Eco-friendly management of tomato late blight using botanicals, bio-control agents, compost tea and copper fungicides

R GOPI¹, R K AVASTHE², H KALITA³, A YADAV⁴, S K DAS⁵ and DINISHA RAI⁶

ICAR-Research Complex for NEH Region, Sikkim Centre, Gangtok, Sikkim 737 102, India

Received: 18 April 2017; Accepted: 26 July 2019

ABSTRACT

Tomato is affected by the major disease late blight caused by *Phytophthora infestans* in Sikkim. *In vitro* experiment of biocontrol agents, botanicals and organically approved chemicals evaluated against *P. infestans* revealed that garlic, *Trichoderma harzianum*, copper oxychloride and copper hydroxide were effective. In field experiment conducted during 2014 and 2015, copper oxychloride @0.25% was found most effective followed by copper hydroxide @0.25% for the management of late blight. The pooled mean yield of tomato treated with copper oxychloride was recorded highest with 8.99 t/ha, 24.50 t/ha and 25.33 t/ha for open, rain shelter and tunnel, respectively followed by copper hydroxide. Hence, copper fungicides can be used for the management of late blight in tomato in organic farming.

Key words: Biocontrol agents, Copper fungicides, *Phytophthora infestans*, Late blight

Organic agriculture is gaining its importance and the market for organic products has been increasing significantly throughout the world (Suja 2013). During 2016, Sikkim has achieved a remarkable distinction of converting its entire cultivable land under organic certification (APEDA 2017). Tomato (Solanum lycopersicum L.) is one of the important vegetables in Sikkim it is grown in an area of 0.995 thousand ha producing 8.955 thousand tonnes (Anonymous 2014). Tomato production in Sikkim is hampered by wet and humid climate, high rainfall, poor soil fertility, nonavailability of resistant varieties, lack of effective control measures, prevalence of pest and diseases. Late blight caused by Phytophthora infestans (Mont) de Bary is one of the most significant constraints for tomato production in Sikkim. Host resistance is an important control measure however, at present there are no tolerant and/or resistant tomato cultivars available against late blight pathogen, P. infestans worldwide (Islam et al. 2013). Farmers mainly rely upon systemic fungicides to control late blight but, the use of systemic fungicides are not permitted in organic agriculture. Therefore, there is a need to study the alternative approaches for disease control under organic conditions.

¹Senior Scientist (ramaraj.muthu.gopi2@gmail.com), ICAR-Sugarcane Breeding Institute, Research Centre, Kannur; ²Joint Director I/C (ravisikkim@yahoo.co.in), ⁴Senior Scientist (2005ash@gmail.com), ⁵Scientist (shaon.iari@gmail.com), ⁶Senior Research Fellow, ICAR Research Complex for NEH Region, Sikkim Centre; ³Joint Director I/C (drhkalita@yahoo.co.in), ICAR Research Complex for NEH Region, Arunachal Pradesh Centre.

Some alternatives used in organic agriculture are plant derived products, bio-control agents, copper and sulphur based fungicides. But the literatures on alternative methods like biocontrol, botanicals are very much limited for the management of late blight in tomato. The fungicides like copper compounds have already been used in different parts of the country for management of late blight. However, it is quite essential to evaluate their efficacy against the disease under the climatic condition of Sikkim having high rainfall and high humidity which favours pathogen build up and make the management measures ineffective. In high rainfall areas open cultivation of tomato is also very problematic. Therefore, it is very important to test tomato under various conditions like tunnel, rain shelter and open conditions. Considering various facts related to climate, pathogen and plant protection aspects, the present investigation was carried out to test the different organic approaches for the management of late blight in tomato.

MATERIALS AND METHODS

In vitro evaluation of botanical extracts against P. infestans: Thirteen locally available botanicals, viz. garlic (Allium sativum) 5%, ginger (Zingiber officinale) 5%, turmeric (Curcuma longa) 5%, chilaune (Schima wallichii) 5%, mugwort (Artemisia vulgaris) 5%, papaya (Carica papaya) 5%, periwinkle (Catharanthus roseus) 5%, tulsi (Oscimum sanctum) 5%, datura (Datura strawmonium) 5%, salvia (Salvia officianalis) 5%, marigold (Tagetes erecta) 5%, pudina (Mentha arvensis) 5% and Lantana camara 5% were used for the study. The antifungal potential of aqueous botanical extracts against the pathogen P. infestans was

studied using poisoned food technique in PDA amended with different plant extracts (Nene and Thapliyal 2000). Three replicated plates for each treatment was maintained and incubated at 18°C in a BOD incubator. Percent inhibition of the pathogen compared to control was calculated by using the formula:

$$I = (C-T)/C \times 100$$

where I, Per cent inhibition; C, Radial growth in control; T, Radial growth in treatment.

In vitro evaluation of Trichoderma against P. infestans: Trichoderma species isolated from the rhizosphere soil collected from different places of Sikkim were used. In vitro, a dual culture study was used to observe the effects of the Trichoderma isolates towards P. infestans. Percent inhibition of the pathogen compared to control was calculated by using the formula:

$$I = (C-T)/C \times 100$$

where I, Per cent inhibition; C, Growth of pathogen alone without antagonist (control); T, Growth of pathogen along with the antagonist.

In vitro evaluation of fungicides against P. infestans: In vitro investigation was carried out to evaluate antifungal action of different organically permitted fungicides, i.e. copper oxychloride 50% WP, copper hydroxide 77% WP, potassium permanganate (AR), sodium bicarbonate (AR), wettable sulphur 80% WP along with positive control metalaxyl 35% WS 0.1% against Phytophthora infestans using poisoned food technique (Nene and Thapliyal 2000). Per cent inhibition was calculated by using the following formula:

$$I = (C-T)/C \times 100$$

where I, Per cent inhibition; C, Radial growth in control; T, Radial growth in treatment.

Mass multiplication and seed treatment: T. harzianum broth (10 ml) containing 107 cfu/ml was added to the sterilized 1 kg talc contained in the polypropylene bags. Carboxy-methyl cellulose (CMC) @1% and Mannitol @3% was also added and mixed well. The inoculated substrate was periodically shaked during incubation at 28°C for 7 days. The bags were stored at room temperature after incubation. For seed treatment, seeds of tomato were treated with the bioformulation @10 g/kg of seed along rice glue for easy adherence.

Effect of different treatments under field conditions: Field experiment conducted during 2014 and 2015 at ICAR Research Farm, Sikkim Centre, Tadong, Gangtok (1350 amsl). Planting was done in the second week of March in both the years with tomato variety Romeo. The field trials were laid out in Randomized Block Design (RBD) with 3 replications in plots of 3 m \times 2 m at the spacing of 80 cm \times 40 cm between rows and plants. The tunnel and rainshelter was made at 5 m height and 3 m width. 0.5 m gap was made for tunnel from the soil to improve aeration and reduce humidity inside the tunnel. A total of 8 treatments

were used, viz. compost tea (1:5 w/v) as foliar spray, garlic 5%, Trichoderma asperellum (0.5% for spray and 10 g per kg seed for seed treatment), Trichoderma harzianum (0.5% for spray and 10 g per kg seed for seed treatment), copper oxychloride 50% WP @0.25%, copper hydroxide 77% WP @5%, metalaxyl 35% WS @0.1% and control with no spray. The plant extracts were prepared following the method given by Netam et al. (2011). Six sprays of above treatments were done immediately after the appearance of disease at 8 day interval. The data was recorded after the final spray. Disease severity was determined using a 1-6 severity scale (Gwary and Nahunnaro1998) and the Per cent Disease Index (PDI) was calculated using standard formula. At physiological maturity, tomato fruits from each plot were harvested and weighed separately to determine fruit yield. All data were subjected to ANOVA.

PDI =
$$\frac{\text{Sum of individual rating}}{\text{Number of plants examined} \times \text{Maximum}} \times 100$$
disease grade in the scale

RESULTS AND DISCUSSION

Rhizosphere soil from different tomato growing areas of Sikkim was collected and Trichoderma was isolated from the rhizosphere soil. Among them 15 Trichoderma isolates were selected for studying the in vitro efficacy of antagonists against Phytophthora infestans. The percent inhibition ranged from 42.66 to 70.33%. Trichoderma harzianum collected from ICAR, Tadong was the most effective in reducing the Phytophthora infestans colony growth (70.33%) followed by Trichoderma asperullum (62.33%) from Bermiok (Fig 1). Trichoderma spp. have been successfully used to control various plant pathogens in different crops. D'souza et al. (2001) reported that isolates of T. harzianum was most effective in inhibiting the growth of Phytophthora parasitica of betelvine under in-vitro conditions. Antagonistic microbes employ variety of mechanisms for inhibiting the growth of pathogenic organisms like competition, antibiosis, parasitism, direct penetration and production of volatile compounds (Agrios 1998). Strong lysis of the pathogen by *Trichoderma* spp. has been reported for Sclerotium rolfsii (Elad et al. 1980).

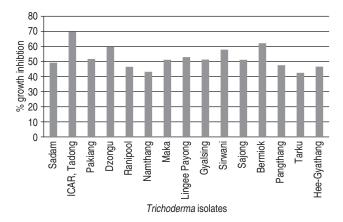


Fig. 1 Effect of Trichoderma against Phytophthora infestans

Plant essential oils have shown some bioactivity on P. infestans (Quintanilla et al. 2002). In the present study, the bulb extract of garlic (Allium sativum) @5% was found most effective with maximum per cent inhibition over control (47.76%) and closely followed by marigold (*Tagetes erecta*) (41.10%). Similar results of inhibition of colony growth by garlic bulb extract were observed in many plant pathogenic fungi. Ngadze (2014) reported that the water extracts of Allium sativum was active against Phythopthora infestans in-vitro. Allicin and its volatile compounds are responsible for antimicrobial properties of garlic bulb (Cao and Bruggen 2006). All the tested chemicals significantly suppressed the colony growth of *P. infestans*. Copper oxychloride @0.25% was most effective in reducing the colony growth of P. infestans with 87.52% and it was at par with copper hydroxide @0.25% (86.78%). Rani et al. (2016) reported that cupric sulphate 95% inhibited the mycelial growth of Phytophthora infestans.

The results (Table 1) revealed that copper oxychloride was the most effective with disease severity of 34.50%, 16.33%, and 19.23% in 2014 in open, rain shelter and high tunnel, respectively. This was followed by copper hydroxide @0.25% with disease severity of 35.76, 19.00, and 19.56 per cent in open, rain shelter and high tunnel respectively. In 2015 also, copper oxychloride @0.25% was found effective with disease severity of 34.66%, 18.16% and 21.33%. Copper oxychloride @0.25% was closely followed by the treatment of copper hydroxide with 37.00%, 20.30% and 24.33% disease severity. On the basis of two years mean data, the least late blight severity (34.48, 17.24 and 20.28%) was found in the plots treated with copper oxychloride @0.25% closely followed by copper hydroxide @0.25% (36.38, 19.65 and 21.94%). The yield of tomato treated with

copper oxychloride was highest with average yield of 8.99 t/ha, 24.50 t/ha and 25.33 t/ha for open, rain shelter and tunnel, respectively. This was followed by copper hydroxide with good average yield of 8.73 t/ha, 22.50 t/ha and 23.16 t/ha respectively (Table 2).

Neither biocontrol agents nor botanical treatments including compost tea extract were found effective against late blight. This may be due to their lower inhibitory activity against *P. infestans*, lack of persistence on tomato foliage surface because of continuous rainfall and also rapid spread of pathogen under congenial environment. Diniz *et al.* (2006) also reported that none of the plant extracts tested reduced the late blight in tomato. However, the severity of disease was minimum in the plots treated with standard fungicide metalaxyl @ 0.1% in this study. Metalaxyl a group of systemic fungicide have been widely employed to control late blight in potato and tomato and other diseases caused by oomyctes fungi (Shashidhara *et al.* 2009).

The efficacy of copper fungicides in management of various diseases is well documented (Teviotdale *et al.* 1989, Patel *et al.* 2014). The suppression of plant pathogens by the application of copper fungicides has been ascribed to the non -specific denaturation of proteins (Ware and Whitacre 2004). The toxic copper ion is absorbed by the germinating fungal spore. Alexandrov (2011) reported that copper fungicide Funguran (cupric hydroxide) suppressed the appearance of late blight of tomato. Platt *et al.* (1998) treated the plots of potatoes cv. Green Mountain with copper oxychloride and concluded that copper oxychloride reduced foliar and tuber blight and increased tuber yields relative to control plots. Our results are also congruent to the findings of Speiser *et al.* (2006) who reported that the copper fungicide treatment reduced foliar blight severity in potato cultivars

Table 1 Effect of organic treatments on the incidence of late blight in tomato

Treatment	Per cent disease severity (PDI) (%)									
	Open				Rain shelter	r	Tunnel			
	2014	2015	Average	2014	2015	Average	2014	2015	Average	
Compost tea (1:5 w/v) as foliar spray	92.63	93.60	93.11	65.00	68.00	66.50	70.33	79.33	74.83	
	(74.36)	(75.46)	(74.79)	(53.76)	(55.65)	(54.63)	(57.07)	(79.33)	(59.97)	
Garlic 5%	95.76	92.76	94.26	69.00	70.66	69.83	71.00	71.66	71.33	
	(78.70)	(74.46)	(76.25)	(56.20)	(57.25)	(56.68)	(57.59)	(71.66)	(57.62)	
Trichoderma asperellum 0.5%(Spray, seed treatment)	91.93	95.36	93.64	67.66	71.00	69.33	65.00	69.00	67.00	
	(73.65)	(77.60)	(75.52)	(55.56)	(57.51)	(56.37)	(53.73)	(69.00)	(54.94)	
Trichoderma harzianum 0.5%(Spray, seed treatment)	92.90	94.30	93.60	64.33	69.33	66.83	63.66	67.33	65.49	
	(74.54)	(76.21)	(75.36)	(53.34)	(56.42)	(54.84)	(53.25)	(67.33)	(54.03)	
Copper oxychloride 0.25%	34.50	34.66	34.58	16.33	18.16	17.24	19.23	21.33	20.28	
	(35.96)	(35.97)	(36.01)	(23.82)	(25.22)	(24.52)	(26.00)	(21.33)	(26.75)	
Copper hydroxide 0.25%	35.76	37.00	36.38	19.00	20.30	19.65	19.56	24.33	21.94	
	(36.73)	(37.43)	(37.09)	(25.83)	(26.77)	(26.31)	(26.22)	(24.33)	(27.90)	
Metalaxyl 0.1%	29.41	30.13	29.77	15.00	14.00	14.50	16.43	14.83	15.63	
	(32.77)	(33.21)	(33.06)	(22.73)	(21.96)	(22.38)	(23.90)	(14.83)	(23.28)	
Control	96.76 (80.00)	98.10 (83.36)	97.43 (80.85)	73.33 (58.94)	77.00 (61.69)	75.16 (60.12)	70.00 (56.97)	78.33 (78.33)	74.16 (59.52)	
LCD (P= 0.05)	4.84	6.05	3.75	5.86	6.08	1.95	8.27	11.38	4.04	

Treatment	Open (kg)			Rain shelter (kg)			Tunnel (kg)		
	2014	2015	Average	2014	2015	Average	2014	2015	Average
Compost tea (1:5 w/v) as foliar spray	0.60	0.53	0.56	3.16	3.50	3.33	5.16	5.10	5.13
Garlic 5%	0.46	0.56	0.51	4.83	5.00	4.91	4.83	3.60	4.21
<i>Trichoderma asperellum</i> 0.5%(Spray, seed treatment)	0.56	0.56	0.56	4.66	4.00	4.33	4.83	5.00	4.71
<i>Trichoderma harzianum</i> 0.5%(Spray, seed treatment)	0.50	0.60	0.55	5.26	4.90	5.08	5.06	5.50	5.28
Copper oxychloride 0.25%	9.83	8.16	8.99	25.66	24.00	24.50	26.00	24.66	25.33
Copper hydroxide 0.25%	9.46	8.00	8.73	21.66	24.66	22.50	22.00	24.33	23.16
Metalaxyl 0.1%	9.66	11.66	10.66	27.00	26.00	26.50	30.66	27.33	28.99
Control	0.40	0.36	0.38	4.20	3.50	3.85	3.53	4.96	4.24
LCD (P=0.05)	0.989	1.57	1.88	3.10	5.44	2.20	2.81	4.77	2.79

Table 2 Effect of organic treatments on the fruit yield of tomato

by 27% and increased yield by 20% on average. Ghazanfar *et al.* (2010) reported that Kocide (copper hydroxide) was effective and reduced the late blight incidence in potato. Good coverage of the foliage with copper fungicides could control late blight in organic potato crop (Manuela and Hermeziu 2014). Narayan Bhat *et al.* (2007) showed that copper sulphate was highly effective reduced the lesion size of *Phytophthora infestans* in potato.

Our research is in conformity with findings of Olanya and Larkin (2006) who reported that aerated compost tea had no significant suppressive effects on *P. infestans*. No oil or biological treatment produced disease control comparable to the chemical control chlorothalonil. They also suggested the natural products and biological amendments tested are not sufficient for effective late blight control. The efficiency of various plant extracts and plant products was found less efficient under field conditions than copper based fungicides against late blight of potato (Cao et al. 2004). The incidence of late blight was highest in open conditions than under protected conditions. The main reason was that the plants were protected from rainfall under tunnel and rainshelter and thereby the removal of fungicides from the plant surface also was stopped under protected conditions. Powell et al. (2014) also reported that severity of late blight, caused by Phytophthora infestans was significantly lower in hightunnel compared with open-field experimental plots. The severity of late blight was minimum in high tunnels due to less than optimal air temperature and relative humidity conditions for the growth of P. infestans (Kumar and Srivastava 1998, Inglis et al. 2011) and also the tunnel acts as a hindrance to sporangial spread inside the tunnel. The incidence of late blight was high in all the treatments except the fungicide treated one, this may due to high rainfall and humidity during the period under study. It has been reported that cool nights, warm days, and extended wet conditions from rain and fog can lead to late blight epidemics (Schumann and Arcy 2000, Solankey et al. 2017).

The findings of the present study revealed that copper fungicides can be used for the management of late blight

and increasing the yield in tomato grown under organic conditions when no other alternatives are available because of favourable weather conditions and virulent nature of pathogen. In high rainfall zones like Sikkim it is very much essential to grow them under protected conditions like rain shelter or tunnel for the effective management of late blight. Phytotoxic symptoms of any kind were not observed in copper fungicides treated plots in this study. As copper based fungicides are protectant in nature, spraying must be done before infection or immediately after the appearance of disease. Copper fungicides must be reapplied as plants grow to maintain coverage and prevent disease establishment. In wet weather copper fungicides should be applied as soon as the disease is observed or as soon as weather conditions are found to be favourable for disease development.

ACKNOWLEDGEMENTS

Authors are grateful to the Director, ICAR Research Complex for NEH Region, Umiam, Meghalaya and Joint Director, ICAR Sikkim Centre for the support to carry out this research. The service rendered by Mr. Dilip Thapa in laying out the experiment and data recording is duly acknowledged.

REFERENCES

Agrios G N. 1998. *Plant Pathology*, p 635. Academic Press, New York. 635 pp.

Alexandrov V. 2011. Efficacy of some fungicides against late blight of tomato. *Bulgarian Journal of Agricultural Science* 17: 465-9.

Anonymous. 2014. Comprehensive Progress Report 2014. Sikkim Organic Mission, FS&AD and H&CCD Departments, Government of Sikkim, Krishi Bhawan, Gangtok, 37 p.

APEDA. 2017. Area under organic certification process during last five years. Retrieved from http://apeda.gov.in/apedahindi/organic/Organic_Products.htm on 10/05/2017.

Cao K Q and Ariena H C van Bruggen. 2006. Inhibitory efficacy of several plant extracts and plant products on *Phytophthora infestans*. *Journal of Agricultural University of Hebei* 24(2): 90–96.

Cao K Q, Wang S T, Forrer H R, Fried P M. 2004. Inhibitory

- effects of chinese medicinal plants against *Phytophathora infestans* on potatoes, pp 45-53. (In) Regional workshop on potato late blight for East and Southeast Asia and the pacific, International Potato Centre and Ministry of Agriculture and Irrigation, Myanmar, Yezin Agricultural University.
- Diniz L P, Maffia L A, Dhingra O D, Casali V W D, Santos R H S and Mizubuti E S G. 2006. Avaliação de produtos alternativos para o controle da requeima do tomateiro. *Fitopatologia Brasileira* 31: 171–9.
- D'souza A, Roy J K, Mahanty B and Dasgupta B. 2001. Screening of *Trichoderma harzianum* against major fungal pathogens of betelvine. *Indian Phytopathology* 54 (3): 340–5.
- Elad Y, Chet I and Katan J. 1980. *Trichoderma harzianum*: A biocontrol agent effective against *Sclerotium rolfsii* and *Rhizoctonia solani*. *Phytopathology* 70: 119–21.
- Ghazanfar M S, Sahi S T, Wakil W and Iqpal Z. 2010. Evaluation of various fungicides for the management of late blight of potato (*Phytophthora infestans*). *Pakistan Journal of Phytopathology* 22: 83–8.
- Gwary D M and Nahunnaro H. 1998. Epiphytotics of early blight of tomatoes in North eastern Nigeria. *Crop Protection* 17: 619–24.
- Inglis D A, Gundersen B, Miles C, Roozen J, Wallace R, Wszelaki A and Walters T. 2011. Evaluation of late blight on tomato cultivars grown in high tunnel vs. open field plots. *Plant Disease Management* Reports 5: V071.
- Islam M R, Mondal C, Hossain I and Bahadur Meah M. 2013. Organic management: An alternative to control late blight of potato and tomato caused by *Phytophthora infestans*. *International Journal of Theoretical & Applied Sciences* 5(2): 32-42
- Kumar R and Srivastava B K. 1998. Effect of low plastic tunnels on the incidence of late blight of tomato. *Crop Research* 15: 279-80
- Manuela H and Hermeziu R. 2014. Efficacy of copper fungicides to control potato late blight in organic crop. *Journal of Horticulture, Forestry and Biotechnology* 18(2): 10–14.
- Narayana Bhat M, Rani A and Singh B P. 2007. Efficacy of inorganic salts against potato late blight. *Potato Journal* 34 (1-2): 81–2.
- Nene Y L and Thapliyal P N. 2000. Fungicides in Plant Disease Control, 3rd edn, p 651. Oxford and IBH Publishing Company, New Delhi, India.
- Netam R S, Bahadur N S, Tiwari U and Tiwari R K S. 2011. Efficacy of plant extracts for the control of (*Pyricularia grisea*) blast of rice under field condition of Bastar. *Chhattisgarh Research Journal of Agricultural Sciences* 2(2): 269–71.
- Ngadze E. 2014. *In vitro* and greenhouse evaluation of botanical extracts for antifungal activity against *Phythopthora infestans*.

- Journal of Biopesticides 7(2): 198–203.
- Olanya O M and Larkin R P. 2006. Efficacy of essential oils and biopesticides on *Phytophthora infestans* suppression in laboratory and growth chamber studies. *Biocontrol Science and Technology* 16(9): 901–17.
- Patel M D, Lal A A and Singh P P. 2014. Efficacy of certain bio agents and fungicides against root rot of chili (*Capsicum annum* L.). *Bioscon* 9(3): 1273–77.
- Platt H W, Reddin R and Jenkins S. 1998. Fungicide efficacies for control of late blight of potatoes in 1996. *Annals of Applied Biology* 19: 22–3.
- Powell M, Gundersen B, Cowan J, Miles C A and Inglis D A. 2014. The effect of open-ended high tunnels in western Washington on late blight and physiological leaf roll among five tomato cultivars. *Plant Disease* 98:1639–47.
- Quintanilla P, Rohloff J and Iversen T H. 2002. Influence of essential oils on *Phytophthora infestans*. *Potato Research* 45: 225–35.
- Rani A, Shukla G, Singh R, Kumar P, Girdharwal V, Singh C and Singh M. 2016. In-vitro comparative study of antifungal activity of inorganic salts against plant pathogenic fungi. *International Journal of Engineering Sciences & Research Technology* 5(5): 293–6.
- Schumann G L and D'Arcy C J. 2000. Late blight of potato and tomato. *Plant Health Instructor*. doi:10.1094/PHI-I-2000-0724.
- Shashidhara S, Lokesh M S, Lingaraju S and Palakshappa M G. 2009. Integrated disease management of foot rot of black pepper caused by *Phytophthora capsici* Leon. *Karnataka Journal of Agricultural Science* 22(2): 444–7.
- Speiser B, Tamm L, Amsler T, Lambion J, Bertr C and Hermansen A. 2006. Improvement of late blight management in organic potato production systems in Europe: field tests with more resistant potato varieties and copper based fungicides. *Biological Agriculture and Horticulture* 23: 393-412.
- Solankey S S, Akhtar S, Neha P, Ray P K and Singh R G. 2017. Reaction of tomato (*Solanum lycopersicum*) genotypes for resistance to late blight (*Phytophthora infestans*) disease. *Indian Journal of Agricultural Sciences* 87(10): 1358-64.
- Suja G. 2013. Comparison of tuber yield, nutritional quality and soil health under organic versus conventional production in tuberous vegetables. *Indian Journal of Agricultural Sciences* 83 (11): 1153–8.
- Teviotdale B L, Sibbett G S, Dennis H and Harper D H. 1989. Several copper fungicides control olive leaf spot. *California Agriculture* 43: 30-1.
- Ware G W and Whitacre D M. 2004. Fungicides and Bactericides, *The Pesticide Book* 6th edn, pp. 155-172. Meister Pro Information Resources, Willoughby O H.