Responses of EMS on growth and yield of French bean (*Phaseolus vulgaris*)

AJAY KUMAR\(^1\) and T S DHILLON\(^2\)

Punjab Agricultural University, Ludhiana 141 001, India

Received: 14 March 2019; Accepted: 11 July 2019

Key words: Ethyl methane sulphonate, French bean, Heat tolerance, Mutation frequency

French bean (*Phaseolus vulgaris* L.) is an important legume vegetable crop, belongs to family Fabaceae. It is highly self-pollinated crop. The genetic variability in French bean is limited due to which it is difficult to develop improved varieties through traditional breeding methods of crop improvement. Mutation breeding is the best method to increase genetic variability within short time in French bean as this crop showed high response towards mutagen. The major methods used in mutation breeding programme are irradiation with gamma rays, X-rays known as physical mutagen and treatment with ethyl methane sulphonate (EMS) and sodium azide known as chemical mutagen (Ahmad and Hakeem 2013). Tulmenneto (1990) reported that mutagen based research work in beans were carried out in 17 countries with the objective of developing varieties which possess resistance against diseases, having higher protein content, changed growth habits, higher productivity and yield. Most of the mutation work was carried out in China whereas in India, very limited work has been done in the improvement of this crop. Only one variety Pusa Parvati has been released through mutation breeding. In the present contexts, the attempts were made to identify useful variability of French bean with the help of chemical mutagen ethyl methane sulphonate.

A field experiment was conducted during 2017–18 at the Vegetable Research Farm, of Punjab Agricultural University, Ludhiana with two varieties of French bean, viz. Arka Suvidha and Falguni. Their seeds were treated by chemical mutagen ethyl methane sulphonate (EMS). The seed treatment was done firstly by soaking seeds in distilled water at room temperature for 8 h and then treatment with ethyl methane sulphonate (EMS) solution for 4 h followed by 1 h washing of the seeds under running tap water. For each treatment 100 seeds of each variety were used for determination of lethal dose. After determination of LD\(_{50}\) the one dose below LD\(_{50}\) dose and one dose above LD\(_{50}\) were used for experiment purposes. In the above experiment, three doses of ethyl methane sulphonate selected, viz. were 0.15%, 0.25% and 0.35%, respectively.

The M\(_1\) generation seeds were sown in the field during first week of February 2017. All the surviving M\(_1\) mutant plants were harvested separately at the maturity. The harvested seeds were sown in the next season 2018 to rise M\(_2\) generation. Half of the M\(_2\) generation seeds of individual M\(_1\) harvested plants were sown in plant to progeny rows during first week of February 2018, while remaining half seed were sown in March 2018, so as to expose the reproductive phase at high temperature for screening of plants. The seeds of variety Arka Suvidha and Falguni were also grown along with M\(_2\) generation in which several desirable mutant plants were identified for days to 50% flowering, number of pods per plants, green pod and seed yield per plant (g). The statistical analysis were performed by selecting several desirable plants in M\(_2\) generation and their mean performance was compared with parent’s plants using Fisher’s t- test of significance. The frequency percentage of selected mutants in M\(_2\) generation was observed in both varieties Arka Suvidha and Falguni by dividing the number of mutant selected in different ethyl methane sulphonate concentration to total number of plants observed and multiplying it by one hundred.

The seed germination percentage under laboratory conditions in Arka Suvidha was 89.0% with control and after treatment with EMS (0.15%, 0.25% and 0.35%) it was 74.0, 51.0 and 42.0%, respectively whereas in case of Falguni the seed germination percentage was 88.0% with control and after treatment with EMS @ (0.15, 0.25 and 0.35%) it was 72.0, 49.0 and 40.0% respectively. The seed germination percentage in all the concentrations of EMS i.e. 0.15, 0.25 and 0.35% was drastically reduced as compared to control due to inhibitory effect of increasing mutagen dose on the germination of seeds. Similar results showing decreased germination with increase in dose of mutagen were also observed by Datir et al. (2007), Kavithamani et al. (2008), Ariraman et al. (2014), More and Borker (2016), Dhanavel et al. (2008) and Patial et al. (2015) in French
beans and pulses.

Identification of mutant plants in M₂ generation: The mean performance of different treatments of ethyl methane sulphonate (EMS) and control in Arka Suvidha and Falguni in M₂ generation is presented in Table 1. The mean days to 50% flowering of mutant plants in Arka Suvidha during February sown crop was 39.5 for 0.15% EMS, 39.7 for 0.25% EMS, 40.5 for 0.35% EMS and for control, it was 45.6, respectively. During March sown crop mean was 38.4 for 0.15% EMS, 38.6 for 0.25% EMS and 39.4 for 0.35% EMS and for control, it was 44.5, respectively. In Falguni during February sown crop the mean days to 50% flowering of mutant plants was 38.4 for 0.15% EMS, 38.5 for 0.25% EMS and 39.6 for 0.35% EMS and for control it was 44.4, respectively. During March sown crop, the mean for control was 48.0 while it was 55.0 for 0.15% EMS, 55.5 for 0.25% EMS and 53.0 for 0.35% EMS, respectively.

The mean green pod yield per plant of mutant plants in Arka Suvidha during February sown crop was 22.5 for 0.15% EMS, 21.0 for 0.25% EMS and 20.0 for 0.35% EMS respectively. In Falguni during February sown crop, the number of pods per plant showed mean of 20.0 for 0.15% EMS, 19.0 for 0.25% EMS and 18.0 for 0.35% EMS, respectively. In both the varieties mutants were early as compared to control.

The mean number of pods per plants of mutant plants in Arka Suvidha during February sown crop was 25.0 for control and it was 32.0 for 0.15% EMS, 31.0 for 0.25% EMS and 30.0 for 0.35% EMS respectively. In case of March sown crop the mean for control was 15.0 while it was 22.5 for 0.15% EMS, 21.0 for 0.25% EMS and 20.0 for 0.35% EMS, respectively. In Falguni during February sown crop, the number of pods per plants showed mean of 19.0 for control and it was 25.5 for 0.15% EMS, 24.0 for 0.25% EMS and 24.0 for 0.35% EMS respectively. During March sown crop the mean for control was 16.0 while it was 22.0 for 0.15% EMS, 22.5 for 0.25% EMS and 21.0 for 0.35% EMS, respectively. During March sown crop, the mean for control was 8.0 and it was 15.5 for 0.15% EMS, 16.0 for 0.25% EMS and 13.0 for 0.35% EMS, respectively. In both the varieties mutants produces higher green pod and seed yield as compared to control. Kashid (2013) studied mutagenic effectiveness of ethyl methane sulphonate and sodium azideon Chickpea (Cicer arietinum L.) and obtained several desirable mutants showing earliness, higher pods per plant and seed yield per plant by treatment with both mutants as compared with control.

Frequency (%) of selected mutant plant in M₂ generation: The best ethyl methane sulphonate (EMS) concentration of a trait was selected based on frequency percentage of selected mutant plants in M₂ generation (Table 2). In Arka Suvidha during February and March sown crop, at 0.15% EMS concentration, the maximum frequency of mutant plant was observed for days to 50% flowering (1.58% and 1.25%), number of pods per plant (1.50% and 1.16%) and seed yield per plant (1.25% and 1.00%). The least frequency of selected mutants was observed in higher concentration of 0.35% EMS for days

<table>
<thead>
<tr>
<th>Variety</th>
<th>EMS (%)</th>
<th>Days to 50% flowering</th>
<th>No. of pods per plant</th>
<th>Green pod yield per plant (g)</th>
<th>Seed yield per plant (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>February Mean</td>
<td>March Mean</td>
<td>February Mean</td>
<td>March Mean</td>
<td>February Mean</td>
</tr>
<tr>
<td>Arka Suvidha</td>
<td>0.15</td>
<td>39.5*</td>
<td>38.4*</td>
<td>32.0*</td>
<td>22.5*</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>39.7*</td>
<td>38.6*</td>
<td>31.0*</td>
<td>21.0*</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>40.5*</td>
<td>39.4*</td>
<td>30.0*</td>
<td>20.0*</td>
</tr>
<tr>
<td>Control</td>
<td>45.6</td>
<td>44.5</td>
<td>25.0</td>
<td>15.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Falguni</td>
<td>0.15</td>
<td>38.4*</td>
<td>37.6*</td>
<td>25.5*</td>
<td>20.0*</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>38.5*</td>
<td>37.7*</td>
<td>25.0*</td>
<td>19.0*</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
<td>39.6*</td>
<td>38.5*</td>
<td>24.0*</td>
<td>18.0*</td>
</tr>
<tr>
<td>Control</td>
<td>44.4</td>
<td>43.6</td>
<td>19.0</td>
<td>14.0</td>
<td>85.0</td>
</tr>
</tbody>
</table>

*Significant difference at 5%
to 50% flowering (1.29% and 0.86%), number of pods per plant (1.14% and 1.12%) and seed yield per plant (0.71% and 0.86%), respectively.

In Falguni during February and March sown crop, at 0.15% EMS concentration, the maximum frequency of mutant plant was observed days to 50% flowering (1.18% and 1.27%), number of pods per plant (1.45% and 1.41%) and seed yield per plant (1.18% and 1.09%). The least frequency of selected mutants was observed in 0.35% EMS concentration for days to 50% flowering (0.92% and 1.00%), number of pods per plant (1.07% and 1.00%) and seed yield per plant (0.61% and 0.66%) respectively. Similar observation of mutation frequency was observed by Dhanavel et al. (2008), Satpute and Fultambkar (2012), Kulkarni and Mogle (2013), Mangaiyarkarasi et al. (2014) and Kashid and More (2016) in French bean and pulses. The above findings clearly indicated that mutant plants for important traits were selected by using lower concentration of EMS (0.15%) and this concentration can be effectively used for inducing maximum variability in French bean.

SUMMARY
An experiment was conducted during 2017–18, to find out the effect of EMS on growth and yield of French bean. The germination percentage in M1 generation decreased with the increased in concentration of EMS both in laboratory and field conditions. The varieties Arka Suvidha and Falguni produced several heat tolerant mutants during February and March, sown for days to flowering, number of pods per plant and seed yield per plant. The maximum numbers of mutants were observed in lower EMS concentration (0.15%) during February and March as compared to higher EMS concentration (0.25 and 0.35%), thus application of lower concentration of EMS has been recommended for crop improvement purposes in French bean through mutation breeding.

REFERENCES

