Growth, yield and quality of cluster bean (*Cyamopsis tetragonoloba*) as influenced by integrated nutrient management under alley cropping system

PANKAJ SHARMA¹, RAM SWAROOP MEENA², SUNIL KUMAR³, D S GURJAR⁴, GULAB SINGH YADAV⁵ and SANDEEP KUMAR⁶

Banaras Hindu University, Varanasi, Uttar Pradesh 221 005, India

Received: 21 January 2019; Accepted: 17 May 2019

ABSTRACT

A field study was conducted to assess the impact of integrated nutrient management (INM) on cluster bean (*Cyamopsis tetragonoloba* L.) under alley cropping system in *kharif* 2018 at Banaras Hindu University, Mirzapur (UP). The six treatments, viz. 75% RDF + *Rhizobium*, 75% RDF + Biochar + *Rhizobium*, 100% RDF + *Rhizobium*, 75% RDF + farm yard manure + *Rhizobium*, 100% RDF + Vermicompost + *Rhizobium* and 75% RDF + pressmud + *Rhizobium* were laid out in randomized block design with four replications. Highest growth parameters, viz. plant height, dry matter accumulation, number of nodules/plant, dry weight of nodules, crop growth rate, leaf area index, chlorophyll content, number of secondary branches/plant, and the highest yield attributes and yield, viz. number of pods/plant, length of pod, number of seeds/pod, test weight, seed yield (922.60 kg/ha), straw yield (2496.10 kg/ha), biological yield (3418.70 kg/ha) were recorded with the application of 75% RDF + pressmud + *Rhizobium*. Similarly, the highest NPK content and their uptake, protein and gum content, and economics, viz. gross return (77241 ₹/ha), net return (46461 ₹/ha) were seen with the application of 75% RDF + pressmud + *Rhizobium*, while the highest B: C ratio (1.59) was observed with the application of 100% RDF+ *Rhizobium*.

Key words: Biochar, Cluster bean, FYM, Pressmud, RDF, Vermicompost, Yield.

Alley cropping is one of the most widely practiced land use systems in the world where woody perennials (trees, shrubs, etc.) are grown in association with crop plants or livestock. It leads to greater prosperity at the farm level through marketable products such as timber, firewood, animal fodder, fruits, medicines, etc. all generating extra income (Meena et al. 2017). The production of guar [Cyamopsis tetragonoloba (L.) Taub.] in India crossed 2.7 million metric tonnes during the agricultural year 2013–14 (GOI 2015). There is big demand for Indian guar gum products, food additives, food thickener (Dadhich et al. 2014). Guar is a drought-tolerant, multi-purpose legume crop cultivated mainly in the kharif season in arid environments and is used as animal feed and fodder, green manure and for extraction of gum for various industrial uses (Baviskar et al. 2010). It is from the endosperm that guar gum is

Present address: ¹M Sc Student (pankajsharma2117@gmail.com), ²Assistant Professor (rsmeenaagro@gmail.com, meenars@bhu.ac.in), ³Ph D scholar (sunilgoyam675@gmail.com), Institute of Agricultural Sciences, Banaras Hindu University; ⁴Senior Scientist (dsgurjar79@gmail.com), Water Technology Centre, ICAR-IARI; ⁶Scientist (gulab.iari@gmail.com), Division of Natural Resource Management, ICAR(RC) NEH Region Tripura Centre; ⁶Ph D Scholar (sandeepsihag1992@gmail.com), CCS Haryana Agricultural University.

derived, which is the prime marketable product of the plant. The spherical endosperm contains significant amount of galactomannan gum (19-43% of the whole seed), which forms a viscous gel in cold water (Chavan et al. 2015). The FYM improves the nutrient and water holding capacity of soils, increases nutrients availability, enhance the beneficial soil microorganism activity, and improves the soil structure (Wendimu 2017). Vermicompost is a rich source of major and micronutrients and it improves the physical, chemical and biological properties of the soil (Meena and Yadav 2015). The physical and chemical characteristics of biochar give it several beneficial uses from environmental aspects, such as the soil improvement for planting, waste management by conversion of biomass to biochar, and mitigation of climate change by reducing CO₂ emission levels and storing it as carbon for a long time (Agegnehua et al. 2016). Pressmud is one of the important organic by-products of sugar industry which is capable of supplying sufficient amount of plant nutrients to soil, due to its favourable effects on soil texture, structure, water holding capacity, infiltration, soil porosity, hydraulic properties, bulk density and fertility status (Niazi et al. 2015). Biofertilizers play an important role in increasing the availability of nitrogen and phosphorus besides the increase in biological fixation of atmospheric nitrogen and enhance availability to crop (Rana et al. 2006). The nutrient requirement of the crop is met by the chemical fertilizers. However, fertilizer alone cannot sustain the productivity of land in modern farming. Similarly, nutrient supply through organic manures and biofertilizers can hardly fulfil the need for a crop. So, integration of organic and inorganic sources may sustain productivity and may improve the soil properties. Keeping in view the above facts, the present investigation was carried out to identify the response of the inorganic chemical fertilizers in combination with organic amendment through biofertilizers in cluster bean.

MATERIALS AND METHODS

A field experiment was carried out at the Agricultural Research Farm, Rajiv Gandhi South Campus, Banaras Hindu University, Barkachha, Mirzapur (UP) situated in Vindhyan region of District Mirzapur, UP. It comes under the semi-arid region of India. The experimental site falls in sub-tropical zone, located at 25° 10'N, latitude 82° 37' E longitude and an altitude of 427 m amsl. The plow layer had available N (225.63 kg/ha), P (20.97 kg/ha), K (243.38 kg/ha), organic carbon (0.35%) and soil pH 5.92. The experiment was laid out during rainy (kharif) season of 2018 in 12 years old guava which was planted in August 2006 at the spacing of 7×7 m². Cluster bean was sown as a test crop. The experiment was conducted in randomized block design having different nutrient sources with four replication and six different treatments, viz. 75% RDF + Rhizobium, 75% RDF + biochar + Rhizobium, 100% RDF + Rhizobium, 75 % RDF + farmyard manure + Rhizobium, 100%RDF + vermicompost + Rhizobium, and 75 % RDF + pressmud + Rhizobium. RGC-936 variety of cluster bean was used in the experiment. The recommended dose of fertilizer was applied @ 20, 40 and 20 kg N, P_2O_5 and K_2O /ha. Complete amount of nitrogen, phosphorus, and potassium were given through urea (46% N), SSP (16% P₂O₅) and muriate of potash (60% K₂O) respectively. The seed was sown @ 30 kg/ha between the guava trees manually in the furrow at a row distance of 30 cm as per treatment. The critical differences were calculated to assess the significance of treatment mean, whenever the F test was found significant at 5% level. All these estimates were computed by the standard statistical procedure (Gomez and Gomez 1976).

RESULTS AND DISCUSSION

Effects on growth parameters of cluster bean: The data presented in Table 1 indicates that the nutrient sources significantly improved the growth parameters of cluster bean. These highest values of various parameters, viz. plant height at 60 DAS (85.67 cm), at harvest (97.32 cm), dry matter accumulation at 60 DAS (78.90 g/plant), at harvest (107.80 g/plant), number of nodules/plant at 45 DAS (41.01), dry weight of nodules at 45 DAS (26.46 mg/plant), crop growth rate at 30-60 DAS (2.17 g/m²/day), 60 DAS- at harvest (0.96 g/m²/day), leaf area index at 60 DAS (4.75), chlorophyll content (SPAD value 48.79), number of secondary branches/plant at 60 DAS (5.98), at harvest (7.76) were observed with basal application of 75 % RDF + pressmud + Rhizobium. While the applications of 100% RDF+ vermicompost + Rhizobium, 75% RDF + FYM + Rhizobium, 100% RDF

+ Rhizobium and 75% RDF + biochar + Rhizobium was found at par to each other, respectively. The increase in all the growth parameters may be due to adequate availability of NPK, coupled with satisfactory moisture condition in field which in turn might have improved nutrient supplying capacity of soil. Good stand and better plant vigour in plots treated with 75% RDF + pressmud + Rhizobium indicated proper and balanced utilization of these nutrients by the crop. The increased availability of phosphorus to plant might have enhanced early root growth and cell multiplication leading to more absorption of other nutrients from deeper layers of soil ultimately resulting in increased plant growth in terms of plant height, dry matter accumulation and LAI. The pressmud + *Rhizobium* play an important role in root development and proliferation resulting in better nodules formation and nitrogen fixation by supplying assimilates to the root. They also increase the CEC, water holding capacity and phosphate availability in soil thus provide better environment in rhizosphere for growth and development. The beneficial effect of pressmud+ Rhizobium in growth attribute was probably due to enhanced supply of macro as well as micronutrients during the growing season. This study was supported by Rajkhowa et al. (2002), Jamil et al. (2004), Meena et al. (2016).

Effects on yield attributes and yield of cluster bean: It is indicated from Table 2 that the nutrient sources significantly improved the yield attributes and yield of cluster bean. Among the nutrient sources 75 % RDF + pressmud + Rhizobium gave highest number of pods/plant (36.48), length of pod (8.31 cm), number of seeds /pod (8.61), test weight (29.22 g), seed yield (922.60 kg/ha), straw yield (2496.10 kg/ha), biological yield (3418.70 kg/ha). However, 100% RDF + vermicompost + Rhizobium was statistically at par with application of 75 % RDF + pressmud + Rhizobium. Results indicate that all the nutrient sources were nonsignificant in improving the harvest index of cluster bean. The combined application of 75% RDF + pressmud + Rhizobium to the cluster bean increased availability of major nutrients to plant due to enhanced early root growth and cell multiplication leading to more absorption of other nutrients from deeper layers of soil ultimately resulting in increased plant growth attributes and finally increased crop growth rate. It is further supported that soil of the experimental field contained available nitrogen (225.63 kg/ ha), phosphorus (20.97 kg/ha) and potassium (243.38 kg/ ha) and this might be the cause in high response of the crop to the application of 75% RDF + pressmud + *Rhizobium*. This may be attributing primarily to the beneficial role of 75% RDF + pressmud + Rhizobium which improved overall physical condition of the soil. This was supported by Rathore et al. (2007), Sardana et al. (2006), Suman et al. (2007), Meena et al. (2018).

Effects on nutrient content, uptake and quality of cluster bean: It is indicated in Table 3 that the highest N content in seed and straw (3.57% and 0.80%), protein content (22.34%), total N uptake (52.86 kg/ha), P content in seed and straw (0.350% and 0.144%), total P uptake (6.81 kg/ha), K content

Table 1 Effect of integrated nutrient management practices on growth parameters of cluster bean under alley cropping system

Treatment	d	Plant height (cm)	ht	accumu	Dry matter accumulation (g/plant)	er g/plant)	No of nodules 1	Dry weight of nodules (mg/plant)	Crop growth rate (g/m ² /day)	th rate (g/ ay)	Leaf	Leaf area index	Chlorophyll content (SPAD value)	No. of s branch	No. of secondary branches/plant
	30 DAS	60 DAS	At harvest	30 DAS	60 DAS	60 At DAS harvest	45 DAS	45 DAS	30-60 DAS	60- harvest	30 DAS	60 DAS	45 DAS	60 DAS	At harvest
75 % RDF + Rhizobium	21.84	68.30	69.23	11.92	11.92 53.69	73.37	27.91	18.01	1.39	99.0	0.54	3.23	27.91	4.07	5.28
75 % RDF +Biochar 22.33 + Rhizobium	22.33	80.21	80.97	12.18 74.43		88.03	33.49	21.61	2.07	0.45	0.74	4.48	33.49	5.64	6.34
100 % RDF + Rhizobium	23.25	83.98	84.04	12.68 75.63		93.09	35.42	22.85	2.10	0.58	0.75	4.55	35.42	5.73	6.70
75 % RDF + Farm yard manure + Rhizobium	24.30	24.30 84.23	86.01	13.26 77.21		95.27	36.25	23.39	2.13	09.0	0.77	4.65	36.25	5.85	98.9
75 % RDF + Vermicompost + Rhizobium	24.98	84.37	24.98 84.37 95.85 13.63 77.71 106.17	13.63	77.71	106.17	40.39	26.07	2.14	0.95	0.77	4.68	40.39	5.89	7.64
75 % RDF + Pressmud + Rhizobium	25.36	25.36 85.67	97.32	13.84	13.84 78.90 107.80	107.80	41.01	26.46	2.17	96.0	0.79	4.75	41.01	5.98	7.76
SEm±	0.94	1.97	1.92	0.52	2.72	3.44	0.94	0.67	60.0	90.0	0.03	0.16	0.94	0.21	0.25
CD (P = 0.05)	NS	5.93	5.79	NS	8.18	10.37	2.84	2.03	0.26	0.17	NS	0.49	2.84	NS	0.75

Table 2 Effect of integrated nutrient management on yield attributes, yield and economics of cluster bean under alley cropping system

Treatment		Yield a	ttributes		Yield (kg/ha)			Harvest]	Economics	3
	No. of pods/plant	Pod length (cm)	No. of seeds/	Test weight (g)	Seed	Straw	Biolog- ical	index (%)	Gross return (₹/ha)	Net return (₹/ha)	B:C ratio
75% RDF + Rhizobium	24.83	5.66	5.86	21.14	628	1593	2220	28.22	62600	35820	1.34
75% RDF + Biochar + Rhizobium	29.79	6.79	7.03	23.86	753	2225	2978	25.24	69330	40050	1.37
100% RDF + Rhizobium	31.50	7.18	7.44	25.23	797	2245	3043	26.19	71257	43766	1.59
75% RDF + Farmyard manure + <i>Rhizobium</i>	32.24	7.35	7.61	25.83	815	2254	3069	26.57	72087	40307	1.27
100% RDF + Vermicompost + Rhizobium	35.93	8.19	8.48	28.78	909	2340	3250	27.97	76324	46544	1.56
75% RDF + Pressmud + Rhizobium	36.48	8.31	8.61	29.22	923	2496	3419	26.99	77241	46461	1.51
SEm <u>+</u>	1.16	0.27	0.27	0.77	29	20	31	0.88	1273	1273	0.05
CD (P = 0.05)	3.51	0.80	0.83	2.32	89	60	94	NS	3836	3836	0.14

Table 3 Effect of integrated nutrient management on NPK content and uptake, protein and gum content in cluster bean under alley cropping system

Treatment	N content (%)		Total N	P conte	ent (%)	Total P	K cont	ent (%)	Total K	Protein	Gum
	Seed	Straw	uptake (kg/ha)	Seed	Straw	uptake (kg/ha)	Seed	Straw	uptake (kg/ha)	content seed (%)	content (%)
75 % RDF + Rhizobium	2.65	0.60	26.31	0.259	0.106	3.33	0.144	0.518	9.16	16.53	22.43
75 % RDF +Biochar + Rhizobium	3.03	0.68	37.83	0.297	0.122	4.94	0.166	0.594	14.46	18.95	25.72
100 % RDF + Rhizobium	3.09	0.69	40.05	0.302	0.124	5.19	0.169	0.605	14.92	19.29	26.17
75 % RDF + FYM + Rhizobium	3.16	0.70	41.65	0.309	0.127	5.39	0.173	0.619	15.35	19.74	26.79
75 % RDF + Vermicompost + Rhizobium	3.55	0.79	50.73	0.348	0.143	6.50	0.194	0.695	18.03	22.17	30.08
75 % RDF + Pressmud + Rhizobium	3.57	0.80	52.86	0.350	0.144	6.81	0.195	0.700	19.28	22.34	30.31
SEm <u>+</u>	0.07	0.03	1.68	0.007	0.003	0.15	0.004	0.014	0.29	0.44	0.60
CD (P = 0.05)	0.21	0.09	5.06	0.021	0.009	0.45	0.012	0.042	0.87	1.34	1.82

in seed and straw (0.195% and 0.700%), total K uptake (19.28 kg/ha) and gum content (30.31%) were found with basal application of 75 % RDF + pressmud + *Rhizobium*. While the applications of 100% RDF+ vermicompost + *Rhizobium* was found statistically at par. Increased nitrogen availability might have increased the synthesis of protein in grain. The uptake of major nutrients, viz. NPK is the function of crop yield and its content. The higher nitrogen, phosphorus and potassium content with increased seed and straw yields probably led to more uptake of major nutrients by the cluster bean. Favourable effect of pressmud + *Rhizobium* on NPK content and uptake may be attributed to reduced losses of released NPK during decomposition of narrowed C:N ratio. Thus, the addition of pressmud +

Rhizobium together with applied fertilizer increased the availability of these nutrients in soil and consequently the higher uptake by plant owing to improvement in soil physical condition and availability of water. The increase in content and uptake of NPK in cluster bean seed due to 75% RDF + pressmud + Rhizobium might also have been contributed by pressmud + Rhizobium and chemical fertilizers. Further, the uptake of nutrient being the function of nutrient content and seed and straw yield, also increased significantly with the increase in these parameters. This study was supported by studies of Tanwar et al. (2003), Ramesh et al. (2006), Singh and Prasad (2008).

Effects on economics of cluster bean production: It is clear from Table 2 that highest gross return (77241 ₹/

ha) and net return (46461 ₹/ha) were observed with the application of 75% RDF + pressmud + *Rhizobium*. While the applications of 100% RDF+ vermicompost + *Rhizobium* was found statistically at par. Among the nutrient sources, the highest B:C ratio (1.59) was observed with the application of 100% RDF + *Rhizobium*. It is clear that in both the treatments there was significant increase in seed and straw yield which ultimately gave more net returns over the input cost incurred in these treatments in comparison to other treatments.

REFERENCES

- Agegnehu G, Adrian M, Bass, Paul N, Nelson M and Bird I. 2016. Benefits of biochar, compost and biochar-compost for soil quality, maize, yield and greenhouse gas emissions in a tropical agricultural soil. *Science of the Total Environment* **543**: 295–6.
- Baviskar V S, Shete P G and Daspute R A. 2010. Response of summer cluster bean [Cyamopsis tetragonoloba (L.) Taub.] to organic fertilizers and different levels of sulphur for vegetable purpose. International Journal of Agricultural Sciences 6 (2): 456–8.
- Chavan B L, Vedpathak M M and Pirgonde B R. 2015. Effects of organic and chemical fertilizers on cluster bean (Cyamopsis tetragonoloba). European Journal of Experimental Biology 5(1): 34–8.
- Dadhich R K and Meena R S. 2014. Performance of Indian mustard (*Brassica juncea* L.) in Response to foliar spray of thiourea and thioglycollic acid under different irrigation levels. *Indian Journal of Ecology* **41**(2): 376–8.
- GOI. 2015. Economic Survey of India, Ministry of Finance (Economic Division) GoI, New Delhi, pp 19-25.
- Gomez K A and Gomez A A. 1976. Statistical Procedures for Agricultural Research, 2nd edn. John Willey and Sons Inc., New York, USA.
- Jamil M, Qasim M, Umar M and Rehman K. 2004. Impact of organic wastes (sewage sludge) on the yield of wheat (*Triticum aestivum* L.) in a calcareous soil. *International Journal of Agriculture and Biology* 6(3): 465–7.
- Meena H, Meena R S, Lal R, Singh G S, Mitran T, Layek J, Patil S B, Kumar S and Verma T. 2018. Response of sowing dates and bio regulators on yield of cluster bean under current climate in alley cropping system in eastern U.P. *Indian Legume Research* **41**(4): 563–71.
- Meena H, Meena R S, Singh B, Kumar S. 2016. Response of bioregulators to morphology and yield of cluster bean [*Cyamopsis tetragonoloba* (L.) Taub.] under different sowing environments.

- Journal of Applied and Natural Science 8(2): 715-8.
- Meena R S and Yadav R S. 2015. Yield and profitability of groundnut (*Arachis hypogaea* L) as influenced by sowing dates and nutrient levels with different varieties. *Legume Research* **38**(6): 791–7.
- Meena R S, Kumar S and Pandey A. 2017. Response of sulfur and lime levels on productivity, nutrient content and uptake of sesame under guava (*Psidium guajava* L.) based agri-horti system in an acidic soil of eastern Uttar Pradesh, India. *Journal of Crop and Weed* 13(2): 222–7.
- Niazi M T H, Kashif S R, Asghar H N, Saleem M, Khan M Y and Zahir Z A. 2015. Phosphate solubilizing bacteria in combination with pressmud improve growth and yield of mash bean. *Journal* of Animal & Plant Sciences 25(4): 1049–54.
- Rajkhowa D J, Saikia M and Rajkhowa K M. 2003. Effect of vermicompost and levels of fertilizer on green gram. *Legume Research* 26: 63–5.
- Ramesh P, Singh M, Panwar N R, Singh A B and Ramana S. 2006. Response of pigeonpea (*Cajanas cajan*) varieties to organic manures and their influence on fertility and enzyme activity of soil. *Journal of the Indian Society of Soil Science* **76**: 252–4.
- Rana M C, Datt N and Singh M. 2006. Effect of *Rhizobium* culture in combination with organic and chemical fertilizers on rajmash under dry temperature conditions of Himachal Pradesh. *Indian Journal of Agricultural Sciences* **76**: 151–3.
- Rathore V S, Singh J P, Soni M L and Beniwal R K. 2007. Effect of nutrient management on growth, productivity and nutrient uptake of rainfed cluster bean (*Cyamopsis tetragololoba*) in arid region. *Indian Journal of Agricultural Science* 77 (6): 349–53.
- Sardana V, Sheoran P and Singh S. 2006. Effect of seed rate, row spacing, *Rhizobium* and nutrient application on yield of lentil under dryland conditions. *Indian Journal of Pulses Research* 19: 216–8.
- Singh R and Prasad. 2008. Effect of vermicompost, *Rhizobium* and DAP on growth, yield and nutrient uptake by chickpea. *Journal of Food Legume* **21**: 112–4.
- Suman, Dahama A K and Poonia S L. 2007. Effect of balanced fertilization on growth and yield of green gram [*Phaseolus radiatus* (L.) Wilczek]. *Haryana Journal of Agronomy* 23: 118–9.
- Tanwar S P S, Sharma G L and Chahar M S. 2003. Effect of phosphrous and biofertilizers on yield, nutrient content and uptake by black gram (*Vigna mungo*). *Legume Research* 26: 39–41
- Wendimu Melese. 2017. Effect of farm yard manure application rate on yield and yield components of lettuce (*Lactuca sativa*) at Jimma southwestern Ethiopia.