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Abstract

The paper reviews various classification techniques exclusively used for plant disease identification. Early stage 
plant disease identification is extremely important as that can adversely affect both quality and quantity of crops in 
agriculture. For identification of plant diseases, different approaches like image processing, machine learning, artificial 
neural networks, and deep learning are in use. This review focusses on an in-depth analysis on recently emerging 
deep learning-based methods starting from machine learning techniques.  The paper highlights the crop diseases they 
focus on, the models employed, sources of data used and overall performance according to the performance metrics 
employed by each paper for plant disease identification. Review findings indicate that Deep Learning provides the 
highest accuracy, outperforming existing commonly used disease identification techniques and the main factors that 
affect the performance of deep learning-based tools. This paper is an attempt to document all such approaches for 
increasing performance accuracy and minimizing response time in the identification of plant diseases. The authors 
also present the attempts for disease diagnosis in Indian conditions using real dataset.
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In the agriculture sector, plant diseases are responsible 
for major economic food losses across the globe. Food losses 
due to crop infections from pathogens such as bacteria, 
viruses, and fungi are persistent issues. The situation further 
gets complex by the fact that, nowadays, diseases are 
transferred globally more easily than ever before. In order 
to minimize the disease induced damage in crops during 
growth, prevention in crops are imperative.  Traditionally, 
crop inspection and plant disorders were identified by 
farmers or experts with some training or experience. This 
manual method was expensive as it requires continuous 
monitoring and was not feasible for the larger fields. Due 
to complexity and variation in a large number of cultivated 
plant diseases, even experienced agronomists and plant 
pathologists fail to diagnose specific diseases accurately. 
It is also worth noting that many agricultural areas are too 
difficult to be properly monitored throughout (Barbedo 
2013). Sankaran et al. (2010) recognized the need for 
developing a rapid, cost-effective, and reliable health 
monitoring disease detection technologies for advancements 
in agriculture. Automated image-based tools are needed for 
identification of plant diseases when human assessment is 
inappropriate, unreliable or unavailable (Mohanty et al. 
2016, Yang and Guo 2017). They can be combined with 

different methods of image pre-processing in favour of 
better feature extraction (Hiary et al. 2011, Barbedo 2013, 
Kulkarni and Patil 2012). With this backdrop, the present 
study reviews the techniques for plant disease identification 
and classification. The main emphasis is on reviewing 
machine learning and deep learning techniques which has 
the potential to improve the accuracy of disease detection 
and diagnosis. 

The bibliographic analysis in the domain involved two 
steps: (a) collection of relevant literature and (b) detailed 
review and analysis of the work. In the first step, a keyword-
based search for conference papers or journal articles was 
performed from the scientific databases IEEE Xplore and 
Science Direct, and from the web scientific indexing services 
Google Scholar. The search criteria used for the purpose 
was - [“deep learning”] AND [“plant disease identification” 
OR [“plant disease classification “]. More than 20 papers 
had been initially identified. In the second step, the papers 
were analysed one-by-one, referring the related citations 
and considering the following research questions in mind:
1. Which was the crop disease problems they addressed?
2. Which machine learning or deep learning based models

are employed?
3. What kind of data is used?
4. How is the pre-processing applied?
5. What is the performance level of the technique used

in the selected papers?

Steps for disease identification
The basic steps for plant disease identification mainly 
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involve four phases that are image acquisition, image pre-
processing, feature extraction, and classification (Akhtar et 
al. 2013) as shown in Fig 1. The steps are further explained

Image acquisition: It is the process in which acquired 
images are converted to the desired output format for further 
processing. Images may be self-acquired by authors or may 
be any benchmarking dataset such as Plant Village database 
(Hughes and Salathe 2015).

Image pre-processing: The procedure of image pre-
processing aims at highlighting the region of interest (disease 
infected area) in plant leaves (Hanson et al. 2017). Image 
pre-processing commonly involves image segmentation (Liu 
and Zhou 2009, Husin et al. 2012, Yao et al. 2009, Liu et 
al. 2017), image enhancement and colour space conversion. 
Firstly, digital image is enhanced by filter (Al Hiary et al. 
2011, Mokhtar et al. 2015, Prasad et al. 2016, Sannakki et 
al. 2013, Semary et al. 2015). The leaf image is filtered from 
the background image and RGB colours are converted into 
colour space parameter (Dandawate and Kokare 2015, Le 
et al. 2015).   Further image is segmented to a meaningful 
part which is easier to analyse. Unfortunately, removing 
background is quite difficult, and sometimes needs the 
intervention of the user, which decreases the automation 
of the system (Le et al. 2015). 

Feature extraction: Features are extracted from the 
image for constructing feature vectors. This extraction 
could be any of statistical, structural or signal processing. 
For example, colour moments are used to extract colour 
statistics (Semary et al. 2015) , in which Gabor Transform 
(GT) and Wavelet Transform (WT) are combined (GWT) 
for the extraction of multiscale features (Prasad et al. 2016). 
Gray Level Co-occurrence Matrix (GLCM) is used in many 
previous works (Mokhtar et al. 2015, Prasad et al. 2016, 
Semary et al. 2015, Xie and He 2016, Xie et al. 2015) to 
extract texture features. GLCM is a 256*256 matrix where 
each position in the matrix counts the co-occurrences of line 
colour and column colour in the analysed image (Dandawate 
and Kokare 2015). Scale Invariant Feature Transform (SIFT) 
is used to analyse the shape features of leaves. The advantage 
of deep learning is automatic feature extraction which 
ultimately holds a good contribution in higher accuracy 
as compared to other conventional techniques (Kamilaris 
and Boldú 2018, Amara et al. 2017, Sladojevic et al. 2016, 
Brahimi et al. 2017, Cruz et al. 2017, Ferentinos 2018, Liu 
et al. 2018, Mohanty et al. 2016).

Classification: The last phase identifies the plant disease 
existing in leaf using a classification model. The model 

should be trained using learning algorithms and examples 
with known disease images. Classification algorithms are 
explained in following section.

Techniques for disease identification: Techniques for 
disease identification can be broadly classified into two types 
image processing based techniques and machine learning 
techniques. For the purpose of disease identification, image 
processing techniques are necessarily followed by some 
machine learning methods which can perform on large 
datasets. On the other hand, machine learning methods 
can work on both image based dataset as well as textual 
attribute based data which does not require image. For 
disease identification using attribute based tables, one need 
not use image processing techniques but other data cleaning 
and pre-processing should be followed.  

Image processing techniques: Image processing 
techniques were widely and successfully used for accurate 
detection and classification of the plant. Egmont et al. 
(2002) categorized various applications for image processing 
algorithms. The various pre-processing techniques such as 
image clipping, image smoothing, image enhancement is 
carried out for increasing the efficient detection of diseases 
(Khirade and Patil 2015). Image segmentation can be 
done using various methods like Otsu’ method, k-means 
clustering, converting the RGB image into HIS model etc.  A 
methodology for early and accurate plant diseases detection 
using diverse image processing techniques such as Gabor 
filter has been used for feature extraction and classification 
with identification accuracy up to 91% has been achieved 
through ANN based classifier (Kulkarni and Patil 2012).  
Husin et al. (2012) captured the chilli plant leaf image and 
processed to determine the health status of the chilli plant 
to ensure chemicals should be applied to the diseased chilli 
plant only.  Similar techniques like Sobel and canny filter 
has been used to identify the edges that help in identifying 
disease spots (Revathi and Hemalatha 2012). They proposed 
a homogeneous pixel counting technique for cotton diseases 
detection algorithm and claims the accuracy of 98.1% over 
existing algorithms. Jaware et al. (2012) proposed a novel 
and improved k-means clustering technique to solve low-
level image segmentation. Statistical texture features were 
extracted using Spatial grey-level dependence matrices 
method (Dhaygude and Kumbhar 2013). 

Machine learning: Machine learning focuses on 
algorithms capable of learning on their own from a given 
set of input data according to the objective. Its high-
performance computing creates new opportunities in the 
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Fig 1	 Four phases of plant disease identification using a leaf image.
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agriculture domain. 
Machine learning and statistical pattern recognition have 

been the subject of tremendous interest in the agriculture 
domain because they offer promise for improving the 
sensitivity of disease detection and diagnosis (Jain et al. 
2005, Sajda 2006). To the best of the available literature, 
Jain et al. (2005) introduced the concept of machine learning 
techniques for disease diagnosis in agriculture domain for 
the first time (Jain et al. 2005). Later, Upadhyaya et al. 
(2006) explored the concept using clustering approach 
of machine learning for identification of soybean disease 
using bench-marking dataset available at UCI repository. 
The data set in this approach was not from India. Further, 
Jain et al. (2009) investigated and reported the potential 
of three machine learning models based on Decision 
Tree (DT) induction using C4.5, Rough Set  (RS) and 
hybridized rough set based decision tree induction (RDT) 
in comparison to traditional logistic regression method for 
the dataset collected in India during real time condition. A 
DT is a classification scheme which generates a tree and 
a set of rules representing the model of different classes 
from a given dataset. A java implementation of C4.5, called 
CJP by the authors, was used for DT induction. A variant 
of RDT called RJP, combined merits of both RS and DT 
induction algorithms. Powdery Mildew of Mango (PWM) 
is a devastating disease and has assumed a serious threat 
to mango production in India resulting in yield losses of 
22.3% to 90.4%. As a case study, prediction models for 
forewarning PWM disease using variables, viz. temperature 
and humidity were developed. The results obtained from 
machine learning techniques, viz. RS, CJP and RJP were 
compared with the traditional prediction model using LR 
technique. The authors were astonished to discover that 
machine learning models showed better performance over 
traditional approach. Many other machine learning studies 
for sugar beet diseases, brown spot and the leaf blast diseases 
in rice, wheat plant, banana, beans, jackfruit, lemon are 
summarised in Table 1.

The Support Vector Machine (SVM) (Mokhtar et al. 
2015, Semaryetal. 2015, Dandawate and Kokare 2015, 
Rumpf et al. 2010, Schikora and Schikora, 2014), k-nearest 
neighbors (KNN) (Prasad et al. 2016 and He 2016), and 
artificial neural network (ANN) (Bashish et al. 2010, Hiary 
et al. 2011, Sannakki et al. 2013, Xie et al. 2015, Schikora 
and Schikora 2014) represent the most commonly used 
learning algorithms in the literature reviewed. The SVM 
algorithm maximizes the margin between classes in linearly 
separable cases. The KNN algorithm classifies an image by 
voting between the K closest examples in the features space.  

As the paper aims for review of an important machine 
learning technique called Deep Learning (DL), it is 
appropriate to discuss neural networks (an ancestor of DL) 
and DL machine learning techniques separately before the 
comparison is made among different disease identification 
techniques.  

Neural networks: Neural networks, with their 
outstanding ability to derive meaning from complex data, can 

be applied for extracting patterns and detecting patterns that 
are too difficult to be observed by human brain or computer 
techniques. Other advantages of ANNs are adaptive learning, 
self-organization, real-time operations, and so forth. Table 1 
shows the studies which used ANN for disease identification, 
respective crops and their performance.

Back propagation neural network (BPNN) has been 
used for efficient grape leaf colour extraction with a 
complex background for diagnostic system of grape leaf 
diseases (Menukaewjinda et al. 2008). They explored a 
modified self-organizing feature map (MSOFM) and genetic 
algorithm (GA) and found that these techniques provide 
automatic adjustment in parameters for grape leaf disease 
colour extraction. Similar method was used for classifying 
the healthy and diseased part of rice leaves (Liu and Zhou 
2009). 

The ANN is a model organized in layers, in which 
each layer is connected to the next one starting from the 
input to output. ANN represents the old version of deep 
learning algorithms used in this paper. In the present paper, 
we emphasise the use of deep learning and specifically 
Convolutional Neural Network (CNN) as an alternative 
approach for building a model of disease identification.

Deep learning: Deep learning means deep neural 
networks and learns hierarchical representations of a data 
with multiple levels of abstraction (Schmidhuber 2015). 
One of the most powerful and basic DL tools for modelling 
complex processes and performing pattern recognition is 
Convolutional Neural Networks (CNNs).  CNN provides 
mapping between an input such as an image of a diseased 
plant to an output, i.e. crop disease (Mohanty et al. 2016). 

A CNN is composed of three main layers namely 
convolution, pooling and fully connected layers (Kamilaris 
and Boldú 2018). The essential purpose of convolution is 
to extract features automatically from each input image 
(Fig 2). It consists of a set of learnable filters. Each filter 
is applied to the raw pixel values of the image in a sliding 
window fashion, computing the dot product between the 
filter pixel and the input pixel. This results into a two-
dimensional activation map of the filter called the feature 
map. Hence, the network learns filters (i.e. edges, curves) 
that will activate when they find known features in the 
input. The CNN learns the values of these filters on its own 
during the training process.  These convolution layers are 
followed by sub-sampling layers. Each sub-sampling layer 
reduces the size of the convolution maps, and introduces 
invariance to low rotations and translations that can appear 
in the input. The output of pooling layer is given by the 
maximum activation value in the input layer over sub 
windows within each feature map and hence reducing the 
dimensionality of the feature. At the end of the model, the 
fully connected layer is based on the SoftMax activation 
function for computing the classes scores. The input of the 
SoftMax classifier is a vector of features resulting from 
the learning process and the output is a probability that an 
image belongs to a predefined class. The different types 
of CNN architectures include LeNet (LeCun et al. 2015), 
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AlexNet (Krizhevsky et al. 2012), GoogleNet (Szegedy 
et al. 2015), VGGNet (Simonyan and Zisserman 2014), 
Inception- ResNet (Szegedy et al. 2017).

The application of deep learning to plant pathology and 
specifically on leaf image classification and plant disease 
identification has started to gain momentum in recent years. 
In this approach, features are extracted automatically and 
learned from the data in the training phase. To confirm the 
superiority of deep models against state-of-the-art methods, 
we have reviewed both small and large dataset studies 
containing 500 to 87848 images (Amara et al. 2017, Fuentes 
et al. 2017, Ferentinos 2018,  Brahimi et al. 2017, Lu et 
al. 2017, Zhang et al. 2017, Liu et al. 2017, DeChant et 
al. 2017, Oppenheim and Shani, 2017, Arivazhagan et al. 
2018, Cruz et al. 2017).  Literature review shows that deep 
learning provides high accuracy and outperforms commonly 
used image processing techniques (Kamilaris and Boldú 
2018). Other methods based on conventional machine 
learning techniques and image-processing techniques are 
successful under limited and constrained setups only. 
Pawara et al. (2017) compared the performance of some 
conventional pattern recognition techniques with that of 
CNN models, in plants identification, using three different 
databases concluding that CNNs outperforms conventional 
methods.   

Nigam et al. (2019) developed a Convolutional neural 
network model to perform plant disease identification using 
wheat crop images of healthy and yellow rust infected 
leaves, through deep learning.  Training of the models 
was performed with the use of own created database of 
2000 images clicked at the experimental field of ICAR-
Indian Agricultural Research Institute. CNN architecture 
based model achieved the 97.37% testing accuracy for 
classification of yellow rust infected leaf and healthy leaves. 
The application to the wheat disease identification shows 
that the proposed CNN model can correctly and effectively 
recognize yellow rust infected plants. The model was trained 
on MacBook air having operating system macOS Mojave 
with a 4 GB RAM and 1.6ghz Intel core i5 processor. The 
total parameters trained during the model training were 
1212513 parameters.  The significantly high success rate 
makes the model  suitable for early warning tool in image 
based disease identification. Different Experiments were 
carried out to observe the effect of hyperparameters on the 

accuracy such as variation in number of epochs, batch size, 
optimization algorithm and others.  The authors identified 
the potentials of deep learning methods such as high 
performance and accuracy, automatic feature extraction, 
faster processing of test data, and its suitability for mobile 
app development. They also observed its limitations namely: 
(i) larger datasets requirement, (ii) comprehensive training 
data covering diverse features for better computational 
accuracy, (iii) time consuming for training model, (iv) real 
time images must be similar in shape, size and location 
of the disease to images used for model building and (iv) 
high-end hardware requirement.

Usually, hardware requirement is quite a challenge in 
deep learning. It needs high computational machines for 
faster and training of model. Deep Learning algorithms were 
mostly implemented on the GPU of an NVIDIA® GTX1080 
card, using the CUDA® parallel programming platform, in 
Linux environment (Ubuntu operating system). Caffe, Keras, 
Tensorflow, Theano and Deeplearning4j are the popular 
software for disease identification using CNN architecture 
models. But, setting of parameters and hyper parameters 
is crucial and important step in using deep learning. The 
process of setting the hyper-parameters requires expertise 
and extensive trial and error. There are no simple and easy 
ways to set hyperparameters specifically, learning rate, batch 
size, momentum, and weight decay.

Comparison of deep learning studies on disease 
identification

In agriculture, plant diseases cause substantial 
economic and environmental losses, thus careful and 
expert monitoring is must for early detection followed 
by consequent application of control measures in order to 
improve the quality and quantity of crop yield. The use of 
deep learning includes improvements in performance and 
high computational accuracy as per the reviewed work 
shown in Table 1 and Table 2. Some factors impacting 
the performance of CNNs for plant disease recognition 
are limited annotated datasets, symptom representation,  
covariate shift, image background, image capture conditions, 
symptom segmentation, multiple simultaneous disorders, 
symptom variations, disorders with similar symptoms and 
others (Barbedo 2016, 2018).

In real-life conditions, the systems developed through 

Fig 2	 Convolution Neural Network Architecture.
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deep learning has high levels of performance and precision 
in detecting and diagnosing specific diseases. It could 
even be operated through an appropriate, easy-to-use, and 
user-friendly mobile application for detection of multiple 
diseases in plants (Johannes et al. 2017, Picon et al. 2018). 
DL techniques are able to achieve accuracy between 90-
99% (Table 1-2). MATLAB is mostly commonly used 
software for image pre-processing techniques. Some 
comparative features with reference to crops, accuracy, 
historical evolution and software for disease identification 
are presented below.

Crops: Most of the studies (50%) are based on the plant 
disease identification for horticultural crops while 27.3% 
for cereals and 22.7% for other crops. This may be due to 
availability of the open public datasets like PlantVillage 
Dataset having maximum images related to horticultural 
crops. This further shows the need for independent 
development of image repository for other crop categories 
to promote the machine learning or deep learning based 
research for disease identification in these crops. Reason 
for a very few studies dealing cereal crops is probably due 
to the long-time requirement (may be months) for image 
capturing of diseases in cereal crops. Thus, to meet the 
food security of the growing population, for a country like 
India, more research is needed for disease identification in 
cereals crops (Nigam et al. 2019).

Performance: Comparison of performance of deep 
learning algorithms with other algorithms reveal that deep 
learning algorithms have capability to achieve accuracy 
up to 99.8% while other algorithms show comparatively 
lower accuracy for disease detection in plants (Table 2).  It 
is observed that SVM and other related algorithms show 
accuracy ranging between 79.5 to 97%. However, time 
requirement is higher for model building in deep learning 
algorithms (Nigam et al. 2019).

Evolution: Although disease detection through machine 
learning has begun in the beginning of 21st century, yet 
deep learning based disease detection studies are observed 
after 2015 (Jain et al. 2005, Jain et al. 2009, Upadhyaya 
2006). Further, this type of work gained momentum since 
2016 (Table 1).

Software: With increasing focus on deep learning 
studies, many software are prevailing in the industry 
for automatic disease identification. Caffe, Tensorflow, 
frameworks are used along with popular python libraries 
such as Keras. MATLAB is used for the efficient pre-
processing of images. Most recently, deep learning libraries 
are introduced in R software too. Caffe is the most popular 
among deep learning researchers probably because of its 
ease of use. 

Dataset: Most of the studies (68%) are based on the 
data collected on their own by authors (Table 1). The authors 
who have done image acquisition on their own in field or 
experimental setup clicked pictures by the digital cameras or 
phone camera has a large variation and that leads to better 
accuracy.  However, 32% of the studies use PlantVillage 
dataset available in public domain. The size of the dataset 

varies from 107 images to 87848 images in the reviewed 
studies. It is observed that authors have selected the images 
from the PlantVillage dataset based on their requirements 
of the crops. Hence, the size of the PlantVillage dataset is 
different in different studies. 

Location of the studies: Most of the studies for crop 
disease identification are located outside India. As per 
meta-analysis, out of 10% crops involved in the study of 
disease identification are from Indian agriculture (Hanson et 
al. 2017) on the other hand more than 40% are from China 
and other developed countries (Lu et al. 2017, Zhang et al. 
2017, Liu et al. 2017, Arivazhagan and Ligi 2018, DeChant 
et al. 2017, Oppenheim and Shani 2017, Mohanty et al. 
2016, Amara et al. 2017). This also accounts for the need 
for using Artificial Intelligence for disease identification of 
crops in India with the main emphasis on cereal crops. Thus, 
the status of research on disease identification in India is 
low and the main reason for such less application in India 
could be lack of expertise in DL applications.  Efforts are 
needed to harness the potential of this promising technology 
for Indian agriculture.

Architecture: As discussed above, CNN is a special 
kind of multi-layer neural networks, designed to recognize 
visual patterns directly from pixel images with minimal pre-
processing. The ImageNet project is a large visual database 
designed for use in visual object recognition software 
research. As a result, many competitors have developed 
software to implement CNN architectures. Literature review 
suggests that studies for disease detection by deep learning 
differs in using one or the other in network. At surface 
level, there are tons of new architectures that are different 
from each other. Upon closer inspection, most of them are 
reapplying well established principles.  Universal principles 
seem to be having shorter sub paths through the networks.   
Any of these architectures may be used for disease detection 
by using either Tensorflow or Caffe platform. Error rates 
are declining as more and more advancement are taking 
place in CNN architectures.

Parameters: Deep learning comprises of parameters and 
hyperparameters. Parameters are the configuration variables 
whose value can be estimated or learned from the data 
whereas hyperparameters are the variables which determine 
the network structure. They are decided before the training 
and determine how the network is trained. Hyperparameters 
related to a network structure are described below.

Batch and batch size: Total number of training examples 
present in a single batch. Batch size is the number of sub 
samples given to the network after which parameter update 
happens. A good default for batch size might be 32.

Number of epochs: Number of epochs is the number 
of times the whole training data is shown to the network 
while training. The number of epochs are increased until 
the validation accuracy starts decreasing even though the  
training accuracy is increasing (overfitting).

Number of hidden layers and units: Hidden layers are 
the layers between input layer and output layer. Layers can 
be added till the test error improve. 
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Table 2  Summary of performance of different plant disease identification approaches

Algorithms Number of research papers Literature reference (from Table 1) Range Average
SVM and Others 3 11, 10, 8 (79.5-97.2) % 88.35%
Back propagation neural networks 2 7, 9 (90-93) % 91.5%
Image Processing 3 13, 12, 9 (90-97.20) % 93.6%
CNN 16 1, 2, 3, 14, 15, 16, 17, 18, 19, 20, 

21, 22, 23, 24, 25, 26
(95-99.84) % 97.42%

Deep learning 2 1,27 (96-98)% 97%

Table 1  Studies employing deep learning for plant disease

Crops Algorithm, software and accuracy Dataset with number of 
images 

Study

Wheat Quadratic discriminating model, Spectral 
Reflectance; (96%)

Own (120) Moshou et al. (2003)

Soybean Rough set based clustering machine Benchmarking data 
(307)

Upadhyaya et al. (2006)

Grape Self-organizing feature map, SVM; (97.80%) Own (1478) Meunkaewjinda et al. (2008)
Rice Back Propagation Neural Network (90%) Own (400) Liu and Zhou (2009)
Mango Decision tree, rough sets, hybridised 

decision tree
Own (time series data of 
15 years)

Jain et al. (2009)

Rice Image processing techniques and SVM 
(97.20%)

Own (216) Yao et al. (2009)

Sugar beet SVMand spectral vegetation indices; 
(92.46%)

Own  Rumpf et al. (2010)

Apple, blueberry, grape, corn, 
peach. soybean and others. 

Back Propagation Algorithm; MATLAB; 
(93%)

Own  Bashish et al. (2010)

Rice Bayes’ and SVM Classifier (79.5% and 
68.1%)

Own (>2000) Phadikar et al. (2012)

Chilli Image processing techniques; MATLAB Own (107) Husin et al. (2012)
Apple, cherry, corn, grape, orange, 
peach, bell pepper, potato, squash, 
strawberry, tomato

AlexNet, GoogleNet; Caffe; (99.35%) Plant Village (54,306) Mohanty et al. (2016)

Pear, cherry, peach, apple, pair, 
grapevine

Caffenet; Caffe; (96.30%) Own (4483) Sladojevic et al. (2016)

Banana LeNet architecture; deep learning4j; 96% PlantVillage (3700) Amara et al. (2017)
Tomato Deep CNN, Faster R-CNN; VGG-16 (83%) Own (5000) Fuentes et al. (2017)
Tomato CNN; DIGITS; (99.18%) PlantVillage (14,828) Brahimi et al. (2017)
Rice CNN; MATLAB; (95.48%.) Own (500) Lu et al. (2017)
Maize Cifar10 and GoogLeNet; Caffe; (98.8% 

and 98.9%)
PlantVillage and Google 
(500)

Zhang et al. (2017)

Apple AlexNet; Caffe; (97.62%) Own (13,689) Liu et al. (2017)
Maize CNN; Keras and Theano; (96.7%) Own (1796) DeChant et al. (2017)
Potato VGG; Matlab; (95.85%) Own (400) Oppenheim and Shani (2017)
Olive Modified LeNet; MATLAB; (99%) Own (299) Cruz et al. (2017)
Cassava CNN; Tensorflow; (95%-98%) Own (11,670) Ramcharan et al. (2017)
Different crops CNN; (96.3%) Internet (30880 images) Hanson et al. (2017)
Mango CNN; (96.67%) Own (1200)  Arivazhagan et al. (2018)
Apple, banana, blueberry, cabbage, 
cassava, gourd, cucumber, eggplant 
etc.

CNN Models; Torch7; 99.53% through VGG PlantVillage (87,848) Ferentinos (2018)

Tomato CNN; (99.84%) PlantVillage (9000) Ashqar and Naser (2019)
Wheat Deep learning (98%) Own dataset (2000) Nikam et al. (2019)
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