
Genomic selection (GS) is an alternative form of marker-
assisted selection which uses whole-genome molecular 
markers so that all Quantitative Trait Loci (QTL) remain 
in linkage disequilibrium with at least one marker. The use 
of high-density markers is one of the fundamental features 
of GS. The advancement of next generation sequencing 
technology made genomic selection method more popular 
for breeding, as it accelerates the genetic gain at reduced cost 
by shortening the breeding cycle. The GS has been used for 
complex quantitative traits by using whole-genome markers 
to predict Genomic Estimated Breeding Values (GEBVs) 
of target species. The accuracy of GS for estimation of 
GEBVs depends on various factors including—(i) selected 
model, (ii) training sample size, (iii) relatedness of training 
and breeding population, (iv) marker density, (v) gene 
effects, (vi) heritability and genetic architecture, and (vii) 
extent and distribution of LD between markers and QTL. 
Accuracy also varies among GS models according to their 
assumptions and treatments of marker effects.

The feature (marker) selection is one of the important 

steps in development of GS models. Some models perform 
well with markers having additive effect while other models 
are useful in presence of epistasis. Therefore, there is strong 
need to evaluate the performance of these models and 
techniques of feature selection under different situations. 
In this article, performance of linear/additive effect 
models and non-linear/epistatic effect models have been 
evaluated through a simulation study. Recently, numbers 
of linear statistical models were proposed for Genomics 
Selection (GS) which are useful for modeling additive 
effects and do not capture epistatic genetic effect. Some 
important and popular linear/additive models which we 
have considered in this study are (i) Linear least-squared 
regression (LSR) applied by Meuwissen et al. (2001), (ii) 
Least Absolute Shrinkage and Selection Operator (LASSO) 
of Tibshirani (1996), (iii) Ridge regression by Hoerl and 
Kennard (1970) and (iv) Best Linear Unbiased Prediction 
(BLUP) of Henderson (1949). Non-linear GS models 
usually suitable for modeling epistatic effects except Sparse 
Additive Model which is non-linear but it performs very 
well in case of additive data. Some important non-linear 
models which we have considered are: (i) Sparse Additive 
Models (SpAM) proposed by Ravikumar et al. (2009) 
and subsequently used by Liu et al. (2009), Raskutti et 
al. (2012),Suzuki and Sugiyama (2013); (ii) Minimum 
Redundancy Maximum Relevance (mRMR) of Ding et al. 
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ABSTRACT
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(2005) and (iii) Hilbert-Schmidt Independence Criterion 
(HSIC) (Gretton et al. 2005) LASSO proposed by Yamada 
et al. (2013). The SpAM is used for high dimensional 
feature selection. A disadvantage of SpAM is that it can 
only deal with additive effects. In case of epistatic effects 
in the data, SpAM may fail to select significant markers. 
Ding and Peng employed an approach of mRMR to find 
the optimal subset of multiple genes. This method can rank 
features based on their relevance to the target and, at the 
same time, the redundancy of features are also penalized. 
This method only selects significant markers but does not 
provide any coefficient value to predict the marker effect. 
So, if we want to estimate genomic estimated breeding 
value (GEBV), we need to use another model after feature 
selection to estimate markers effects. Here, the above 
GS models have been considered for evaluation of their 
performances through a simulation study.

MATERIALS AND METHODS
The data for this study was simulated using R package 

QTL Bayesian interval mapping (“qtlbim”) (Yandell et al. 
2012). R was downloaded from http://www.r-project.org, 
the qtlbim package was accessed through library (qtlbim) 
in R. The description of the package can be found at http://
cran.rproject.org/web/packages/qtlbim/qtlbim.pdf. The 
package qtlbim follows Cockerham’s model for simulating 
quantitative trait loci with epistasis (Kao et al. 2002). 

In this study we have simulated 24 different datasets 
with genotypic and phenotypic information for F2 
population. Each dataset has different combination of 
genetic architecture, i.e. different heritability (narrow sense 
heritability) levels, viz. 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 with various 
epistatic effects, viz. 0, 5, 10, 15. For each dataset, we have 
generated 50 replicates and for each replicate, we randomly 
selected 80% of data for training and 20% data was kept for 
testing. This randomly selected training-testing dataset was 
repeated 50 times for each replicate. Each dataset contains 
200 individual and 1000 biallelic markers. Out of the 200 
individuals, 160 were chosen randomly for the training set 
to fit the model and 40 individuals remain in the testing set 
to predict the phenotype. A genome with 10 chromosomes is 
simulated, each chromosome having a specified length. The 
1000 markers were distributed throughout the genome so 
that each chromosome had 100 markers which were equally 
spaced over the chromosomes. Also no missing genotypic 
values and no missing phenotypic values are considered 
for simulation. The phenotypic values are normally 
distributed. For the additive model, there is one QTL in 
each chromosome with either positive or negative additive 
effect and no epistatic interaction. For epistatic model, we 
assumed two QTLs on each of the five chromosome and 
remaining five chromosomes have no QTL. Thus we got 
5 two-way epistatic interactions.

We evaluated linear feature selection methods 
including least squares regression, ridge regression, BLUP, 
LASSO and non-linear feature selection methods such 
as sparse additive model (SpAM), minimum redundancy 

maximum relevance (mRMR) and HSIC LASSO. Then the 
performance of each method was evaluated by the accuracy 
of prediction, the mean square error (MSE), fraction of 
correctly selected features and the redundancy rate (RED). 
Accuracy of prediction is defined as the correlation between 
the actual phenotypic values and the predicted phenotypic 
values (Howard et al., 2014).

Prediction accuracy (PA) = correlation (yactual, ypred)

The RED score (Zhao et al. 2010) is determined by
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where rk,l is the correlation coefficient between the k -th 
and l -th features. A large RED score signifies that selected 
features are more strongly correlated to each other which 
means many redundant features are selected. Thus, a small 
redundancy rate is preferable for feature selection.

Fraction of correctly selected features is measured by
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where F is fraction of correctly selected features, Nc is the 
number of correctly selected features, Nt  is the number of 
total selected features.

Then the performance of the models will be evaluated 
by estimating mean squared error, given as
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where ŷ is the predicted value of phenotype y, y  is the actual 
value of phenotype y, and n is the number of observations.

In order to implement the linear and non-linear methods, 
the statistical software R was used. Specifications of the 
parameters and inputs for each method are described in 
Table 1.

RESULTS AND DISCUSSION
In this study, we have compared the performance of 

four linear feature selection methods i.e. LSR, LASSO, RR 
and BLUP and three non-linear feature selection methods, 
i.e. SpAM, mRMR and HSIC LASSO on the basis of 
Prediction Accuracy (PA), Fraction of correctly selected 
features (F), Redundancy rate (RED) and Mean Squared 
Error (MSE). The standard error (SE) of mean is also 
calculated for PA, F, RED and MSE. Each feature selection 
method was applied to 50 sets of simulated progeny for each 
combination of genetic architecture. Each set contains 50 
training-testing data sets which yield 2500 total replicates 
for each combination. 

We evaluated the GS models for four different epistatic 
effects (E) for each level of heritability (h2). The results are 
represented graphically.

Prediction Accuracy: In case of additive effect, i.e. 
when epistatic effect is 0, the Prediction Accuracy (PA) 
of Least Squared Regression (LSR) and Sparse Additive 
Model (SpAM) is highest and comparable. The performance 
of BLUP is also found to be reasonable. The PA increases 
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with increase in heritability, when, epistatic effect is 0, for 
both models. We can observe the above mentioned findings 
in Fig 1(a). It has also been observed that standard error of 
PA is quite low for both models. In case of datasets with 
epistatic effects, highest prediction accuracy is recorded 
for HSIC LASSO (Fig 1(b-d)) with an exception for the 
datasets having heritability level 0.7 with epistatic effect 
5 and heritability level 0.9 with epistatic effects 5 and 10 
(Fig 1b, 1c). This may be due to the fact that in case of 
high heritability level there may be domination of additive 
effect over epistatic effect as in this case of LSR, SpAM 
and BLUP performs better than HSIC LASSO. Also, the 
PA increases with increase in epistatic effect at a fixed level 
of heritability for HSIC LASSO and PA of other models 

tend to decrease with increase in epistatic effect at a fixed 
level of heritability. From Fig 1 it can be observed that 
the PA increases for different models when heritability 
increases at a particular level of epistatic effect. It can also 
be observed from these results that HSIC LASSO performs 
much better than other models in case of low heritability and 
high epistatic effect (Fig 1c, 1d), whereas, Sparse Additive 
Models perform well for highly additive data in most of 
the cases (Fig 1a).

Fraction of Correctly Selected Features: In case of 
additive effect, i.e. 0 value of epistatic effect, SpAM is able 
to select highest number of features correctly followed by 
LSR (Fig 2(a)). The performance of BLUP and mRMR 
are closer to each other and both are able to select same 

Table 1  Implementation details of different feature selection methods for Genomic Selection 

Method Type Implementation in R
Least squares regression 

(LSR)
Linear It may be noted that, in datasets we have more number of markers than the number of 

individuals. The approach of Meuwissen et al. (2001) was followed and simple linear 
regression model was fitted for each of the markers and QTL i.e. we have fitted 1010 simple 
linear regression models. Then we chose 100 of the markers having most significant P-values. 
Further, these 100 markers were included into a final model to simultaneously fit a linear 
regression model. In order to fit this linear regression model, the lm function was used that 
can be found in the stats package (R Development Core Team 2017) in R. Out of these 100 
markers we chose top 10 highly significant 10 markers as final  selected feature. Finally, 
phenotypic values were predicted for testing data set by using available marker data and 
estimated regression coefficient of marker effects.

BLUP Linear The mixed.solve function in R has been used to implement BLUP. The function was available 
in the rrBLUP package (Endelman 2011). The marker data were used as the design matrix for 
the random effects, and there was no fixed effect in this model. The model was fitted using 
training data.  Based on top ten highly significant coefficients of this model, markers were 
selected as features of this model. Then the prediction of phenotypic value was performed 
using the marker data for the testing data set and the predicted coefficients of marker effects 
from this model.

LASSO Linear In order to implement the LASSO method, we used the glmnet function of the glmnet 
package (Friedman et al. 2010) in R with default parameter values. Markers with non-zero 
coefficients are chosen as selected features. The prediction was performed with the help of 
tuning parameter λ which minimized the average cross-validation error (cvm).

Ridge Regression (RR) Linear Ridge regression can also be implemented through glmnet function of the glmnet package 
(Friedman et al. 2010) in R with the value of alpha equal to zero.  In this case also, top ten 
highly significant coefficients were used to select corresponding markers. Then the prediction 
was performed in testing set with the help of predict function using the previously fitted 
model in the training set.

SpAM Additive non-
linear

The sparse additive model was fitted using samQL function of the SAM package (Zhao 
et al. 2014) in R with default parameter values. In this case also, top 10 highly significant 
markers are chosen as selected features based on corresponding coefficients. The prediction 
of phenotypic values was performed with the help of predict function using the model fitted 
on the training dataset.

mRMR Non-linear Minimum redundancy maximum relevance method was implemented through the mRMRe 
package (Jay et al. 2017). In this case, first mRMR data function was used to create an 
mRMR data object and then with this data we performed feature selection with the help of 
mRMR.classic function.

HSIC LASSO Non-linear In order to perform HSIC LASSO, we have written a function in R to kernelize the input 
variable matrix and the output vector. Then penalized function of penalized package (Goeman 
et al. 2018) has been used to fit this Kernelized LASSO model. In order to maintain uniformity 
and compare the performances of different method, we have selected most significant 10 
markers as selected feature among all non-zero coefficients. Then predict function is used 
to predict the phenotypic value of the testing dataset.
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number features. Also as the heritability increases, SpAM 
is able to select all features correctly above 0.3 heritability 
value. The fraction of correctly selected features in case of 
HSIC LASSO increases with increase in epistatic effect, 
however, in case of moderate and high heritability levels, 
the fraction of correctly selected features ( ) for BLUP is 
highest irrespective of level of epistatic effect except E=0  
(Fig 2b, 2c, 2d).

RED and MSE: It has been observed from the study 
that the RED, i.e. the redundancy of the selected features 
has not been affected by increasing heritability or epistatic 
effect and it is almost same across different methods. The 
MSE of HSIC LASSO was found to be least among all 
the methods considered in this study irrespective of level 
of heritability and epistatic effect. This may be due to the 
fact that, it is a non-linear method, where, MSE may not 

be highly desirable. However, among the additive effect 
models, performance of LSR with respect to MSE is highest, 
i.e. it has lowest MSE irrespective of level of heritability 
and epistatic effects.

In the above study, the performance of different feature 
selection methods was assessed for GS through a simulation 
study. First, the data was simulated with a carefully defined 
architecture and then seven different linear and non-
linear methods of GS were applied to these datasets. The 
results were compared with the help of different relevant 
measurement and assessment techniques. From the results, it 
can be conclude that on the basis of the entire performance 
criterion, SpAM performs overall best in case of additive 
data, i.e. when epistatic effect is 0. In case of epistatic data, 
HSIC LASSO was found to perform superior on the basis 
all criterion considered for this study. Also, it is desirable 

Fig 1	 Prediction Accuracy at different level of epistatic effect (E)
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to apply HSIC LASSO in case of low heritability and high 
epistatic effect.
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