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Fertilizer nitrogen and global warming – A review
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abstract

Global warming is a burning issue today and agriculture especially the fertilizer nitrogen contributes to it 
significantly. It is also true that fertilizer nitrogen has been and will continue to be the key plant nutrient for increased 
cereal production in the world. It is estimated that by 2050 about 225–250 Tg N (Teragram or million metric tonnes) 
may be applied to agricultural crops as against 116 Tg N applied in 2016. In 2010, an estimated 100 Tg N was surplus 
from agricultural fields and released as nitrate (NO3) to ground and surface inland and marine waters and as ammonia 
(NH3) and nitrous oxide (N2O) to the atmosphere; the latter contributing to global warming. The NO2 so emitted has 
298 times Global Warming Potential (GWP) as compared to CO2 and contributes significantly to global warming. 
The only way to reduce N2O emission from N fertilizer is to increase NUE in agriculture. Average nitrogen use 
efficiency (NUE) in cereal production at resent in the world is ~40%. This can be achieved by introducing enhanced 
efficiency of N fertilizers, better agronomic management of N and by developing of more efficient N using crop 
plants. Research strategies are necessary in all the three areas and also there is an urgent need for determining eco-
friendly dose of N for each crop.
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Global warming is a burning issue today. From the 
Indian viewpoint, it is important at two fronts: i) India has 
a big coastline and a large number of people depend upon it 
for livelihood, ii) Parts of India already suffer from drought 
each or alternate year (Awasthi 2018, Sharma 2018). Both 
of these fronts are related to global warming. Furthermore, 
if not prevented one-third of the glaciers in Hindu Kush 
Mountains may vanish by the end of 21st century, making 
not only India but a vast part of Asia go dry (Bhattacharya 
2019). 

In 2013, Intergovernmental Panel on Climate Change 
(IPCC) in its Fifth Assessment Report observed that global 
warming is mainly due to anthropogenic activities, especially 
since the mid-20th century (IPCC 2013). A recent analysis 
by Hausfather (2017) also supports this view. A study in 
USA found that out of total greenhouse emission (GHE) 
of 6511 Tg (million metric tonnes) of CO2 equivalent, the 
contribution of different sectors of human activity was as 
follows: transportation 28%, electricity 28%, industry 28%, 
commercial and residential sector 11% and agriculture 
9% (USEPA 2018). The contribution of agriculture could 
be greater in Asian and African countries, which have a 
primarily agriculture based economy. The major cause is the 
increase in the emission of carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O) and chlorofluorocarbons (CFCs), 
which are known as greenhouse gases (GHG) (Montzka et al. 
2011, Ravishankaran et al. 2009, NASA 2018). As per IPCC 
(2007) the relative Global Warming Potential (GWP) of some 
GHGs for a 100-year time zone is as follows: carbon dioxide 
(CO2) 1 (taken as standard), methane (CH4) 25, nitrous 
oxide (N2O) 298, chlorofluorocarbon-12(CCl12F2) 10900, 
hydroflurocarbon-23(CHF3) 14800, sulfur hexafluoride 
(SF6) 22800 and nitrogen trifluoride (NF3) 17200. Their 
atmospheric life time (years) is as follows: carbon dioxide 
100, methane 012, nitrous oxide 114, chlorofluorocarbon-12 
100, hydroflurocarbon-23270, sulfur hexafluoride 3200 and 
nitrogen trifluoride 740.

The global N cycle is more severely altered by human 
activity than the global carbon (C) cycle, and reactive N 
dynamics affect all aspects of climate change considerations, 
including mitigation, adaptation, and impacts (Suddick et 
al. 2013). Climate model projections indicate that during 
the 21st century, the global surface temperature is likely to 
rise further by 0.3–1.7°C to 2.6–4.8°C depending on the 
rate of greenhouse gas emissions (IPCC 2013). Atmospheric 
CO2 concentration has increased from 280 ppm (parts per 
million) in the pre-industrial era of 1750s to 400 ppm in 
2015, however, a major increase was observed in 20th 
century, which is the highest for the past 800 millennia 
(USEPA 2017). Global warming is increasing at fairly fast 
rate in the 21st Century, since all but one of the 16 hottest 
years in NASA's 134-year record have occurred since 2000 
CE (MacMillan 2016). Methane level has also increased 
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two and a half times during the last 800 millennia; the 
concentration of methane in the atmosphere has risen 
sharply by about 25 Tg/year since 2006 (NASA 2018). This 
increase is ascribed to agriculture and fossil fuel use. Again 
over the past 800 millennia, concentrations of N2O in the 
atmosphere rarely exceeded 280 ppb (parts per billion), but 
the levels have risen since the 1920s, reaching a new high 
of 328 ppb in 2015. This increase is considered primarily 
due to agriculture.

Fertilizer nitrogen – the key input in food production
Cereals (wheat, maize, rice) are the staple food in 

developing countries and meet more than 50% of their 
energy needs in these countries. In the mid-twentieth 
century, world cereal production of these three cereals was 
only 446.8 Tg (million metric tonnes) and it increased 4.5 
times in the next 50 years to 2068 Tg during the triennium 
2005–2007 and is further estimated to increase to 3009 Tg in 
2050 (Alexandratos and Bruinsma 2012). This is necessary 
to meet the food demand of the human population, which 
was ~3 billion in 1960’s, and more than doubled to 6.6 
billion during the triennium 2005–2007 and is estimated 
to reach 9.7 billion by 2050 (UN 2015). To meet the food 
demands of the increasing human population, per hectare 
cereal yields need to be increased by about 130% from 3.32 
Mg/ha in 2005–2007 to 4.30 Mg/ha in 2050. Since arable 
land increase is likely to be minimal, fertilizer N has to 
play a key role and its consumption is likely to increase to 
225–250 Tg by 2050 (Tilman et al. 2011) from the 2016 
estimated consumption of 116 Tg (FAO 2012). Synder 
(2010) observed that 40% of the population on Earth owes 
its existence to increased food production made possible by 
fertilizer nitrogen (N). No wonder, China and India having 
~36% of the world’s population consumed 46% (China 31%, 
India 15%) of the global use of 110 Tg N in 2013 (Table 
1) (Lu and Hanqin Tian 2017).

Chinese farmers' use on an average of ~300 kilograms 
of nitrogen per hectare per year, which is more than four 
times the global average. This is achieved by high subsidy 
to the fertilizer industry (Li et al. 2013) on one hand and 
increasing support price for corn on the other hand, which 

could be roughly double the corn price in USA (USDA 
2016). But unprecedented levels of nitrogen could pose 
risks to earth’s environment (Battye et al. 2017). Fagodia 
et al. (2017) have observed that the net Global Temperature 
Change Potential (GTCP) due to nitrogen in 1961 and 2010 
was 369.44 and 1088.15 CO2 equivalent, respectively, on 
a 20 year span basis; the values were 429.17 and 1264.06 
on a 100 year basis. 

In addition to needs for food production, additional 
fertilizer N will also be needed for biofuel production, the 
demand for which is increasing. Biofuel blending mandates 
of the International Energy Agency are now in place in 
around 60 countries, and in the New Policies Scenario, 
demand for biofuels in transport is projected to triple 
over the outlook period, exceeding 4 million barrels of oil 
equivalent per day (mboe/day) by 2040. That would be up 
from the present 1.5 mboe/day and 70 percent of it would 
be ethanol (Schill 2015). Corn grain makes a good biofuel 
feedstock due to its starch content and its comparatively 
easy conversion to ethanol. As regards the United States, 
corn production in 2009 was 13.2 billion bushels (~335,000 
metric tonnes) from 86.5 million acres (~34.6 million ha) 
and using a corn-to-ethanol conversion of 2.8 gallons of 
ethanol from a bushel of corn, total United States corn 
production could result in approximately 37 billion gallons 
of ethanol, which could provide approximately 26% of 137 
billion gallon-per-year gasoline consumption in USA (Hay 
2015). Efficient use of fertilizer N is thus the need of the 
day to reduce its global warming effects.

Nitrogen use efficiency (NUE) of fertilizer nitrogen by 
cereals

NUE or recovery efficiency of nitrogen [100 × (kg N/
ha taken up by fertilized crop – kg N/ha taken up in control 
plot ÷ kg N/ha applied)] from research trials throughout 
the world was reported to be 63% in maize (corn), 54% 
in wheat, and 44% in rice, while the values for on-farm 
trials were 37% in maize and only 31% in rice (Doberman 
2005). However, when N application rates were higher as in 
China (181–219 kg N/ha), NUE even in research trials was 
35.7% for wheat, 30.5% for maize, and only 24.8% for rice. 
Based on these data the average NUE value of 40% was 
suggested by for cereals for the world as a whole by Prasad 
and Hobbs (2016). Recently Zhang et al. (2015) reported an 
overall (all crops) average NUE of 25% in China, 30% in 
India, 52% in Europe, 68% in USA and Canada and 42% 
for the world as a whole. According to Zhang et al. (2015), 
100 Tg N that is 57.5% of the 174 Tg N applied in 2010 
(column A in Table 2) to crops in agriculture was surplus 
and contributed to global warming and nitrate enrichment of 
waters. China and India accounted for a 55% of N surplus 
as against a consumption of ~46% of the total global N 
consumption indicating poor N management.

Production of N2O from fertilizer nitrogen in agricultural 
fields

Bulk of the N not taken up by crops is lost by ammonia 

Table 1	 N and P fertilizer consumption in some countries in 
2013

Country N (% of world 
consumption)

P (% of world 
consumption)

China 31 27
India 15 13
USA 11 10
Brazil 03 11
Pakistan 03
Canada 02
Others 37 37

  Total world consumption was ~ 110 Tg N/y and ~ 17 Tg P/y
Source: Lu and Hanqin Tian (2017).
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volatilization, leaching and denitrification. Denitrification 
leading to evolution of N2O is the main cause for global 
warming as far as the fertilizer N is concerned, although 
some of the ammonia volatilized gets oxidized and 
contributes to N2O production. Among N fertilizers, urea 
has now emerged as the major solid N fertilizer in the world; 
in India it makes up about 80% of fertilizer N applied to 
agricultural fields. Once urea is applied to soil it undergoes 
hydrolysis and produces ammonia and carbon dioxide. 
Some of the ammonia formed can be lost by ammonia 
volatilization, while the rest is oxidized to nitrite (NO2) by 
autotrophic bacteria Nitrosomonas and then further oxidized 
to nitrate (NO3) by autotrophic bacteria Nitrobacter (Prasad 
and Hobbs 2016). Nitrates so formed can leach down the 
profile and can increase nitrate concentration of underground 
waters, sometimes beyond the safe limit of 10 mg NO3

– 
N/L approved by USEPA (US Environmental Protection 
Agency). In India, Bharadwaj et al. (2012) reported that 
28% of shallow well waters in Ludhiana district contained 
11–25 mg NO3

– N/L.
Under anaerobic conditions nitrates are reduced to 

nitrous oxide (N2O) by bacteria, fungi and even archaea; 
the process is known as denitrification. There are over 60 
genera of bacteria including Thiobacillus, Thiomicrospora, 
Begiagota, Rhodobacter, Bacillus, Achromobacter, 
Chromobacterium involved in denitrification (Tiedje et 
al. 1988). There are also about 60 genera of fungi, with 
90% among the Acsomycota (Alternaria, Aspergillus, 
Botrytis, Fusarium, Penicillium, Trichoderma etc) involved 
in denitrification (Mothapo et al. 2015). The archaea 
Halobacterium denitrificans (Tomlinson et al. 1986) are 
also involved in denitrification.

In addition to the amount of nitrate and carbon (source 
of energy) present in soil a number of abiotic factors are 
known to control denitrification including: water saturation 
and oxygen concentration (Bateman and Baggs 2005), pH 
(Van den Heuvel et al. 2011), and temperature (Wolf and 
Brumme 2002). As regards water saturation and oxygen 
concentration, Chen et al. (2015) found that maximum 

denitrification occurred at 55–90% WFPS (water-filled 
pore space). However, in an incubation study in Argentina, 
involving WFPS values of 40, 80, 100, and 120% (the last 
one achieved with a 2 cm surface water layer), the greatest 
N2O emission occurred at 80% WFPS treatment where 
conditions were not reductive enough to allow the complete 
reduction to N2. The N2O/ (N2O + N2) ratio was the lowest 
(0–0.051) under 120% WFPS and increased with decreasing 
soil moisture content (Ciarlo et al. 2007). Similarly, Awale 
and Chatterjee (2015) reported from an incubation study 
that when urea was applied at 252 kg N/ha, N2O production 
was 0.56 kg N/ha at 30% water holding capacity moisture 
(WHC), 3.92 kg N/ha at 60% WHC and 16.0 kg N/ha at 
90% WHC. In a Chinese incubation study N2O emission 
from a paddy soil at 100% WHC (water-holding capacity) 
was higher than that at 40, 65, 80, 120, and 160% WHC, 
indicating that 100% WHC was the optimum soil moisture 
content for N2O emission (Lan Ma et al. 2017). Nitrogen 
losses are the most under fluctuating moisture conditions 
as obtained in irrigated rice culture or under semi-aerobic 
rice cultivation (Prasad 2011). As regards pH, Herold et 
al. (2012) reported that as pH increased from 4.5 to 7.5, 
the contribution of fungi in denitrification decreased; this 
would be expected because, bacteria thrive better under 
neutral and alkaline conditions.

Loss of N due to denitrification is fairly high in lowland 
rice field, where anaerobic conditions prevail for most time. 
In a study in rice–wheat cropping system, N loss due to 
denitrification was found to be 10–15 kg N/ha in rice and 
5–10 kg N/ha in wheat (Pathak et al. 2006). However, in a 
Chinese study in rice-wheat cropping system, N2O loss was 
2.04–2.29 kg N/ha in rice and 2.27–4.71 kg N/ha in wheat 
(Zhang et al. 2011). In Malaysia, large amounts of fertilizer 
N are applied to oil palm plantations and Kusin et al. (2015) 
reported an average production of 19.11–22.17 kg N2O/ha. 
Thus, N2O losses from agricultural fields vary considerably 
depending upon soil, crop and moisture conditions. 

Estimates of N2O production in the world
According to IPCC (2007) about 17.8 Tg N2O 

is produced annually globally, of which 38.2% is of 
anthropogenic origin (agriculture 25.3%, sewage 1.2%, 
biomass burning 3.9%, fossil fuel 3.9% and atmospheric 
3.9%), and 61.8% is natural in origin (soil under natural 
vegetation 37.1%, oceans 21.6%, oxidation of NH3 3.1% 
etc.). Out of the total anthropogenic contribution ~two-
thirds is estimated from agriculture. Country-wise break up 
shows that China contributes the highest (18.6%) towards 
nitrous oxide emissions in the world (Table 3); this would 
be expected, because it has the highest per ha N application 
rates in the world. As a contrast USA, India and European 
Union contribute less than 50% of that by China. In India, 
the release of N as NOx has increased over years and it is 
estimated that it represents about 10–15% of GHW (Pathak 
and Bhatia 2017). Griffis et al. (2017) also observed that 
N2O production is likely to be higher in warmer and wetter 
regions.

Table 2	 Global surplus N scenario (A) in 2010 and projected 
scenario (B) in 2050

Country/ Region 2010 Nitrogen scenario (A) and projected 
scenario for 2050 (B)

Input  
(Tg N/y)

Harvested 
(Tg N/y)

NUE Surplus 
(Tg N/y)

A B A B A B A B
China 51 27 13 16 25 60 38 11
India 25 19 08 11 30 60 17 08
US and Canada 21 25 14 09 68 75 07 06
Europe 14 13 07 10 52 75 07 03
Sub-Saharan Africa 4 13 5 9 72 70 2 4
World-Total 174 160 74 107 42 67 100 52

  Input includes fertilizer N, manure N and Biological N; Data 
not available for the rest of the world. Source: Zhang et al. (2015).
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Reducing N2O emission in the world
The first step in reducing N2O emission in the world 

is to reduce global N surplus by reducing the rates of N 
applied to agricultural crops without affecting or rather 
increasing production. This can be done by increasing 
NUE. Most of the agronomic research, so far, has been 
on determining economic optimum dose, but Prasad et al. 
(2016) have stressed the need for determining eco-friendly 
optimum dose of fertilizer N for each crop in different 
regions. In a study in China, Yieldopt, Economicopt and 
Ecologicalopt levels of N for maize were found to be 289, 
237 and 171 kg/ha (Wang et al. 2014). The Ecologicalopt 
resulted in a reduction of N loss by 47%, with a yield loss 
of only 0.31%. Zhang et al. (2015) have projected that the 
desired global food production is possible with reduced 
total N consumption to 160 Tg N/year by increasing NUE 
in India and China to 60%, in US and Canada to 75% and 
in Sub-Saharan Africa to 70% (Column B Table 2). By 
doing so the global surplus N can be almost halved from 
100 Tg N/year in 2010 to 52 Tg N/year in 2050; N surplus 
from India would be only 8 Tg N/year.

Ways to increase nitrogen use efficiency (NUE)
NUE can be increased in several ways. The possible 

agronomic mediation techniques include, deep placement, 
split applcation and foliar application (Prasad and Shivay 
2015, 2016; Pathak et al. 2016). From the product viewpoint 
a number of Enhanced Efficiency Fertilizers (EEFs), such 
as, sulphur coated urea (SCU), polymer coated ureas (PCU), 
Isobutylidene diurea (IBDU), neem coaed urea (NCU) etc 
have been developed (Prasad 2005, Trenkel 2010, Prasad and 
Hobbs 2016, Ruark et al. 2016). In addition to nitrification 
inhibitors, such as, Nitrapyrin, DCD (Prasad and Power 
1995) and urease inhibitors, such as PPD and NBPT (Kiss 
and Simihian 2002, Ding et al. 2011) are available in the 
market and have shown positive effects in increasing NUE. 
So far only Government of India has taken a positive step 
in this direction and decided that all urea manufactured or 
imported in India will be marked as neem coated urea (NCU) 
(Kumar 2015). Neem coating of urea is 100% subsidized 
by the Government of India. It is hoped that such steps 
are taken by other national governments in the interest of 
the evironment. Enhanced Efficiency Fertilizers should 
not be evaluated only on the basis of economic returns 

but also on the basis of fertilizer N saved and associated 
environmental gains.

Of course, it would be greatly helpful, if more N-efficient 
crop varieties become avialable. A requirement for crops that 
require decreased N fertilizer levels has been recognized 
in the call for a 'Second Green Revolution' and research in 
the field of nitrogen use efficiency (NUE) has continued to 
grow (McAllister et al. 2012). This has prompted a search 
to identify genes that improve the NUE of crop plants, with 
candidate NUE genes existing in pathways relating to N 
uptake, assimilation, amino acid biosynthesis, C/N storage 
and metabolism, signalling and regulation of N metabolism 
and translocation, remobilization and senescence. Han et 
al. (2015) have also suggested developing crop plants with 
enhanced NUE, using more classical genetic approaches 
based on utilizing existing allelic variation for NUE traits, 
such as, mapping quantitative trait loci (QTLs), and selecting 
candidate genes for NUE improvement. They have also 
highlighted the importance of different factors that lead to 
changes in the NUE components of nitrogen uptake efficiency 
(NUpE) and nitrogen utilization efficiency (NUtE).

Carbon footprint values of some chemical fertilizers
In recent years some attempts have been made 

to workout Carbon Foot Print (CFP) (carbon dioxide 
equivalent) values of different fertilizers. According to 
Brentrop et al. (2016) these values (kg CO2 per kg nutrient) 
for some of the fertilizers are: Ammonium nitrate (33.5–0–0) 
9.14, Calcium ammonium nitrate (27–0–0) 8.88, Ammonium 
sulphate (21–0–0) 10.95, Urea (46–0–0) 11.19, Urea 
ammonium nitrate (30–0–0) 10.43, Diammonium phosphate 
or DAP (18–46–0) 11.27, NPK (15–15–15) 10.7, Triple 
superphosphate (0–48–0) 0.56, Muriate of potash (0–0–60) 
0.25. Of the various fertilizers diammonium phosphate 
(DAP) has the highest value of 11.27 followed by urea at 
11.19. These are the two most important fertilizers in India; 
urea meeting 80% of the N needs and DAP meeting two-
thirds of the P needs of the country. The lowest value 8.88 
kg CO2 equivalent per kg N was for calcium ammonium 
nitrate. Some thought has to be given to this in future 
plans of the country although an easy solution to this is 
not possible. Phosphate and potassium fertilizers have 
0.25–0.56 kg CO2 equivalent per kg nutrient, mostly at the 
manufacturing point.

Conclusion
Nitrogen use in the world agriculture is unavoidable due 

to increased demands for food, feed, fire and biofuel, but it 
contributes significantly towards global warming. The only 
way is to increase NUE by the use of enhanced efficiency 
fertilizers, agronomic management and by developing N 
efficient plant types. Robust research strategies are necessary 
in all the three areas and also there is an urgent need for 
determining eco-friendly dose of N for each crop.
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