Influence of varying nitrogen levels on crop productivity, profitability and resource-use efficiency in *Bt*-cotton (*Gossypium hirsutum*) in semi-arid region of Afghanistan

GHULAM HABIB NOORI1, ANIL K CHOUDHARY2 and ANCHAL DASS3

ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India

Received: 13 September 2018; Accepted: 26 October 2018

Key words: *Bt*-cotton, Nitrogen dose, Partial factor productivity, Profitability, Resource-use efficiency, Water-use efficiency

Cotton (Gossypium hirsutum L.) is one of the most important commercial crops of Afghanistan mainly grown for fiber production; however, its seeds are used as source of edible oil while cotton cake is used as animal feed. With the collapse of the cotton industry in the last four decades due to war, cotton planting has declined drastically in the country resulting in low cotton production (Noori 2018). There are many production constraints resulting in low cotton productivity in the country like poor irrigation infrastructure, low rainfall, less availability of improved variety seeds, sub-optimal fertilizer use especially nitrogen (N) and poor weed management practices etc. (Ibrahimi et al. 2017; Noorzai et al. 2017; Noorzai and Choudhary 2017). At present, the Afghan government is giving prime emphasis to cotton cultivation keeping in view its quality production and congenial agro-climatic conditions in some parts of the country. However, this crop is grown extensively using conventional local cultivars with sub-optimal or over-doses of fertilizer N which adversely affects the cotton productivity and profitability. Moreover, the optimum N application dose for conventional cotton in general and Bt-cotton in particular has not yet been standardized so for cotton growing areas in Afghanistan. Thus, to promote the cotton cultivation with enhanced productivity in Afghanistan we need to use high vielding cultivars like Bt-cotton with redesigned agronomic practices specifically fertilizer N management (Blaise et al. 2014). Therefore, an attempt was made to assess the optimum N dose for Bt-cotton besides its yield performance visà-vis resource-use efficiency under varying N levels in semi-arid region of Afghanistan.

A field experiment was conducted during *kharif* 2017 at Research Farm of Afghanistan National Agricultural Science and Technology University (ANASTU), Kandahar, Afghanistan (31 0 30' N Longitude; 65 0 50' E Latitude; 1010 m Altitude) to study the effect of varying N levels *viz.* 0, 30, 60, 90, 120, 150, 180 and 210 kg N ha⁻¹ (N₀, N₃₀, N₆₀, N₉₀, N₁₂₀, N₁₅₀, N₁₈₀, and N₂₁₀) on productivity, profitability and

¹Department of Agronomy, Afghanistan National Agricultural Science and Technology University, Kandahar. ^{2,3}(e mail: anilhpau2010@gmail.com), Division of Agronomy, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.

resource-use efficiency of Bt-cotton (Gossypium hirsutum L.) in semi-arid conditions of Afghanistan. Geographically, Kandahar is situated in southern Afghanistan having semiarid hot climate with extreme cold and hot situations. The mean weather data were recorded from Meteorological Observatory located at ANASTU, Kandahar during crop season (Fig. 1). The experiment was conducted in randomized block design replicated thrice in a sandy-clay loam soil having slightly alkaline pH (7.2). Using LaMotte Garden Guide Soil Test Kit-5679-01 (LaMotte Soil Testing Kit, Chestertown, Maryland, USA), the soil was characterized as low in available N, medium in P₂O₅ and high in K₂O content. The size of each gross and net-plot was 6.0 m \times 4.5 m (27 m²) and 4.5 m \times 3.6 m (16.2 m²), respectively. The N was supplied through urea (46% N) in two equal splits i.e. first at sowing and remaining half N at appearance of flowering in Bt-cotton. A blanket dose of 60 kg P₂O₅/ha was applied through triple super phosphate (45% P₂O₅) and 40 kg K₂O/ha through potassium sulphate (50% K₂O) applied at sowing time in direct-seeded Btcotton. The Bt-cotton cultivar Bt-3700 was sown manually using seed @ 5 kg ha⁻¹ with plant spacing of 75 cm × 45 cm at 3-4 cm depth on 21st May, 2017 and harvested on 21st October, 2017. The seedlings of the cotton emerged out within 5-6 days after sowing (DAS) and the gap filling was done at 12 DAS. Different intercultural operations were done as and when necessary following standard package of practices (Choudhary et al. 2015). Two hand-weeding were done during growing season at 30 and 50 DAS. Pre-sowing irrigation was given to aid land preparation for cotton seed sowing. The crop yield, production-efficiency and monetaryefficiency were estimated using standard procedures (Rana et al. 2014, Kumar et al. 2015). Optimum economic N dose was calculated through the formula [optimum N dose = [(q/p-b)/2c]; where, q is the unit cost of fertilizer used in AFN/kg (AFN 43.8 kg⁻¹), p is the unit price of economic yield of cotton i.e. seed cotton yield in AFN/kg (AFN 40.8 kg⁻¹) and b and c are the constants determined from the

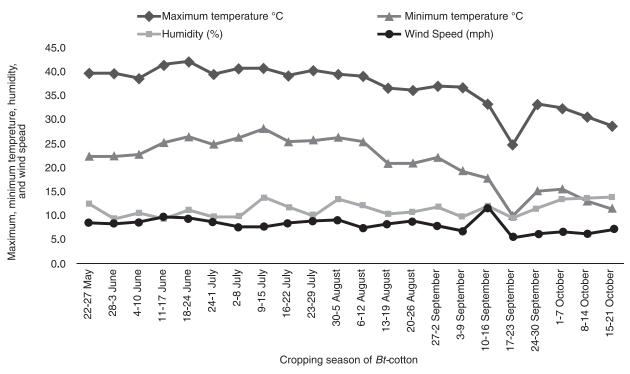


Fig 1 Meteorological details of the experimental site.

resultant regression equation. The regression equation was fitted for the yield variation in cotton in relation to different N-levels. The regression equation was quadratic in nature $(Y = -0.0421 \text{ x}^2 + 18.132 \text{ x} + 2017.1; \text{ R}^2 = 0.7625)$. The economic study w.r.t. cost of cultivation, gross returns, net returns, benefit: cost ratio (B: C ratio) were computed using standard procedures as suggested by Jalali and Choudhary (2018). The gross returns were calculated using prevalent market price of the seed (AFN 78 kg⁻¹), lint (AFN 27 kg⁻¹ 1) and stalk (AFN 5 kg⁻¹) using standard procedures. A total of 18 irrigations 60 mm depth each were applied to the crop. The profile water contribution was not taken into consideration for seasonal water-use estimation in current study. Thus, total seasonal water-use for *Bt*-cotton was 1080 mm [effective rainfall (0.0 mm) + irrigational water use (1080 mm)]. Water-use efficiency (WUE) was computed using standard procedures (Choudhary et al. 2006). Partial factor productivity (PFP) (kg ha⁻¹ kg⁻¹) of applied (N, P, K) was calculated using formula as suggested by Choudhary and Suri (2018). The experimental data were subjected to statistical analysis as per standard methods suggested by Rana et al. (2014).

The data in Table 1 revealed that the highest seed cotton yield (3175.3 kg ha⁻¹) was recorded using N @ 210 kg ha⁻¹ which was followed by N_{180} , N_{150} , N_{120} , N_{90} , N_{60} , N_{30} and N_{0} , respectively (Table 1). Since, N fertilization plays an important role in growth and yield enhancement (Choudhary *et al.* 2006), thus, increase in N levels led to enhanced seed cotton yield (Paul *et al.* 2016, Rajpoot *et al.* 2016a, 2016b, 2018). In current study, the cost of cultivation (COC) consistently increased with increase in N levels with highest COC under 210 kg N ha⁻¹ (Table 1).

It is apparent that high level of COC is always associated with high rates of farm inputs (Paul et al. 2016, Ibrahimi et al. 2017, Rajpoot et al. 2018). Higher gross and net returns and B: C ratio were obtained when N was applied @ 210 ha-1 followed by N_{180} , N_{150} , N_{120} , N_{90} , N_{60} , N_{30} and N_0 , respectively owing to differential yield trend as shown in Table 1. The optimum N dose for Bt-cotton was calculated as 206.7 kg N/ha from the resultant quadratic regression equation (Y = $-0.0421 \text{ x}^2 + 18.132 \text{ x} + 2017.1$; $R^2 = 0.7625$). The seasonal water-use was same in all the treatments (1080 mm). However, the WUE was maximum when N was applied @ 210 kg ha⁻¹ which was significantly higher over other treatments with least WUE values under control (Table 2). Production-efficiency (PE) and monetaryefficiency (ME) were significantly highest using N @ 210 kg $ha^{\text{-}1} \ which \ was \ followed \ by \ N_{180}, \ N_{150}, \ N_{120}, \ N_{90}, \ N_{60}, \ N_{30}$ and N₀, respectively (Table 2). Since, higher N fertilization led to better crop yields and net returns which led to better resource-use efficiency indices viz. WUE, PE and ME in current study (Kumar et al. 2015, Choudhary and Rahi 2018, Rajpoot et al. 2019). Partial factor productivity of applied-N (PFP_N) was significantly higher when N was applied @ 30 kg ha⁻¹; thereafter, it showed a gradual decline till N @ 210 kg ha⁻¹ owing to decline in rate of seed cotton yield increase over per unit increase in N application rate (Table 2). Partial factor productivity of applied-P (PFP_p) and applied-K (PFP_K) were significantly higher in treatment N₂₁₀ while N₀ experienced lowest PFP_P and PFP_K. As high N fertilization led to better crop yields despite of same P and K doses, thus, resulting in better PFP_P and PFP_K in current study (Choudhary and Suri 2018).

Table 1 Effect of varying N levels on cost of cultivation, gross and net returns and B: C ratio of Bt-cotton

Treatment	Seed cotton yield (kg ha ⁻¹)	Cost of cultivation (AFN ha ⁻¹)	Gross returns (AFN ha ⁻¹)	Net returns (AFN ha ⁻¹)	B: C ratio
0 kg N ha ⁻¹ (Control)	1909.8	51616	90927	39311	0.76
30 kg N ha ⁻¹	2647.8	53420	124121	70701	1.32
60 kg N ha ⁻¹	3045.6	54725	144049	89324	1.63
90 kg N ha ⁻¹	3252.6	56029	154269	98241	1.75
120 kg N ha ⁻¹	3526.8	57333	167597	110264	1.92
150 kg N ha ⁻¹	3766.6	58638	180827	122189	2.08
180 kg N ha ⁻¹	3910.5	59942	188683	128741	2.15
210 kg N ha ⁻¹	4353.4	61246	212652	151406	2.47
SE(m)±	153.6		6899	6899	0.12
CD (P=0.05)	470.4		29044	29044	0.50

^{*}Note: 1 AFN (Afghani, the Afghanistan currency) = 0.94 INR (Indian Rupee); One US dollar = 73.84 AFN.

Table 2 Effect of varying N levels on water-use efficiency, production-efficiency, monetary-efficiency and partial factor productivity (PFP) of *Bt*-cotton

Treatment	Water-use efficiency (kg ha-mm ⁻¹)	Production-efficiency (kg ha ⁻¹ day ⁻¹)	Monetary-efficiency (AFN ha ⁻¹ day ⁻¹)	Partial factor productivity (kg ha ⁻¹ kg ⁻¹ of applied nutrients)		
				PFP _N	PFP _P	PFP _K
0 kg N ha ⁻¹ (Control)	1.77	12.7	262.1	-	31.8	47.7
30 kg N ha ⁻¹	2.43	17.7	471.3	88.3	44.1	66.2
60 kg N ha ⁻¹	2.80	20.3	595.5	50.8	50.8	76.1
90 kg N ha ⁻¹	3.00	21.7	654.9	36.1	54.2	81.3
120 kg N ha ⁻¹	3.27	23.5	735.1	29.4	58.8	88.2
150 kg N ha ⁻¹	3.47	25.1	814.6	25.1	62.8	94.2
180 kg N ha ⁻¹	3.63	26.1	858.3	21.7	65.2	97.8
210 kg N ha ⁻¹	4.00	29.0	1009.4	20.7	72.6	108.8
SE(m)±	0.13	1.0	46.0	1.9	2.6	3.8
CD (P=0.05)	0.41	3.1	140.9	5.8	7.8	11.6

^{*}PFP: Partial factor productivity; PFP_N : Partial factor productivity of nitrogen; PFP_p : Partial factor productivity of phosphorus; PFP_K : Partial factor productivity of potassium

Conclusion

Overall, it can be summarized that N application @ 210 kg ha⁻¹ can be used as a blanked recommendation for obtaining higher crop productivity and profitability as well as better resource-use efficiency in *Bt*-cotton in semi-arid region of Afghanistan. But as a site-specific recommendation, the economic optimum N dose for *Bt*-cotton was estimated ~206.7 kg N ha⁻¹ which may have great promises in enhancing the productivity, profitability and resource-use efficiency under semi-arid conditions of Afghanistan.

ACKNOWLEDGEMENTS

Authors are thankful to Ministry of External Affairs (MEA), Government of India (GOI), New Delhi for financial assistance; and Indian Council of Agricultural Research (ICAR), Ministry of Agriculture and Farmers' Welfare, GOI, New Delhi for technical assistance. Authors also acknowledge the Afghanistan National Agricultural Sciences and Technology University (ANASTU), Kandahar,

Afghanistan to carry-out above study under GOI-MEA-ICAR-ANASTU Program.

REFERENCES

Blaise D, Venugopalan M V and Raju A R. 2014. Introduction of Bt-cotton hybrids in India: Did it change the Agronomy?. *Indian Journal of Agronomy* **59**(1): 1–20.

Choudhary A K and Rahi S. 2018. Organic cultivation of high yielding turmeric (*Curcuma longa* L.) cultivars: A viable alternative to enhance rhizome productivity, profitability, quality and resource-use efficiency in monkey-menace areas of north-western Himalayas. *Industrial Crops and Products* 124: 495–504.

Choudhary A K and Suri V K. 2018. System of rice intensification in short duration rice hybrids under varying bio-physical regimes: New opportunities to enhance rice productivity and rural livelihoods in north-western Himalayas under a participatory-mode technology transfer program. *Journal of Plant Nutrition.* 41(20): 2581–2605.

Choudhary A K, Rana D S, Bana R S, Pooniya V, Dass A, Kaur R and Rana K S. 2015. *Agronomy of oilseed and pulse crops*.

- Post Graduate School, IARI, New Delhi and ICAR, DARE, New Delhi, India, pp 218 + viii.
- Choudhary A K, Thakur R C and Kumar N. 2006. Effect of integrated nutrient management on water use and water-use-efficiency in wheat (*Triticum aestivum*)—rice (*Oryza sativa*) crop sequence in north-western Himalayas. *Indian Journal of Soil Conservation* **34**(3): 233–6.
- Ibrahimi F, Rana K S, Choudhary A K, Dass A, Ehsan Q, and Noorzai A U. 2017. Effect of varieties and planting geometry on growth, yield and profitability of *Kharif* mungbean [*Vigna radiata* (L.) Wilezek] in southern Afghanistan. *Annals of Agricultural Research* 38(2): 185–93.
- Jalali M N and Choudhary A K. 2018. Influence of varying nitrogen levels on productivity, resource-use efficiency and profitability of summer mungbean (*Vigna radiata* L. wilczek) in Kandahar province of Afghanistan. *Annals of Agricultural Research* 39(2): 180–6.
- Kumar A, Choudhary A K and Suri V K. 2015. Influence of AMfungi and applied phosphorus on growth indices, production efficiency, phosphorus—use efficiency and fruit—succulence in okra (*Abelmoschus esculentus*)—pea (*Pisum sativum*) cropping system in an acid Alfisol. *Indian Journal of Agricultural Sciences* 85(8): 1030–7.
- Mohamad K. 2009. Cotton cultivation, http://shenban.bloguna.tolafghan.com/posts/8585. Retrieved on 24.8.2018.
- Noori G H. 2018. Effect of varying nitrogen levels on productivity and profitability of *Bt*-cotton (*Gossypium hirsutum* L.) under semi-arid region of Afghanistan. M Sc thesis, Afghanistan National Agricultural Science and Technology University (ANASTU), Kandahar, Afghanistan. pp 74 + x.
- Noorzai A U and Choudhary A K. 2017. Influence of summer mungbean genotypes on grain yield and resource-use efficiency in Kandahar province of Afghanistan. *Annals of Agricultural Research* **38**(2): 194–9.

- Noorzai A U, Choudhary A K, Bana R S and Prasad R. 2017. Growth behaviour, productivity and profitability of promising mungbean varieties in semi-arid region of Afghanistan. *Annals of Agricultural Research* **38**(1): 78–86.
- Paul T, Rana D S, Choudhary A K, Das T K and Rajpoot S. 2016. Crop establishment methods and Zn nutrition in *Bt*-cotton: Direct effects on system productivity, economic–efficiency and water–productivity in *Bt*-cotton–wheat cropping system and their residual effects on yield and Zn biofortification in wheat. *Indian Journal of Agricultural Sciences* 86(11): 1406–12.
- Rajpoot S K, Rana D S and Choudhary A K. 2016. Effect of crop establishment methods on seed germination, seedling mortality and growth of *Bt*–cotton (*Gossypium hirsutum*) based intercropping systems. *Annals of Agricultural Research* 37(3): 316–20.
- Rajpoot S K, Rana D S and Choudhary A K. 2016. Influence of diverse crop management practices on weed suppression, crop and water productivity and nutrient dynamics in *Bt*–cotton (*Gossypium hirsutum*) based intercropping systems in a semi–arid Indo-Gangetic plains. *Indian Journal of Agricultural Sciences* 86(12): 1637–41.
- Rajpoot S K, Rana D S and Choudhary A K. 2018. *Bt*-cotton–vegetable-based intercropping systems as influenced by crop establishment methods and planting geometry of *Bt*-cotton in Indo–Gangetic plains region. *Current Science* **115**(3): 516–22.
- Rajpoot S K, Rana D S, Choudhary A K and Pande P. 2019. Cotton establishment methods' based system-intensification: Effects on *Bt*-cotton growth, weed suppression, system crop and water productivity, system-profitability and land–use efficiency in Indo–Gangetic plains region. *Indian Journal of Agricultural Sciences* 88(2): (*Accepted*).
- Rana K S, Choudhary A K, Sepat S, Bana R S and Dass A. 2014.

 Methodological and Analytical Agronomy. p 276. IARI, New Delhi