# Selection of maize (Zea mays) hybrids for plant density tolerance

ABD EL-ATY M S<sup>1</sup>, M A EL-HITY<sup>2</sup>, E A AMER<sup>3</sup> and T T EL-MOUSLHY<sup>4</sup>

Sakha Agricultural Research Station, Agricultural Research Center, Egypt 33717

Received: 20 March 2019; Accepted: 29 March 2019

#### ABSTRACT

Plant density tolerance (PDT) is one of the most important trait for breeders. The study was carried out at Sakha Research Station, Egypt in 2016. Half diallel crosses among 10 yellow maize (*Zea mays* L.) inbred lines were made. The resulting 45 hybrids and commercial check SC162 were evaluated under 2 nitrogen fertilizer levels ( $N_1$ = 286 and  $N_2$ =357 kg N/ha) and 3 plant densities ( $D_1$ =59351 plant/ha,  $D_2$ =71846 plants/ha and  $D_3$ =84341 plant/ha) in 2017 to identify the superior hybrids at high plant densities and estimate combining ability variance and effects at various plant densities for grain yield. The mean squares due to nitrogen fertilizer (N) was not significant, while the mean squares due to plant density (D), N×D interaction, hybrids (H), H×N, H×D and H×N D were highly significant. Also the mean squares due to general combining ability (GCA) and specific combining ability (SCA) and their interactions with N, D, and N×D were highly significant. SCA or non-additive gene action was the main influence in the inheritance and was more affected by N, D and N×D interaction for grain yield. The best inbred lines for GCA effects, viz. P3, P8 and P10 can be used in maize breeding program to give high yield in various environmental conditions especially for plant density tolerance. The best hybrids for SCA effect under most environments especially high plant densities were P1 × P3, P1 × P8, P2 × P6, P4 × P5, P4 × P8, P5 × P7 and P8 × P10. The hybrid P8 × P10 had high significant positive superiority. These hybrids can be upgraded to other stages of evaluation in the maize breeding program, especially for plant density tolerance.

Key words: Maize, New hybrids, Plant density, Selection, Tolerance

Maize (*Zea mays* L.) is one of the top three most important cereal crops in the world (Russell 1991). It is grown on more than 100 million ha worldwide (FAO. Agric. 2015). To meet present and future needs, productivity per unit area must be increased through plant breeding and improved cultural practices (Duvick 2005, Lee and Tollenaar 2007). The breeders work to develop new hybrids having high yield potential under stress of free growing conditions.

Also many studies have suggested that breeders have not significantly changed yield potential, but they have increased stress tolerance for obtain high yield potential under a wider range of environmental conditions (Tokatlidis and Koutroubas 2004). Breeding to plant density tolerance is one of the most important objectives of breeders. Meanwhile, concerning cultural practices like, fertilization, plant density, irrigation, planting dates and weed control are the most important factors affecting grain yield. Optimum conditions must be selected of these factors to give the highest grain yield for each hybrid. Sangoi (2000) found that increased

Present address: <sup>1</sup>Professor (abdelaty2009@yahoo.com), <sup>2</sup>Professor (Mahmoud elhati@agr.kfs.eg), Kafrel Sheikh University, Egypt. <sup>3</sup>Professor (esamamer60@gmail.com), <sup>4</sup>Ph D Scholar, (tameralmslhy@yahoo.com), Agricultural Research Center, Egypt.

plant density is an important factor impacting grain yield on corn-belt. Several maize studies have evaluated hybrids at different plant densities ranging from 30000 plants/ha to 100000 plants/ha. The results from those studies exhibited that plant density and grain yield per unit area trend together in an increasing fashion over time since 1930 in the USA (USDA-NASS 2012). Based on these results, the important way to increase grain yield per unit area is to increase the plant density (Brekke *et al.* 2011). Some hybrids yield more as plant density is increased while others exhibit no increase or even yield loss (Duvick and Cassman 1999, Grassini *et al.* 2011).

Several studies have shown the effect of some traits on plants, ability to density tolerance. Lambert and Johnson (1978) stated that upright leaf angle and tassels with fewer branches have been linked to increased grain yield under high plant density. Duvick and Cassman (1999) found that tassel size decreased due to increased grain yield. Carcova and Otegui (2001) reported that under high plant density improved kernel set led to improved grain yield and was associated with a shorter anthesis-silking interval (ASI). Brian and Mumm (2013) found that leaf angle and upper stem diameter were the two traits highly correlated with grain yield, suggesting key influence in PDT. Borras *et al.* (2003) found that poor stay green (higher rate of leaf senescence) under high plant density is associated with poor

assimilate supply. Increased lodging and increased plant and ear height have also been associated with less tolerance to plant density stress (Edmeades and Lafite 1993). Choosing the right plant density in the selection environment has been proposed as a successful way to improve stress tolerance (Zavala-Garcia *et al.* 1992). The association between inbred lines and their hybrid progenies were increased when genetic materials were developed at higher plant densities (Carena *et al.* 2003). The objectives of this research were to identify the superior hybrids for grain yield at high plant densities and to estimate combining ability and type of gene action under nitrogen levels and plant density.

#### MATERIALS AND METHODS

This investigation was carried out at Sakha Agricultural Research Station, Egypt. Ten yellow maize inbred lines, P1(Sk 2), P2 (Sk 10), P3 (Sk 11), P4 (GZ 658),P5 (GZ 666), P6 (Sk 8008), P7 (GM 1004), P8 (Sk 5006), P9 (Sk 5014/3) and P10 (Sd 3120) were used in this study. These inbred lines have high general combining ability and some traits that have a relation to the plant density tolerance. In 2016 growing season inbred lines were crossed in half diallel cross. The resulting 45 hybrids and one commercial hybrid SC 162 were evaluated under three plant densities,  $D_1 = 59351$  plants/ha (optimum plant density in Egypt),  $D_2 =$ 71846 plants/ha and D3=84341 plants/ha, and two nitrogen fertilizer levels, N<sub>1</sub>=286 kg N/ha (optimum fertilization in Egypt) and  $N_2 = 357$  kg N/ha in one trial in 2017 growing season. split-split plot design with three replications was used; the two nitrogen levels were located at the main plots, the three plant densities were placed in the sub-plots and 46 hybrids were located at the sub-sub plots. Plot size consisted of, 4 m row 0.8 m apart and the hills were spaced 21 cm at D1, 17. 5 cm at D2 and 15 cm apart at D3. All agronomic field operations were practiced with ordinary field maize cultivation except nitrogen fertilization; the quantity 286 and 357 kg N/ha was divided into equal doses; the first dose was added with the first irrigation and the second dose was added with the second irrigation. Statistical analysis of variance for grain yield was recorded according to Snedecor and Cochran (1967). The variations among hybrids were further partitioned into the general and specific combining ability components, also general and specific combining ability effects for ten inbred lines were computed according to Griffing (1956) method-4 model-1.

### RESULTS AND DISCUSSION

Analysis of variance for 46 hybrids under two nitrogen levels and three plant densities and their interactions for grain yield are presented in Table 1. The results exhibited that the mean squares due to nitrogen levels (N) was not significant. While the mean squares due to plant density (D) and D  $\times$  N interaction was highly significant, meaning that grain yield was affected by D and N  $\times$  D interaction. Also the mean squares due to hybrids H and their interactions, H  $\times$  N, H  $\times$  D and H  $\times$  N  $\times$  D were highly significant. This means that there were differences among hybrids and these

Table 1 Analysis of variance for 46 hybrids under two nitrogen levels, three plant densities and their interactions for grain yield (kg/plot)

| SOV                 | df  | SS     | MS      |
|---------------------|-----|--------|---------|
| Rep                 | 2   | 3.462  | 1.731   |
| Nitrogen levels (N) | 1   | 3.930  | 3.930   |
| Error (a)           | 2   | 0.898  | 0.449   |
| Plant density (D)   | 2   | 6.148  | 3.074** |
| $D\times N$         | 2   | 3.458  | 1.729** |
| Error (b)           | 8   | 1.502  | 0.187   |
| Hybrids (H)         | 45  | 77.005 | 1.711** |
| $H \times N$        | 45  | 17.070 | 0.379** |
| $H \times D$        | 90  | 17.114 | 0.190** |
| $H\times D\times N$ | 90  | 24.340 | 0.270** |
| Error (c)           | 540 | 51.550 | 0.095   |

<sup>\*\*</sup> Significant at 0.01 level of probability.

differences were affected by D and interaction between D  $\times$  N. Abd El-Aty (1987) reported that the differences between genotypes and their interactions with N, D and N  $\times$  D were significant for grain yield. Mosa (2001) found that grain yield was affected by D, N and not affected by N  $\times$  D interaction. Shrestha *et al.* (2018) found that nitrogen levels and interaction between N  $\times$  D were not significant for grain yield.

Means of two nitrogen levels, three plant densities and their interaction for grain yield (Table 2) showed that as an average over two nitrogen levels the high plant density D<sub>3</sub> produced the highest grain yield followed by D2 and the lowest value was recorded for D1. Meanwhile the highest grain yield was obtained from N2D3, while the lowest value was obtained from N1D1. (Hunter *et al.* 1970), (Katta *et al.* 1975), Mosa (2001) and Brian and Mumm (2013) reported that increasing plant density led to increase in grain yield. (Nawar *et al.* 1992), Mohamed (1999), Abdel-Aty (2007) and (Shrestha *et al.* 2018) found that with increased nitrogen fertilizer up to 286 kgN/ha the grain yield increased.

Means of hybrids under N1 across three plant densities for grain yield ranged from 2.48 kg/plot for P5  $\times$  P8 to 4.12 kg/plot for P4  $\times$  P8, the highest hybrids were P4  $\times$  P8, P1  $\times$  P8, P3  $\times$  P4 and P8  $\times$  P10, respectively (Table 3). Means of hybrids under N2 across three plant densities ranged from 2.95 kg/plot for P5  $\times$  P8 to 4. 58 kg/plot for P1  $\times$  P3, the best hybrids were P1  $\times$  P3, P8  $\times$  P10, P3  $\times$  P8,

Table 2. Means of two nitrogen levels, three plant densities and their interaction for grain yield

| Nitrogen Level | I    | Plant densit | y    | Mean |
|----------------|------|--------------|------|------|
|                | D1   | D2           | D3   | _    |
| N1             | 3.28 | 3.55         | 3.61 | 3.48 |
| N2             | 3.60 | 3.58         | 3.70 | 3.62 |
| Mean           | 3.44 | 3.56         | 3.65 | -    |

 $P1 \times P8$  and  $P3 \times P5$ , respectively. In general, the hybrids P1 × P8 and P8 × P10 give high grain yield under both N1 and N2 across three plant densities. Meanwhile means hybrids under D1 across two nitrogen levels ranged from 2. 65 kg/plot for P5  $\times$  P6 to 4. 29 kg/plot for P8  $\times$  P10 the best hybrids were P8  $\times$  P10, P4  $\times$  P8, P3  $\times$  P5, P1  $\times$  P5 and P1 × P3, respectively. Also, under D2 the means hybrids ranged from 2.57 kg/plot for P5 × P8 to 4. 14 kg/plot for P1  $\times$  P3, the better hybrids were P1  $\times$  P3, P1  $\times$  P8, P8  $\times$ P10, P3 × P8, respectively. The hybrids under D3 ranged from 2.72 kg/plot for P5  $\times$  P8 to 4.25 kg/plot for P1  $\times$  P8, the highest hybrids were P1  $\times$  P8, P3  $\times$  P8, P1  $\times$  P3, P4  $\times$ P8, P8 × P10, P2 × P10 and P3 × P4, respectively. From above results, the hybrids P1 × P3, P1 × P8, P3 × P8 and P8 × P10 gave high grain yield under both high densities D2 and D3.

Mean grain yield of hybrids under N1D1 were ranged from 2. 26 kg/plot for P5  $\times$  P6 to 4. 11 kg/plot for P4  $\times$  P8, the better hybrids for grain yield were P4  $\times$  P8, P8  $\times$  P10 and P1 × P4, respectively, under N1D2 ranged from 2. 51 kg/plot for P5  $\times$  P8 to 4. 28 kg/plot for P1  $\times$  P8, the highest hybrids for grain yield were P1 × P8, SC 162, P1 × P9,  $P3 \times P4$ ,  $P4 \times P8$ ,  $P8 \times P10$  and  $P4 \times P5$ , respectively, under N1D3 ranged from 2.57 kg/plot for P5 × P8 to 4. 25 kg plot for P7 × P10, the highest hybrid for grain yield were  $P7 \times P10$ ,  $P4 \times P8$ ,  $P1 \times P8$ ,  $P3 \times P4$ ,  $P7 \times P8$ ,  $P5 \times P9$ , P5  $\times$  P10 and P5  $\times$  P7, respectively, under N2D1 ranged from 2.68 kg/plot for P1  $\times$  P6 to 4.68 kg/plot for P8  $\times$  P10, the best hybrids were P8  $\times$  P10, P3  $\times$  P5, P1  $\times$  P3, SC 162,  $P1 \times P5$ ,  $P3 \times P9$ ,  $P5 \times P9$ ,  $P2 \times P7$ ,  $P3 \times P7$  and  $P4 \times P8$ , respectively under N2D2 ranged from 2. 64 kg/plot for P5  $\times$  P8 to 4. 58 kg/plot for P1  $\times$  P3, the superiority hybrids

Table 3. Means performance of the best hybrids under two nitrogen levels and three plant densities for grain yield (kg/plot)

| N1           |          | N.       | 2     | D        | 1     | D        | 2        | D.       | 3     |
|--------------|----------|----------|-------|----------|-------|----------|----------|----------|-------|
| Hybrid       | Mean     | Hybrid   | Mean  | Hybrid   | Mean  | Hybrid   | Mean     | Hybrid   | Mean  |
| P4 x P8      | 4.129    | P1 x P3  | 4.582 | P8 x P10 | 4.292 | P1 x P3  | 4.145    | P1 x P8  | 4.258 |
| P1 x P8      | 3.998    | P8 x P10 | 4.478 | P4 x P8  | 4.120 | P1 x P8  | 4.118    | P3 x P8  | 4.195 |
| P3 x P4      | 3.912    | P3 x P8  | 4.126 | P3 x P5  | 3.988 | P8 x P10 | 4.087    | P1 x P3  | 4.193 |
| P8 x P10     | 3.879    | P1 x P8  | 4.091 | P1 x P5  | 3.945 | P4 x P8  | 3.985    | P4 x P8  | 4.160 |
| P5 x P7      | 3.846    | P3 x P5  | 4.047 | P1 x P3  | 3.907 | P3 x P8  | 3.907    | P8 x P10 | 4.157 |
| P7 x P10     | 3.843    | P1 x P5  | 3.936 | P3 x P 9 | 3.785 | P2 x P10 | 3.880    | P2 x P10 | 4.150 |
| P1 x P4      | 3.837    | P2 x P10 | 3.922 | P1 x P9  | 3.752 | P1 x P4  | 3.850    | P3 x P4  | 4.002 |
| P2 x P10     | 3.741    | P4 x P8  | 3.914 | P7 x P10 | 3.748 | P4 x 10  | 3.813    | P2 x P8  | 3.993 |
| P7 x P8      | 3.729    | P3 x P9  | 3.913 | P1 x P4  | 3.747 | P4 x P5  | 3.807    | P5 x P7  | 3.945 |
| P3 x P8      | 3.693    | P2 x P8  | 3.896 | P5 x P7  | 3.692 | P3 x P10 | 3.802    | P3 x P9  | 3.932 |
| Check SC 162 | 3.982    | SC 162   | 4.090 | SC 162   | 4.103 | SC 162   | 3.873    | SC 162   | 4.131 |
|              | LSD 0.05 | (0.28)   |       |          |       | LSD 0.0  | 5 (0.34) |          |       |
|              | LSD 0.01 | (0.37)   |       |          |       | LSD 0.0  | 1 (0.45) |          |       |

Table 4. Means performance of the best hybrids under the combination between two nitrogen levels and three plant densities and their means across all environments for grain yield (kg/plot)

| N1D             | 1     | N1D             | 2        | N1E            | )3    | N2E            | <b>)</b> 1 | N2E             | 02    | N2D             | 3     | Mea             | ın    |
|-----------------|-------|-----------------|----------|----------------|-------|----------------|------------|-----------------|-------|-----------------|-------|-----------------|-------|
| Hybrid          | Mean  | Hybrid          | Mean     | Hybrid         | Mean  | Hybrid         | Mean       | Hybrid          | Mean  | Hybrid          | Mean  | Hybrid          | Mean  |
| P4 × P8         | 4.117 | $P1 \times P8$  | 4.280    | P7 × P10       | 4.257 | P8 × P10       | 4.683      | $P1 \times P3$  | 4.583 | $P1 \times P3$  | 4.817 | P8 × P10        | 4.178 |
| $P8 \times P10$ | 3.900 | P1 × P9         | 4.210    | $P4\times P8$  | 4.200 | $P3 \times P5$ | 4.437      | $P8 \times P10$ | 4.200 | $P8 \times P10$ | 4.550 | $P1 \times P3$  | 4.082 |
| $P1 \times P4$  | 3.863 | $P3 \times P4$  | 4.140    | $P1 \times P8$ | 4.187 | $P1 \times P3$ | 4.391      | $P2 \times P4$  | 4.133 | $P3 \times P8$  | 4.527 | $P4\timesP8$    | 4.022 |
| $P2 \times P9$  | 3.773 | $P4\timesP8$    | 4.070    | $P3 \times P4$ | 4.130 | $P1 \times P5$ | 4.177      | $P1 \times P8$  | 4.110 | $P8 \times P9$  | 3.460 | $P1 \times P8$  | 4.023 |
| P5 × P10        | 3.773 | P4 × P10        | 3.983    | $P7 \times P8$ | 4.120 | $P3 \times P9$ | 4.170      | $P3 \times P8$  | 4.080 | P7 × P9         | 4.460 | $P3\times P8$   | 3.909 |
| $P1 \times P5$  | 3.713 | $P8 \times P10$ | 3.973    | $P5 \times P9$ | 4.063 | $P5 \times P9$ | 4.050      | $P8 \times P9$  | 3.983 | $P2 \times P10$ | 4.447 | $P2 \times P10$ | 3.832 |
| $P7 \times P8$  | 3.713 | $P4 \times P5$  | 3.973    | P5 × P10       | 4.050 | $P2\timesP7$   | 4.027      | $P7 \times P8$  | 3.973 | $P1 \times P8$  | 4.350 | $P3 \times P9$  | 3.826 |
| P7 × P10        | 3.710 | $P1 \times P4$  | 3.950    | $P5 \times P7$ | 4.010 | $P3 \times P7$ | 4.010      | $P4 \times P8$  | 3.900 | $P2 \times P8$  | 4.233 | $P3 \times P5$  | 3.791 |
| $P1 \times P9$  | 3.657 | $P2 \times P10$ | 3.903    | $P4\times P5$  | 3.953 | $P4\times P8$  | 3.943      | $P4 \times P9$  | 3.877 | P4 × P10        | 4.210 | $P3 \times P4$  | 3.785 |
| $P2 \times P10$ | 3.610 | P3 × P9         | 3.890    | $P3 \times P9$ | 3.927 | $P2\timesP8$   | 3.817      | $P1 \times P5$  | 3.817 | P3 × P10        | 4.130 | $P3 \times P10$ | 3.684 |
| Check SC<br>162 | 3.523 | SC 162          | 4.216    | SC 162         | 3.906 | SC 162         | 4.383      | SC 162          | 3.530 | SC 162          | 4.036 | SC 162          | 3.932 |
|                 |       | LSD             | 0.05 ( 0 | .49)           |       |                |            |                 | LS    | D 0.05 ( 0.2    | 21)   |                 |       |
|                 |       | LSD             | 0.01 ( 0 | .64)           |       |                |            |                 | LS    | D 0.01 ( 0.2    | 26)   |                 |       |

were P1  $\times$  P3 , P8  $\times$  P10, P2  $\times$  P4 , P1  $\times$  P8 , P3  $\times$  P8 , P8  $\times$  P9 and P4  $\times$  P8, respectively and under N2D3 ranged from 2. 87 kg/plot for P5  $\times$  P8 to 4.81 kg/plot for P1  $\times$  P3 , the favorable hybrids for grain yield were P1  $\times$  P3 , P8  $\times$  P10 , P3  $\times$  P8 , P7  $\times$  P9 , P2  $\times$  P10, P1  $\times$  P8 , P2  $\times$  P8 , P3  $\times$  P10 and SC 162 (Table 4). From above results, the hybrid P8  $\times$  P10 had high grain yield under N2D1, N2D2 and N2D3 followed by P4 $\times$ P8 under N1D1, N1D2, N1D3, N2D1 and N2D2, P1  $\times$  P8 under N1D2, N1D3, N2D2, and

Table 5 Analysis of variance for general and specific combining ability and their interaction with nitrogen levels and plant density for grain yield (kg/plot)

| df  | SS                                                           | MS                                                                                                                                                                        |
|-----|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44  | 72.80                                                        | 1.65**                                                                                                                                                                    |
| 9   | 33.94                                                        | 3.88**                                                                                                                                                                    |
| 35  | 38.86                                                        | 1.11**                                                                                                                                                                    |
| 44  | 17.06                                                        | 0.38**                                                                                                                                                                    |
| 9   | 4.45                                                         | 0.44**                                                                                                                                                                    |
| 35  | 12.6                                                         | 0.36**                                                                                                                                                                    |
| 88  | 16.73                                                        | 0.19**                                                                                                                                                                    |
| 18  | 3.12                                                         | 0.17**                                                                                                                                                                    |
| 70  | 13.6                                                         | 0.19**                                                                                                                                                                    |
| 88  | 23.31                                                        | 0.26**                                                                                                                                                                    |
| 18  | 4.3                                                          | 0.23**                                                                                                                                                                    |
| 70  | 19.04                                                        | 0.27**                                                                                                                                                                    |
| 528 | 49.60                                                        | 0.093                                                                                                                                                                     |
|     | 0.46                                                         |                                                                                                                                                                           |
|     | 0.15                                                         |                                                                                                                                                                           |
|     | 0.09                                                         |                                                                                                                                                                           |
|     | 0.052                                                        |                                                                                                                                                                           |
|     | 44<br>9<br>35<br>44<br>9<br>35<br>88<br>18<br>70<br>88<br>18 | 44 72.80<br>9 33.94<br>35 38.86<br>44 17.06<br>9 4.45<br>35 12.6<br>88 16.73<br>18 3.12<br>70 13.6<br>88 23.31<br>18 4.3<br>70 19.04<br>528 49.60<br>0.46<br>0.15<br>0.09 |

<sup>\*\*</sup> Significant at 0.01 level of probability.

N2D3, and P1×P3 under N2D1, N2D2 and N2D3. Mean hybrids across two nitrogen levels and three plant density (Table 4) exhibited that the best hybrids for grain yield were P8×P10 4. 17 kg/plot, followed by P1 × P3 4. 08 kg/plot, P1 × P8 4. 02 kg/plot and P4 × P8 4. 02 kg/plot. These hybrids can be used as high yielding hybrids especially under high density.

Analysis of variance for general and specific combining ability and their interactions with nitrogen levels and plant density for grain yield showed that both mean squares of GCA and SCA were highly significant (Table 5). These indicate that additive and non-additive gene actions were important in the inheritance of grain yield. These results are agreement with Mosa (2010), Arafa (2012) and Abu-Shosha (2017). Also, mean squares due to the interactions between  $GCA \times N$ ,  $GCA \times D$ ,  $GCA \times N \times D$ ,  $SCA \times N$ ,  $SCA \times D$ and SCA  $\times$  N  $\times$  D were highly significant, meaning that both additive and non-additive gene action were affected by environment. The same results were obtained by Abd El-Aty (1987), Mosa (2001) and Abd El-Aty and Darwish (2006). Estimates of K<sup>2</sup> GCA and K<sup>2</sup> SCA and their interactions with N, D and N  $\times$  D for grain yield showed that K<sup>2</sup>SCA was higher than K<sup>2</sup> GCA. These indicate that the nonadditive gene action was main influence in the inheritance of grain yield. Also the K<sup>2</sup> SCA was higher than K<sup>2</sup>GCA when interacted with N, D and N × D, meaning that nonadditive gene action was more affected by N, D and N × D than additive gene action for grain yield. (Mosa et al. 2016) found that SCA was more important than GCA in the inheritance of grain yield. EL-Shamarka et al. (1994) and Mosa (1996) found that the ratios of GCA × N / SCA  $\times$  N, GCA  $\times$  D / SCA  $\times$  D and GCA  $\times$  N  $\times$  D /SCA  $\times$  N × D were less than unity. On the other hand, Abd El-Aty and Darwish (2006) found that GCA was more important than SCA in the inheritance of grain yield.

Data over density levels showed that the best inbred

Table 6. Estimate of general combining ability under two nitrogen levels and three plant densities for grain yield (kg/plot)

| Inbred line |      |           |           | GCA effect |           |           |
|-------------|------|-----------|-----------|------------|-----------|-----------|
|             | _    | N1        | N2        | D1         | D2        | D3        |
| P1          |      | 0.1183**  | 0.0893**  | 0.1393**   | 0.1614**  | 0.0107    |
| P2          |      | -0.1179** | 0.0446    | -0.0955*   | 0.0095    | -0.0239   |
| P3          |      | 0.1341**  | 0.2804**  | 0.2361**   | 0.2085**  | 0.1771**  |
| P4          |      | 0.0895**  | -0.0670*  | -0.0812    | 0.0739    | 0.0411    |
| P5          |      | -0.1998** | -0.1048** | -0.1005*   | -0.2120** | -0.1443** |
| P6          |      | -0.2538** | -0.3777** | -0.3922**  | -0.2832** | -0.2718** |
| P7          |      | -0.0448   | -0.1542** | -0.0249    | -0.1659** | -0.1077*  |
| P8          |      | 0.0808    | 0.1830**  | 0.1428**   | 0.0989*   | 0.1540**  |
| P9          |      | -0.003    | -0.0425   | -0.0383    | -0.0390   | 0.0090    |
| P10         |      | 0.1967**  | 0.1489**  | 0.2145**   | 0.1480**  | 0.1559**  |
| LSD gi      | 0.05 | 0.0       | 067       |            | 0.082     |           |
|             | 0.01 | 0.0       | 087       |            | 0.108     |           |
| LSD(gi-gj)  | 0.05 | 0.1       | 100       |            | 0.122     |           |
|             | 0.01 | 0.1       | 131       |            | 0.161     |           |

Table 7 Estimate of general combining ability effect for 10 inbred lines under the combination between two nitrogen levels and three plant densities

| Inbrd line  |      |           |          | GCA      | effect    |           |          | Mean     |
|-------------|------|-----------|----------|----------|-----------|-----------|----------|----------|
|             |      | N1D1      | N1D2     | N1D3     | N2D1      | N2D2      | N2D3     | -        |
| P1          |      | 0.2193 ** | 0.1932** | -0.0577  | 0.0593    | 0.1296*   | 0.0790   | 0.1038** |
| P2          |      | -0.1445*  | -0.0414  | -0.167** | -0.0466   | 0.0604    | 0.1198*  | -0.0367  |
| P3          |      | 0.1293*   | 0.2019** | 0.0711   | 0.3430**  | 0.2150**  | 0.283**  | 0.2072** |
| P4          |      | 0.0138    | 0.1069   | 0.1478*  | -0.1762** | 0.0408    | -0.065   | 0.0113*  |
| P5          |      | -0.2566** | -0.198** | -0.1443* | 0.0555    | -0.2254** | -0.144*  | -0.1523* |
| P6          |      | -0.3795** | -0.188** | -0.193** | -0.4049** | -0.3779** | -0.350** | -0.3158* |
| P7          |      | -0.0495   | -0.1489* | 0.0640   | -0.0003   | -0.1829** | -0.279** | -0.0995* |
| P8          |      | 0.1238*   | -0.0048  | 0.1232*  | 0.1618**  | 0.2025**  | 0.1848** | 0.1319*  |
| P9          |      | 0.0297    | -0.0752  | 0.0365   | -0.1062   | -0.0029   | -0.018   | -0.0228  |
| P10         |      | 0.3143**  | 0.1553** | 0.1207*  | 0.1147*   | 0.1408*   | 0.191**  | 0.1728*  |
| LSD gi      | 0.05 |           |          | 0.       | 116       |           |          | 0.047    |
|             | 0.01 |           |          | 0.       | 153       |           |          | 0.625    |
| LSD(gi –gj) | 0.05 |           |          | 0.       | 173       |           |          | 0.070    |
|             | 0.01 |           |          | 0.2      | 228       |           |          | 0.093    |

lines for GCA effects (positive and significant) were P1, P3, P4, P8 and P10 under (N1), P1, P3, P8 and P10 at (N2) (Table 6). By the same way the best inbred lines for GCA effects over nitrogen levels were; P1, P3, P8 and P10 under D1 and D2 P1, P3, P8 and P10 under D3. From the above results the inbred lines P1, P3, P8 and P10 had the best GCA effects under two nitrogen levels and three plant densities except of the P1 under D3.

Estimates of general combining ability effects under the combination between two nitrogen levels and three plant densities and their mean for grain yield showed that better inbred lines for GCA effects were P1, P3, P8 and P10 under N1D1, P1, P3 and P10 under N1D2, P4, P8 and P10 under N1D3, P3,P8 and P10 under N2D1, P1,P3,P8 and P10 under N2D2 and P2,P3,P8 and P10 under N2D3. In general, the best inbred line for GCA effects for grain yield across all environments were P1, P3, P4, P8 and P10 (Table 7). These inbred lines can be used in maize breeding program to produce high yielding hybrids that bear various environmental conditions especially for plant density tolerance.

Estimates of specific combining ability effects of the best F1 hybrids for grain yield at nitrogen levels across plant densities showed that the best hybrids for SCA effects (positive and significant ) were P1  $\times$  P8, P2  $\times$  P3, P2  $\times$  P6, P2  $\times$  P10, P3  $\times$  P4, P4  $\times$  P5, P4  $\times$  P8, P5  $\times$  P, P5  $\times$  P10, P7

Table 8. Estimate of specific combining ability effect of best hybrid under two nitrogen levels and three plant densities for grain yield

|                 | N1          | N               | 12       | Ε               | 01       |                 | D2           |                 | D3       |
|-----------------|-------------|-----------------|----------|-----------------|----------|-----------------|--------------|-----------------|----------|
| Hybrid          | SCA         | Hybrid          | SCA      | Hybrid          | SCA      | Hybrid          | SCA          | Hybrid          | SCA      |
| P5 × P7         | 0.6116**    | P1 × P3         | 0.5955** | P4 × P8         | 0.5355** | P5 × P7         | 0.5576**     | P5 × P7         | 0.5500** |
| $P2 \times P6$  | 0.4242**    | $P8 \times P10$ | 0.5288** | $P2\times P6$   | 0.5115** | $P4 \times P5$  | 0.3912**     | $P1 \times P8$  | 0.4467** |
| $P4\times P8$   | 0.4800**    | $P5 \times P7$  | 0.3830** | $P8 \times P10$ | 0.5015** | $P1 \times P8$  | 0.2945**     | $P1 \times P3$  | 0.3585** |
| $P4\times P5$   | 0.3139**    | $P1 \times P5$  | 0.334**  | $P3 \times P5$  | 0.4199** | $P8 \times P10$ | 0.2762**     | $P7 \times P9$  | 0.3350** |
| $P1 \times P8$  | 0.2802**    | $P7\times P9$   | 0.2985** | $P1 \times P.5$ | 0.4734** | $P2 \times P6$  | 0.2684*      | $P4\times P5$   | 0.3079** |
| P5 × P10        | 0.2567**    | $P3 \times P5$  | 0.2540** | P5 × P7         | 0.3842** | $P4\times P8$   | 0.2487*      | $P6 \times P10$ | 0.2740*  |
| $P7\times P8$   | 0.2144**    | $P2\times P7$   | 0.2437** | $P1 \times P4$  | 0.2557** | $P1 \times P3$  | 0.2116*      | $P5 \times P9$  | 0.2717*  |
| $P7 \times P10$ | 0.2128**    | $P2\times P6$   | 0.1994** | $P2 \times P9$  | 0.2059*  | $P3 \times P5$  | 0.1866       | $P3 \times P8$  | 0.2169*  |
| $P3 \times P4$  | 0.2100**    | $P4\times P8$   | 0.1813** | $P1 \times P9$  | 0.2178*  | $P6 \times P7$  | 0.1689       | $P6 \times P9$  | 0.2158*  |
| $P2 \times P10$ | 0.1837**    | $P1 \times P8$  | 0.1784*  | $P2\times P7$   | 0.1192   | $P1 \times P4$  | 0.0512       | $P2 \times P10$ | 0.2994** |
|                 | LSD Sij 0.  | 05 (0.176)      |          |                 |          | LSD Sij 0       | .05 (0.216)  |                 |          |
|                 | 0.01 (      | 0.232)          |          |                 |          | 0.01 (          | (0.284)      |                 |          |
|                 | LSD Sij-Skl | 0.05 (0.245)    |          |                 |          | LSD Sij-Skl     | 0.05 (0.300) |                 |          |
|                 | 0.01 (      | 0.322)          |          |                 |          | 0.01 (          | (0.395)      |                 |          |

Table 9. Estimate of specific combining ability effect of the best hybrid under the combination among two nitrogen level, three plant densities and their mean for grain yield

| NIDI            | D1       | Z                                | N1D2     | N1D3            | D3      | N2D1                             | D1       | N2              | N2D2     | N2D3            | D3       | Mean                                                            | an       |
|-----------------|----------|----------------------------------|----------|-----------------|---------|----------------------------------|----------|-----------------|----------|-----------------|----------|-----------------------------------------------------------------|----------|
| Hybrid          | SCA      | Hybrid                           | SCA      | Hybrid          | SCA     | Hybrid                           | SCA      | Hybrid          | SCA      | Hybrid          | SCA      | Hybrid                                                          | SCA      |
| P4 × P8         | 0.7006** | $P5 \times P7$                   | 0.6758** | P5 × P9         | 0.565** | P8 × P10                         | 0.8196** | P1 × P3         | 0.6632** | P7 × P9         | 1.0695** | $P5 \times P7$                                                  | 0.4973** |
| $P5 \times P7$  | 0.6743** | $P4\times P5$                    | 0.5133** | $P1 \times P8$  | 0.515** | $P2\times P6$                    | 0.5675** | $P2\times P4$   | 0.4565** | $P1 \times P3$  | 0.7662** | $P4\times P8$                                                   | 0.3307** |
| $P2 \times P9$  | 0.6097** | $\mathrm{P2} \times \mathrm{P6}$ | 0.515**  | $P5\times P7$   | 0.485** | $P5\times P9$                    | 0.5133** | $P5\times P7$   | 0.4394** | $P5\times P7$   | 0.6154** | $P8 \times P10$                                                 | 0.3258** |
| $P1 \times P5$  | 0.4722** | $P4\times P8$                    | 0.4162** | $P7 \times P10$ | 0.466** | $P2\times P7$                    | 0.4863** | $P7\times P8$   | 0.3782*  | $P8 \times P10$ | 0.4858** | $P2\times P6$                                                   | 0.3118** |
| $P2 \times P6$  | 0.4556** | $P1 \times P8$                   | 0.3866*  | $P5 \times P10$ | 0.468** | $P1\times P5$                    | 0.4746** | $P1 \times P5$  | 0.3369*  | $P2 \times P10$ | 0.4475** | $P1\times P8$                                                   | 0.2293** |
| $P5 \times P10$ | 0.4372** | $P1 \times p9$                   | 0.367*   | $P7\times P8$   | 0.327*  | $P3\times P5$                    | 0.4508** | $P3\times P5$   | 0.3315   | $P4\times P10$  | 0.3962*  | $P4\times P5$                                                   | 0.2287** |
| $P3 \times P5$  | 0.3889*  | $P2\times P8$                    | 0.3012*  | $P4\times P8$   | 0.323*  | $P6\times p8$                    | 0.3658*  | $P2\times P7$   | 0.2269   | $P1\times P8$   | 0.3779*  | $P1 \times P3$                                                  | 0.2228** |
| $P7 \times P8$  | 0.3639*  | $P8 \times P10$                  | 0.2712   | $P6 \times P9$  | 0.321*  | $P4\times P8$                    | 0.3704*  | $P8 \times P10$ | 0.2811   | $P3\timesP8$    | 0.3704*  | $P3\times P5$                                                   | 0.1883** |
| $P1 \times P4$  | 0.3518*  | $P3\times P4$                    | 0.2795   | $P4\times P5$   | 0.344*  | $P1\times P3$                    | 0.3571*  | $P6\times P7$   | 0.2753   | $P6\times P10$  | 0.2775   | $P1\times P5$                                                   | 0.169**  |
| $P3 \times P6$  | 0.1818   | $P2 \times P10$                  | 0.2379   | $P3 \times P4$  | 0.305*  | $\mathrm{P3} \times \mathrm{P9}$ | 0.3458*  | $P4\times P5$   | 0.2690   | $P4\times P5$   | 0.2716   | $P2 \times P10$                                                 | 0.1477*  |
|                 | TST      | LSD Sij                          | 0.05     | 0.305           |         |                                  |          |                 |          |                 |          | $\underset{0.05}{\text{LSD S}_{ij}}$                            | 0.124    |
|                 |          |                                  | 0.01     | 0.402           |         |                                  |          |                 |          |                 |          | 0.01                                                            | 0.164    |
|                 | TSD (    | LSD Sij-Skl                      | 0.05     | 0.424           |         |                                  |          |                 |          |                 |          | $\underset{kl}{LSD}  \overset{S_{ij}}{S_{ij}} - \overset{S}{S}$ | 0.173    |
|                 |          |                                  | 0.01     | 0.559           |         |                                  |          |                 |          |                 |          | 0.01                                                            | 0.288    |

 $\times$  P8 and P7  $\times$  P10 under N1, P1  $\times$  P3, P1  $\times$  P5, P1  $\times$  P8, P2  $\times$  P6, P2  $\times$  P, P3  $\times$  P, P4  $\times$  P8, P5  $\times$  P, P6  $\times$  P10, P7  $\times$  P9 and P8  $\times$  P10 under N2 (Table 8). The best hybrids for SCA effects under plant densities across nitrogen levels were P1  $\times$  P4, P1  $\times$  P5, P1  $\times$  P9, P2  $\times$  P6, P2  $\times$  P9, P3  $\times$  P, P4  $\times$  P8, P5  $\times$  P7 and P8  $\times$  P10 under D1, P1  $\times$  P,P1  $\times$  P8,P2  $\times$  P6,P4  $\times$  P5,P4  $\times$  P8,P5  $\times$  P7 and P8  $\times$  P10 under D2,P1  $\times$  P3,P1  $\times$  P8,P2  $\times$  P6,P3  $\times$  P8,P4  $\times$  P8,P5  $\times$  P7,P6  $\times$  P9,P6  $\times$  P7,P6  $\times$  P10 and P7  $\times$  P9 under D3. From the above results the desirable hybrids for SCA effects under two nitrogen levels and three plant densities were P4  $\times$  P8,P5  $\times$  P7 followed by P2  $\times$  P6 and P8  $\times$  P10.

The SCA effects under the combination between two nitrogen levels and three plant density and their combined for grain yield (Table 9), showed that the desirable hybrids for SCA effects were ; nine hybrids P1 × P4, P1 × P5, P2  $\times$  P6, P2  $\times$  P9, P3  $\times$  P5, P4  $\times$  P8, P5  $\times$  P7, P5  $\times$  P10 and  $P7 \times P8$  under  $N_1D_1$ , seven hybrids  $P1 \times P8$ ,  $P1 \times P9$ , P2 $\times$  P6, P2  $\times$  P8, P4  $\times$  P5, P4  $\times$  P8 and P5  $\times$  P7 under N<sub>1</sub>D<sub>2</sub>, eleven hybrids P1 ×P8, P2 × P6, P3 × P4, P4 × P5, P4 × P8, P5  $\times$  P7, P5  $\times$  P9, P5  $\times$  P10, P6  $\times$  P9, P7  $\times$  P8 and  $P7 \times P10$  under  $N_1D_3$ , eleven hybrids  $P1 \times P3$ ,  $P1 \times P5$ ,  $P1 \times P9$ ,  $P2 \times P6$ ,  $P2 \times P7$ ,  $P3 \times P5$ ,  $P3 \times P9$ ,  $P4 \times P8$ , P5  $\times$  P9, P6  $\times$  P8 and P8  $\times$  P10 under N<sub>2</sub>D<sub>1</sub> six hybrids P1  $\times$  P3, P1  $\times$  P5, P2  $\times$  P4, P3  $\times$  P5, P5  $\times$  P7 and P7  $\times$ P8 under  $N_2D_2$  and eight hybrids P1 × P3, P1 × P8, P2 × P10, P3  $\times$  P8, P4  $\times$  P10, P5  $\times$  P7, P7  $\times$  P9 and P8  $\times$  P10 under N<sub>2</sub>D<sub>3</sub> Meanwhile, the best hybrids for SCA effects across all environments were P1  $\times$  P3, P1 $\times$  P5, P1  $\times$  P8,  $P2 \times P6, P2 \times P10, P3 \times P5, P4 \times P5, P4 \times P8, P5 \times P7,$ P5  $\times$  P9, P7  $\times$  P8 and P8  $\times$  P10. These hybrids can be used in maize breeding program.

The non-additive gene action was the main controlling factor in the inheritance for grain yield and it was more affected by environment compared to additive gene action. The best inbred lines for general combining ability were P1, P3, P8 and P10 and the best hybrids for specific combining ability effects were P1×P3, P1×P8, P2×P6, and P8×P10. These hybrids can be upgraded to other stages of evaluation in the maize breeding program, especially for plant density tolerance.

## REFERENCES

Abd El-Aty M S. 1987. 'Estimates of heterosis and combining ability of diallel set of maize varietal crosses (*Zea mays L.*) under four environmental conditions'. M. Sc. Thesis, Faculty of Agriculture. Tanta University, Egypt.

Abd El-Aty M S. 2007. Diallel analysis of some quantitative traits in seven white inbred lines of maize under three nitrogen levels. *Journal of Agricultural Research. Kafrelsheikh University* **33**(3): 551–75.

Abd EL-Aty M S and Darwish I H. 2006. Combining ability and heterosis and their interaction with three nitrogen levels in some yellow maize inbred lines *Journal of Agricultural Research Tanta university* **32** (4): 808–36.

Abu-Shosha A M. 2017. 'Genetic analysis of some agronomic traits in maize under different environmental condition'. PhD Thesis. Faculty of Agriculture. Tanta University Egypt.

Arafa M A. 2012. 'Combining ability analysis in maize under

- different planting dates and nitrogen rates'. PhD Thesis. Faculty of Agriculture, Kafr El-Sheikh University Egypt.
- Borras L, Maddonni G A and Otegui M E. 2003. Leaf senescence in maize hybrids: Plant population, row spacing and kernel set effects. *Field Crops Research* **82**: 13–26.
- Brekke B, Edwards J and Knapp A. 2011. Selection and adaptation to high plant density in the Iowa stiff stalk synthetic maize (*Zea mays L.*) population: I I. Plant morphology. *Crop Science* **51**: 2344–51.
- Brian Mansified and Mumm R H. 2013. Survey of plant density tolerance in U. S. maize germplasm. *Crop Science* **54**: 157–73.
- Carcova J and Otegui M E. 2001. Ear temperature and pollination timing effects on maize kernel set. *Crop Science* 41: 1809–15.
- Carena M J and Cross H Z. 2003. Plant density and maize germplasm improvement in the northern Corn Belt. *Crop Science* **48**: 105–11.
- Duvick D N. 2005. The contribution of breeding to yield advances in maize (*Zea mays* L. ) *Advances in Agronomy* **86**: 83–145.
- Duvick D N and Cassman K G. 1999. Post-green revolution trends in yield potential of temperate maize in the north-central United States. *Crop Science* **9**: 1622–30.
- Edmeades G O and Lafitte R. 1993. Defoliation and plant density effects on maize selected for reduced plant height. *Agronomy Journal* **85**: 850–7.
- EL-Shamarka S H, Dawood M I and Shehata A M. 1994. Gentical analysis of diallel crosses in maize under two nitrogen levels. *Menofiya Journal of Agricultural Research* **19**: 1051–64.
- FAO. 2015. Production year book (FAO), Rome, Italy.
- Grassini P, Thorburn J, Burr C and Cassman K G. 2011. Highyield irrigated maize in the western U. S. Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. *Field crops Research* **120**: 142–50.
- Griffing B. 1956. Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biology Science 9: 463–93.
- Hunter R B, Kannenberg L W and Gamble E E. 1970. Performance of five maize hybrids in varying plant. Population and row widths. *Agronomy Journal* **62**: 255–6.
- Katta Y S, Galal H E and Abd-Alla S A. 1975. Diallel analysis of yield and agronomic characters in maize (*Zea mays L.*) *Journal of Agricultural Research. Tanta University* 1: 195–213.
- Lambert R J and Johnson R R. 1978. Leaf angle, tassel morphology, and the performance of maize hybrids. *Crop Science*. 18: 499–502.

- Lee E A and Tollenaar M. 2007. Physiological basis of successful breeding strategies for maize grain yield. *Crop Science* 47: S202–S215.
- Mosa H E. 1996. 'Studies on corn breeding'. MSc. Thesis, Faculty of Agriculture. Kafr El-Sheikh, Tanta University, Egypt.
- Mosa H E. 2001. 'A comparative study of the efficiency of some maize testers for evaluating a number of white maize inbred lines and their combining ability under different environmental conditions'. Ph. D. Thesis. Faculty of Agriculture, Tanta University, Egypt.
- Mohamed A M. 1999. 'Evaluation of some yellow hybrid corn under different levels of plant densities and nitrogen fertilization'. MSc. Thesis. Faculty of Agriculture, Kafr El-Sheikh, Tanta University, Egypt.
- Mosa H E. 2010. Diallel analysis of nine yellow maize inbred lines. *Egyptian Journal of Plant Breeding* **14**: 37–47.
- Mosa H E, EL-gazzar I A I and Hassan M A A. 2016. Combining ability and type gene action analysis and yield components for some white maize inbred lines. *Annals of Agricultural Science Moshtohor Journal* **54**: 291–6.
- Nawar A A, Ibrahim M E and Attia M B. 1992. Grain yield, yield components and infestation rates of corn borers and aphid of maize genotypes as influenced by nitrogen fertilization. *Egypt Journal Agronomy* 17: 41–58.
- Russell W A. 1991. Genetic improvement of maize yields. Advances in Agronomy 46: 245–98.
- Sangoi L. 2000. Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. *Ciencia Rural* **31**: 159–68.
- Shrestha J, Nyadav D, Amgain L P and Sharma J P 2018. Effects of nitrogen and plant density on maize (*Zea mays L*.) Phenology and grain yield. *Current Agriculture Research Journal* 6(2): 175–82.
- Snedecor G W and Cochran W G. 1967. *Statistical Methods*, 6<sup>th</sup> edn. IOWA State University Press Ames. IOWA, USA.
- Tokatlidis I S and Koutroubas S D. 2004. A review of maize hybrids, dependence on high plant populations and its implication for crop yield stability. *Field crops Research* **88**: 103–14.
- USDA-National Agricultural Statistical Service (USDA NASS). 2012. Corn: Grain yield. United States, 1866 to date. USDA-NASS, Washington.
- Zavala-Garcia F, Bramel P J, Eastin J D and Andrews D J. 1992. Increasing the efficiency of crop selection for unpredictable environments. *Crop Science* **32**: 51–7.