W Indian Journal of Agricultural Sciences 89 (10): 1708—13, October 2019/Article

https://doi.org/10.56093/ijas.v89110.94633

I
ICAR

Identification of genetic markers for increasing agricultural
productivity: An empirical study

SAYANTI GUHA MAJUMDAR!, ANIL RAI? and D C MISHRA3

ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110 012, India

Received: 26 February 2019; Accepted: 10 April 2019

ABSTRACT

Genomic selection (GS) has been used globally for increasing agricultural production and productivity. It has
been used for complex quantitative traits by selecting breeding material after predicting Genomic Estimated Breeding
Values (GEBVs) of target species. The accuracy of GS for estimation of GEBVs depends on various factors including
sampling population, genetic architecture of target species, statistical models, etc. The feature (marker) selection is one
of the important steps in development of GS models. There are large numbers of models proposed in the literature for
GS. However, applicability of these models is based on many factors including extent of additive and epistatic effects
of breeding population. Therefore, there is strong need to evaluate the performance of these models and techniques
of feature selection under different situations. In this study, performance of linear/additive effect models, viz. linear
least squared regression, BLUP, LASSO, ridge regression, SpAM as well as non-linear/epistatic effect models, viz.
mRMR, HSIC LASSO have been evaluated through a simulation study in R platform. In general, performance of
SpAM was found to be superior for GS than all other models considered in this study in case of presence of additive
effect and absence of epistatic effect. However, in case of low heritability and high epistatic effect the HSIC LASSO
outperformed all models. This study will assist researcher in selection of appropriate feature selection technique for

a given situation.
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Genomic selection (GS) is an alternative form of marker-
assisted selection which uses whole-genome molecular
markers so that all Quantitative Trait Loci (QTL) remain
in linkage disequilibrium with at least one marker. The use
of high-density markers is one of the fundamental features
of GS. The advancement of next generation sequencing
technology made genomic selection method more popular
for breeding, as it accelerates the genetic gain at reduced cost
by shortening the breeding cycle. The GS has been used for
complex quantitative traits by using whole-genome markers
to predict Genomic Estimated Breeding Values (GEBVs)
of target species. The accuracy of GS for estimation of
GEBVs depends on various factors including—(i) selected
model, (ii) training sample size, (iii) relatedness of training
and breeding population, (iv) marker density, (v) gene
effects, (vi) heritability and genetic architecture, and (vii)
extent and distribution of LD between markers and QTL.
Accuracy also varies among GS models according to their
assumptions and treatments of marker effects.

The feature (marker) selection is one of the important
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steps in development of GS models. Some models perform
well with markers having additive effect while other models
are useful in presence of epistasis. Therefore, there is strong
need to evaluate the performance of these models and
techniques of feature selection under different situations.
In this article, performance of linear/additive effect
models and non-linear/epistatic effect models have been
evaluated through a simulation study. Recently, numbers
of linear statistical models were proposed for Genomics
Selection (GS) which are useful for modeling additive
effects and do not capture epistatic genetic effect. Some
important and popular linear/additive models which we
have considered in this study are (i) Linear least-squared
regression (LSR) applied by Meuwissen et al. (2001), (ii)
Least Absolute Shrinkage and Selection Operator (LASSO)
of Tibshirani (1996), (iii) Ridge regression by Hoerl and
Kennard (1970) and (iv) Best Linear Unbiased Prediction
(BLUP) of Henderson (1949). Non-linear GS models
usually suitable for modeling epistatic effects except Sparse
Additive Model which is non-linear but it performs very
well in case of additive data. Some important non-linear
models which we have considered are: (i) Sparse Additive
Models (SpAM) proposed by Ravikumar et al. (2009)
and subsequently used by Liu et al. (2009), Raskutti et
al. (2012),Suzuki and Sugiyama (2013); (ii) Minimum
Redundancy Maximum Relevance (mRMR) of Ding et al.
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(2005) and (iii) Hilbert-Schmidt Independence Criterion
(HSIC) (Gretton et al. 2005) LASSO proposed by Yamada
et al. (2013). The SpAM is used for high dimensional
feature selection. A disadvantage of SpAM is that it can
only deal with additive effects. In case of epistatic effects
in the data, SpAM may fail to select significant markers.
Ding and Peng employed an approach of mRMR to find
the optimal subset of multiple genes. This method can rank
features based on their relevance to the target and, at the
same time, the redundancy of features are also penalized.
This method only selects significant markers but does not
provide any coefficient value to predict the marker effect.
So, if we want to estimate genomic estimated breeding
value (GEBV), we need to use another model after feature
selection to estimate markers effects. Here, the above
GS models have been considered for evaluation of their
performances through a simulation study.

MATERIALS AND METHODS

The data for this study was simulated using R package
QTL Bayesian interval mapping (“qtlbim”) (Yandell ef al.
2012). R was downloaded from http://www.r-project.org,
the gtlbim package was accessed through library (qtlbim)
in R. The description of the package can be found at http://
cran.rproject.org/web/packages/qtlbim/qtlbim.pdf. The
package gtlbim follows Cockerham’s model for simulating
quantitative trait loci with epistasis (Kao et al. 2002).

In this study we have simulated 24 different datasets
with genotypic and phenotypic information for F,
population. Each dataset has different combination of
genetic architecture, i.e. different heritability (narrow sense
heritability) levels, viz. 0.1, 0.2, 0.3, 0.5, 0.7, 0.9 with various
epistatic effects, viz. 0, 5, 10, 15. For each dataset, we have
generated 50 replicates and for each replicate, we randomly
selected 80% of data for training and 20% data was kept for
testing. This randomly selected training-testing dataset was
repeated 50 times for each replicate. Each dataset contains
200 individual and 1000 biallelic markers. Out of the 200
individuals, 160 were chosen randomly for the training set
to fit the model and 40 individuals remain in the testing set
to predict the phenotype. A genome with 10 chromosomes is
simulated, each chromosome having a specified length. The
1000 markers were distributed throughout the genome so
that each chromosome had 100 markers which were equally
spaced over the chromosomes. Also no missing genotypic
values and no missing phenotypic values are considered
for simulation. The phenotypic values are normally
distributed. For the additive model, there is one QTL in
each chromosome with either positive or negative additive
effect and no epistatic interaction. For epistatic model, we
assumed two QTLs on each of the five chromosome and
remaining five chromosomes have no QTL. Thus we got
5 two-way epistatic interactions.

We evaluated linear feature selection methods
including least squares regression, ridge regression, BLUP,
LASSO and non-linear feature selection methods such
as sparse additive model (SpAM), minimum redundancy
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maximum relevance (mMRMR) and HSIC LASSO. Then the
performance of each method was evaluated by the accuracy
of prediction, the mean square error (MSE), fraction of
correctly selected features and the redundancy rate (RED).
Accuracy of prediction is defined as the correlation between
the actual phenotypic values and the predicted phenotypic
values (Howard et al., 2014).

Prediction accuracy (PA) = correlation (¥, Y pre )

The RED score (Zhao et al. 2010) is determined by

L_ 3 o
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RED =

where p, ; is the correlation coefficient between the k -th
and / -th features. A large RED score signifies that selected
features are more strongly correlated to each other which
means many redundant features are selected. Thus, a small
redundancy rate is preferable for feature selection.
Fraction of correctly selected features is measured by

F=1le
Nl
where F'is fraction of correctly selected features, N, is the
number of correctly selected features, N, is the number of
total selected features.

Then the performance of the models will be evaluated

by estimating mean squared error, given as

Z(y i~ Vi )2
nicy

where y is the predicted value of phenotype y, v is the actual
value of phenotype y, and # is the number of observations.

In order to implement the linear and non-linear methods,
the statistical software R was used. Specifications of the
parameters and inputs for each method are described in
Table 1.

_1

MSE

RESULTS AND DISCUSSION

In this study, we have compared the performance of
four linear feature selection methods i.e. LSR, LASSO, RR
and BLUP and three non-linear feature selection methods,
i.e. SpAM, mRMR and HSIC LASSO on the basis of
Prediction Accuracy (PA), Fraction of correctly selected
features (F), Redundancy rate (RED) and Mean Squared
Error (MSE). The standard error (SE) of mean is also
calculated for PA, F, RED and MSE. Each feature selection
method was applied to 50 sets of simulated progeny for each
combination of genetic architecture. Each set contains 50
training-testing data sets which yield 2500 total replicates
for each combination.

We evaluated the GS models for four different epistatic
effects (E) for each level of heritability (h?). The results are
represented graphically.

Prediction Accuracy: In case of additive effect, i.e.
when epistatic effect is 0, the Prediction Accuracy (PA)
of Least Squared Regression (LSR) and Sparse Additive
Model (SpAM) is highest and comparable. The performance
of BLUP is also found to be reasonable. The PA increases
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Table 1
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Implementation details of different feature selection methods for Genomic Selection

Method

Type

Implementation in R

Least squares regression

(LSR)

BLUP

LASSO

Ridge Regression (RR)

Linear

Linear

Linear

Linear

It may be noted that, in datasets we have more number of markers than the number of
individuals. The approach of Meuwissen ef al. (2001) was followed and simple linear
regression model was fitted for each of the markers and QTL i.e. we have fitted 1010 simple
linear regression models. Then we chose 100 of the markers having most significant P-values.
Further, these 100 markers were included into a final model to simultaneously fit a linear
regression model. In order to fit this linear regression model, the Im function was used that
can be found in the stats package (R Development Core Team 2017) in R. Out of these 100
markers we chose top 10 highly significant 10 markers as final selected feature. Finally,
phenotypic values were predicted for testing data set by using available marker data and
estimated regression coefficient of marker effects.

The mixed.solve function in R has been used to implement BLUP. The function was available
in the rrBLUP package (Endelman 2011). The marker data were used as the design matrix for
the random effects, and there was no fixed effect in this model. The model was fitted using
training data. Based on top ten highly significant coefficients of this model, markers were
selected as features of this model. Then the prediction of phenotypic value was performed
using the marker data for the testing data set and the predicted coefficients of marker effects
from this model.

In order to implement the LASSO method, we used the glmnet function of the glmnet
package (Friedman et al. 2010) in R with default parameter values. Markers with non-zero
coefficients are chosen as selected features. The prediction was performed with the help of
tuning parameter A which minimized the average cross-validation error (cvm).

Ridge regression can also be implemented through glmnet function of the glmnet package
(Friedman et al. 2010) in R with the value of alpha equal to zero. In this case also, top ten
highly significant coefficients were used to select corresponding markers. Then the prediction
was performed in testing set with the help of predict function using the previously fitted
model in the training set.

The sparse additive model was fitted using samQL function of the SAM package (Zhao
et al. 2014) in R with default parameter values. In this case also, top 10 highly significant
markers are chosen as selected features based on corresponding coefficients. The prediction
of phenotypic values was performed with the help of predict function using the model fitted

Minimum redundancy maximum relevance method was implemented through the mRMRe
package (Jay et al. 2017). In this case, first mRMR data function was used to create an
mRMR data object and then with this data we performed feature selection with the help of

SpAM Additive non-
linear
on the training dataset.
mRMR Non-linear
mRMR _.classic function.
HSIC LASSO Non-linear

In order to perform HSIC LASSO, we have written a function in R to kernelize the input
variable matrix and the output vector. Then penalized function of penalized package (Goeman
et al. 2018) has been used to fit this Kernelized LASSO model. In order to maintain uniformity
and compare the performances of different method, we have selected most significant 10
markers as selected feature among all non-zero coefficients. Then predict function is used
to predict the phenotypic value of the testing dataset.

with increase in heritability, when, epistatic effect is 0, for
both models. We can observe the above mentioned findings
in Fig 1(a). It has also been observed that standard error of
PA is quite low for both models. In case of datasets with
epistatic effects, highest prediction accuracy is recorded
for HSIC LASSO (Fig 1(b-d)) with an exception for the
datasets having heritability level 0.7 with epistatic effect
5 and heritability level 0.9 with epistatic effects 5 and 10
(Fig 1b, 1c). This may be due to the fact that in case of
high heritability level there may be domination of additive
effect over epistatic effect as in this case of LSR, SpAM
and BLUP performs better than HSIC LASSO. Also, the
PA increases with increase in epistatic effect at a fixed level
of heritability for HSIC LASSO and PA of other models

tend to decrease with increase in epistatic effect at a fixed
level of heritability. From Fig 1 it can be observed that
the PA increases for different models when heritability
increases at a particular level of epistatic effect. It can also
be observed from these results that HSIC LASSO performs
much better than other models in case of low heritability and
high epistatic effect (Fig 1c, 1d), whereas, Sparse Additive
Models perform well for highly additive data in most of
the cases (Fig 1a).

Fraction of Correctly Selected Features: In case of
additive effect, i.e. 0 value of epistatic effect, SpAM is able
to select highest number of features correctly followed by
LSR (Fig 2(a)). The performance of BLUP and mRMR
are closer to each other and both are able to select same
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Fig 1 Prediction Accuracy at different level of epistatic effect (E)

number features. Also as the heritability increases, SpAM
is able to select all features correctly above 0.3 heritability
value. The fraction of correctly selected features in case of
HSIC LASSO increases with increase in epistatic effect,
however, in case of moderate and high heritability levels,
the fraction of correctly selected features (£) for BLUP is
highest irrespective of level of epistatic effect except E=0
(Fig 2b, 2c, 2d).

RED and MSE: 1t has been observed from the study
that the RED, i.e. the redundancy of the selected features
has not been affected by increasing heritability or epistatic
effect and it is almost same across different methods. The
MSE of HSIC LASSO was found to be least among all
the methods considered in this study irrespective of level
of heritability and epistatic effect. This may be due to the
fact that, it is a non-linear method, where, MSE may not

be highly desirable. However, among the additive effect
models, performance of LSR with respect to MSE is highest,
i.e. it has lowest MSE irrespective of level of heritability
and epistatic effects.

In the above study, the performance of different feature
selection methods was assessed for GS through a simulation
study. First, the data was simulated with a carefully defined
architecture and then seven different linear and non-
linear methods of GS were applied to these datasets. The
results were compared with the help of different relevant
measurement and assessment techniques. From the results, it
can be conclude that on the basis of the entire performance
criterion, SpAM performs overall best in case of additive
data, i.e. when epistatic effect is 0. In case of epistatic data,
HSIC LASSO was found to perform superior on the basis
all criterion considered for this study. Also, it is desirable
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Fig 2 Fraction of correctly selected features at different level of epistatic effect (E)

to apply HSIC LASSO in case of low heritability and high
epistatic effect.

ACKNOWLEDGEMENTS

The first author is thankful for the fellowship received
from ICAR-IASRI for the PhD programme. The facilities
provided by ICAR-IARI and ICAR-IASRI are duly
acknowledged.

REFERENCES

Ding C and Peng H. 2005. Minimum redundancy feature
selection from microarray gene expression data. Journal of
Bioinformatics and Computational Biology 3(2): 185-205.

Endelman J B. 2011. Ridge regression and other kernels for
genomic selection with R package rrfBLUP. Plant Genome
4: 250-5.

Friedman J, Hastie T and Tibshirani R. 2010. Regularization paths
for generalized linear models via coordinate descent. Journal
of Statistical Software 33: 1-22.

Goeman J J. 2010. L1 penalized estimation in the Cox proportional
hazards model. Biometrical Journal 52(1): 70-84.

Gretton A, Bousquet O, Smola A and Scholkopf B. 2005.
Measuring statistical dependence with Hilbert-Schmidt norms,
pp 63-77. Algorithmic Learning Theory. Springer.

Henderson C R. 1975. Best linear unbiased estimation
and prediction under a selection model. Biometrics 31(2):
423-47.

Hoerl A E and Kennard R W. 1970. Ridge regression: biased
estimation for non-orthogonal problems. Technometrics 12:
55-67.

Hoerl A E and Kennard R W. 1970. Ridge regression: applications
to non-orthogonal problems. Technometrics 12: 69-82.

Howard R, Carriquiry A L and Beavis W D. 2014. Parametric



October 2019]

and nonparametric statistical methods for genomic selection
of traits with additive and epistatic genetic architectures. G3
(Bethesda) 4(6): 1027-46.

Jay N D, Cavanagh S P, Olsen C, Hachem N E, Bontempi G and
Haibe-Kains B. 2013. mRMRe: an R package for parallelized
mRMR ensemble feature selection. Bioinformatics 29(18):
2365-68.

Kao C H and Zeng Z B. 2002. Modeling epistasis of quantitative
trait loci using Cockerham’s model. Genetics 160: 1243—-61.

Liu H, Lafferty J and Wasserman L. 2009. Nonparametric
regression and classification with joint sparsity constraints,
pp 969-76. (In) Advances in Neural Information Processing
Systems.

Meuwissen T H E, Hayes B J and Goddard M E. 2001. Prediction
of total genetic value using genome-wide dense marker maps.
Genetics 157: 1819-29.

Peng, H, Long, F and Ding, C. 2005. Feature selection based
on mutual information: Criteria of max-dependency, max-
relevance, and min-redundancy. /EEE Transactions on Pattern
Analysis and Machine Intelligence 27: 1226-37.

R Core Team. 2017. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna,
Austria. URL: https://www.R-project.org/

Raskutti G, Wainwright M and Yu B. 2012. Minimax-optimal
rates for sparse additive models over kernel classes via convex

GENETIC MARKERS FOR GENOMIC SELECTION 1713

programming. Journal of Machine Learning Research 13:
389-427.

Ravikumar P, Lafferty J, Liu H and Wasserman L. 2009. Sparse
additive models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology) 71(5): 1009-30.

Suzuki T and Sugiyama M. 2013. Fast learning rate of multiple
kernel learning: Trade-off between sparsity and smoothness.
The Annals of Statistics 41(3): 1381-405.

Tibshirani R. 1996. Regression shrinkage and selection via the
Lasso. Journal of Royal Statistical Society 58: 267-88.

Yamada M, Jitkrittum W, Sigal L, Xing E P and Sugiyama M. 2014.
High-dimensional feature selection by feature-wise kernelized
Lasso. Neural Computation 26: 185-207.

Yandell B S, Mehta T, Banerjee S, Shriner D, Venkataraman R ez
al. 2007. R/qtlbim: QTL with Bayesian Interval Mapping in
experimental crosses. Bioinformatics 23: 641-43.

Yandell B S, Nengjun Y, Mehta T, Banerjee S, Shriner D ez al. 2012.
qtlbim: QTL Bayesian Interval Mapping. R package version
2.0.5. URL: http://CRAN.R-project.org/package=qtlbim

Zhao Z, Wang L and Li H. 2010. Efficient spectral feature selection
with minimum redundancy, pp 673-78. (In) AAAI Conference
on Artificial Intelligence.

Zhao T, Li X, Liu H and Roeder K. 2014. SAM: Sparse Additive
Modelling. R package version 1.0.5. URL: https://CRAN.R-
project.org/package=SAM


http://CRAN.R-project.org/package=qtlbim
https://CRAN.R-project.org/package=SAM
https://CRAN.R-project.org/package=SAM
https://CRAN.R-project.org/package=SAM
https://www.R-project.org/

