied-K (PFP\(_K\)) were significantly higher in treatment N\(_{210}\) while N\(_{0}\) experienced lowest PFP\(_P\) and PFP\(_K\). As high N fertilization led to better crop yields despite of same P and K doses, thus, resulting in better PFP\(_P\) and PFP\(_K\) in current study (Choudhary and Suri 2018).
Conclusion

Overall, it can be summarized that N application @ 210 kg N ha\(^{-1}\) can be used as a blanked recommendation for obtaining higher crop productivity and profitability as well as better resource-use efficiency in Bt-cotton in semi-arid region of Afghanistan. But as a site-specific recommendation, the economic optimum N dose for Bt-cotton was estimated ~206.7 kg N ha\(^{-1}\) which may have great promises in enhancing the productivity, profitability and resource-use efficiency under semi-arid conditions of Afghanistan.

Acknowledgements

Authors are thankful to Ministry of External Affairs (MEA), Government of India (GOI), New Delhi for financial assistance; and Indian Council of Agricultural Research (ICAR), Ministry of Agriculture and Farmers’ Welfare, GOI, New Delhi for technical assistance. Authors also acknowledge the Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar, Afghanistan to carry-out above study under GOI-MEA-ICAR-ANASTU Program.

References

Post Graduate School, IARI, New Delhi and ICAR, DARE, New Delhi, India, pp 218 + viii.

