Efficacy of sodium bentonite to ameliorate adverse effects of aflatoxin on in vitro rumen fermentation of wheat straw

RAM SINGH^{1⊠} and ASHWANI KUMAR SAINI²

ICAR- Central Institute for Research on Buffaloes, Hisar, Haryana 125 001 India

Received: 15 May 2020; Accepted: 11 May 2022

ABSTRACT

The present experiment was conducted to study the effect of sodium bentonite (SB) in ameliorating the adverse effects of aflatoxin on in vitro rumen fermentation of wheat straw. Five treatment groups, viz. T₁: control (wheat straw); T₂: T₁ + 300 ppb aflatoxin B₁ (AFB₁); T₃: T₂ + 0.33% SB; T₄: T₂ + 0.5% SB and T₅: T₂ + 1.0% SB were prepared and incubated in vitro. Truly degradable dry matter (TDDM), truly degradable organic matter (TDOM), gas production (GP), microbial biomass production (MBP) and partitioning factor (PF) values in T, were higher than those of other treatment groups (T, to T₅). TDDM, TDOM, GP, MBP and PF values in T, were lower than those of other treatment groups. The values of these parameters improved with increasing concentration of SB. Total volatile fatty acids (TVFA), acetate (A), propionate (P) and butyrate (B) values in T₁ were higher than those of other treatment groups (T, to T_s). TVFA and A value between T, and T, were statistically similar. TVFA, A, P and B values improved with increasing level of SB, however, these values were lower than that of control even at highest inclusion level of SB. A:P ratio among various treatments did not vary significantly. It was concluded that aflatoxin contamination of feed at 300 ppb level significantly affected the in vitro rumen fermentation in terms of reduced truly degradable dry matter, truly degradable organic matter, gas production, microbial biomass production, partitioning factor and total volatile fatty acids concentration. Incorporation of sodium bentonite up to 1.0% level to the aflatoxin-contaminated wheat straw, partially ameliorated the adverse effects of aflatoxin on in vitro rumen fermentation parameters.

Keywords: Aflatoxin, In vitro, Rumen fermentation, Sodium bentonite, Wheat straw

Aflatoxins, produced mainly by Aspergillus flavus and Aspergillus parasiticus, are recognized as the most hazardous mycotoxins. The tropical and subtropical climate with hot and humid conditions prevailing in India, coupled with improper harvesting of crops, handling and processing, inadequate drying and storage facilities, and insect infestation make feedstuff susceptible to fungal contamination and mycotoxin production. Presence of aflatoxins in feed is one of the major constraints in maintaining feed quality, because the aflatoxins are widely present in feedstuffs around the world. Liver is the primary target organ for aflatoxins. Long-term intake of aflatoxin contaminated feeds resulted in negative effects on the liver, such as hepatic cells and tissue injury, as well as gross and microscopic abnormalities (Gholami-Ahangaran et al. 2016, Singh 2019a). Numerous traditional physical and chemical strategies for the elimination or inactivation of mycotoxins have been reported in the literature (Stoev 2013). Nevertheless, these methods have some limitations concerning safety issues, losses in the nutritional value

Present address: ¹ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana. ²ICAR- Central Institute for Research on Buffaloes, Sub-campus, Nabha, Punjab. [™]Corresponding author email: carirsingh@yahoo.co.in

and the palatability of feeds, coupled with limited efficacy and cost implication. In recent years, using mycotoxinadsorbing agents to bind mycotoxins in gastrointestinal tract of animals and then decreasing their bioavailability and toxicity, shows a promising potential in feed industrial applications. However, there are various kinds of mycotoxin adsorbing agents and their efficacy in preventing mycotoxicosis varies (Mohamed 2011, Silambarasan et al. 2013). *In vitro* studies have shown that SB is strong binder of AFB1 (Veldman et al. 1992, Rosa et al. 2001). SB and a synthetic zeolite mixture (80:20 ratio) do not depress feed intake or apparent nutrient digestibility (Rizzi et al. 1995), but prevent AFB, accumulation in the liver of growing lambs and decrease the AFB, excretion in urine by several folds (Zaghini et al. 1993). Diaz et al. (2004) studied the efficacy of several clay types to reduce aflatoxin residues in cows' milk. Also, SB reduced more milk aflatoxin than a similar amount of calcium bentonite. Thus, the objective of the present investigation was to study the effect of SB in ameliorating the adverse effects of aflatoxin on in vitro rumen fermentation of wheat straw.

MATERIALS AND METHODS

Production and analysis of aflatoxin: Aflatoxin was

produced using the fungal strain *Aspergillus flavus* NRRL 6513 obtained from US Department of Agriculture, Illinois, USA. Togetthe freshspores, the culture was regularly sub-cultured on Potato Dextrose Agar (PDA) medium slants and stored at 5°C. Aflatoxin was produced on liquid medium as per the method of Singh and Shamsudeen (2008). Aflatoxin contents were finally quantified using UV-Spectrophotometry.

Experimental design and substrate: Wheat straw was ground to pass a 1 mm sieve and used for experimentation. The following dietary treatments were prepared by mixing the required quantity of AFB₁ and SB to get the desired concentration in the feed (Table 1).

Table 1. Experimental groups and treatments

Group	Treatment
T ₁	Basal feed (wheat straw)
T_2	$T_1 + 300 \text{ ppb AFB}_1$
T_3	$T_2 + 0.33\%$ Sodium bentonite
T_4	T ₂ + 0.50% Sodium bentonite
T ₅	$T_2 + 1.0\%$ Sodium bentonite

Collection of rumen liquor: Fistulated male buffalo, about 5 years-old having 450 kg body weight, fitted with permanent rumen cannula was used as donor animal for collection of rumen liquor. The animal was fed a basal diet of wheat straw offered ad lib. and a standard concentrate mixture containing 20% CP and 70% TDN to meet the nutrient requirement for maintenance. The animal was given free access to clean drinking water. Approximately 300 ml of rumen liquor was collected from different depths and directions of reticulo rumen and transferred into preheated thermos flask, strained through a four-fold muslin cloth and flushed with CO₂. Rumen liquor was collected in the morning before feeding and watering of the animal as per standard procedure. Rumen fluid-medium mixture (inoculum) was prepared under continuous flushing with CO, to maintain anaerobic condition.

In vitro *incubation of substrate and gas production*: Wheat straw (200 mg dry weight) as substrate was weighed into 100 ml calibrated glass syringes and incubated with 30 ml of mixed rumen inoculum at 39°C for 24 h with parallel incubation of blanks (Menke *et al.* 1979, Menke and Steingass 1988). Each treatment was incubated in triplicate. The syringes were regularly shaken by hand during the incubation period for proper mixing of feeds with rumen inoculum. After 24 h of incubation period, the gas production was recorded by the displacement of piston during incubation period for test substrate and blank syringes. The net gas produced due to fermentation of substrate was calculated by subtracting the value of gas produced in blank syringes from that of test substrates.

In vitro *dry matter degradability and microbial protein synthesis:* After 24 h of incubation period, the content of the syringes, which was extracted in 100 ml of neutral detergent solution (NDS) by boiling for 1 h, was then transferred to 500 ml sproutless beaker followed by filtration on preweighed gooch crucibles (G1), washed in hot distilled

water and acetone to recover true undigested residue as per the method of Van Soest *et al.* (1991). Crucibles with undigested residue were dried at 100°C overnight and weighed to determine true undigested residue. Residue was ashed at 500°C for 3 h to determine true undigested OM, which was corrected for the appropriate blanks. The TDOM was calculated as the difference between OM incubated and the undigested OM recovered in the residue of ND extraction. Truly degradable dry matter (TDDM) and truly degradable organic matter (TDOM) were estimated, and microbial biomass production (MBP) and partitioning factor (PF) were calculated as per the method of Blummel *et al.* (1997).

Microbial biomass production (MBP) = Substrate truly degraded - (gas volume × stoichiometrical factor) For roughages, the stoichiometrical factor was 2.20.

Estimation of volatile fatty acid: After 24 h incubation, 1 ml of the supernatant of each syringe content was taken in a micro-centrifuge tube containing 0.20 ml metaphosphoric acid (25%, v/v). The mixture was allowed to stand for 2 h at room temperature and centrifuged at $5000\times g$ for 10 min to get a clear supernatant. The supernatant (1 μ l) was injected into gas chromatograph equipped with flame ionization detector (FID) and glass column packed with chromosorb as per the method described by Cottyn and Boucque (1968).

Statistical analysis: The data were statistically analyzed using SPSS (20.0 version) following one way analysis. All the observations were recorded at 95% (P<0.05) level of significance.

RESULTS AND DISCUSSION

Efficacy of sodium bentonite in ameliorating adverse effects of aflatoxin during in vitro rumen fermentation: The data pertaining to TDDM, TDOM, GP, MBP and PF as influenced by various dietary treatments is presented in Table 2, and those of VFAs production is presented in Table 3.

Truly degradable dry matter (TDDM) and truly degradable organic matter (TDOM): The TDDM and TDOM values of T₁ was higher (P<0.05) than that of T₂; and those of T₂ were lower (P<0.05) than that of T₃, T₄ and T_s (Table 2). The results revealed that contamination of 300 ppb aflatoxin in feed significantly (P<0.05) decreased the DM and OM degradability compared to that of control (T₁). This result was in agreement with that of Singh et al. (2020) who also reported reduced TDDM and TDOM in a buffalo diet when the diet was contaminated with 100 to 300 ppb aflatoxin. Similar results were also reported by Westlake et al. (1989) wherein IVDMD of alfalfa hay was reduced by 50% with inclusion of 1 μg/ml AFB₁. Also, Mojtahedi *et al*. (2013) reported that IVDMD decreased (P<0.05) with inclusion of AFB, in culture medium, so that the lowest and the highest IVDMD values were observed in treatments with 900 and 0 ng/ml AFB, respectively (0.54 vs. 0.68). Decreased IVDMD with AFB, addition can be attributed to

Table 2. Effect of aflatoxin and sodium bentonite on in vitro rumen fermentation parameters

Treatment	TDDM (%)	TDOM (%)	GP (ml/g DM)	MBP (mg/100 mg DDM)	PF
T ₁	40.85±0.08e	41.23±0.08e	148.98±0.16 ^d	20.70±0.20°	2.73±0.01°
Τ,	36.02 ± 0.12^a	37.11 ± 0.16^a	140.25 ± 0.32^a	17.37 ± 0.47^{a}	2.56±0.01a
T_3	37.04 ± 0.09^{b}	38.28 ± 0.20^{b}	142.51±0.22b	18.70±0.41 ^b	2.60±0.01b
T_4	37.95 ± 0.07^{c}	38.80±0.11°	144.44±0.19°	18.48±0.32 ^b	2.62±0.01°
T_5	38.92 ± 0.15^d	39.40 ± 0.14^{d}	144.94±0.20°	19.29±0.35 ^b	2.68 ± 0.01^{d}

Values bearing different superscripts in a column differ significantly (P<0.05).

compromised ruminal function by reducing fibre digestion and VFA production (Fehr and Delage 1970, Helferich et al. 1986a, b). However, some studies reported no effect of AFB, level on in vitro dry matter disappearance of feed substrate (Kiessling et al. 1984, Jiang et al. 2012). Yeanpet et al. (2018) also found that the IVDMD and IVOMD were not significantly affected by AFB,. In the present study, inclusion of SB to 300 ppb aflatoxin contaminated feed (T₃ to T₅) significantly (P<0.05) ameliorated the adverse effects of aflatoxin on the TDDM and TDOM in a dose dependent manner. However, addition of SB in aflatoxin contaminated feed even at highest level (1.0%) (T₅) could not reverse the TDDM and TDOM value equivalent to that of control (T₁). Ameliorative effects of SB on adverse effects of aflatoxin are also reported in literature. Rosa et al. (2001) reported a SB from South Argentina showing high ability of sequestering AFB, from aqueous solution. A commercial SB adsorbent at 0.3% level was used to prevent the effect of aflatoxin (50 µg of AFB./ kg of feed) on broiler productivity, biochemical parameters, macroscopic and microscopic liver changes and AFB, liver residues (Magnoli et al. 2011). Chicks receiving 100 μg/kg aflatoxin contaminated diets had suppressed body weight, feed consumption and FCR value, which were significantly improved with the addition of 0.5% SB (Pasha et al. 2007). Safaeikatouli et al. (2010) reported that addition of SB increased the total protein value equal to control in broiler chickens. Silambarasan et al. (2013, 2015, 2016) reported that diatomaceous earth, sodium bentonite and zeolite either at 0.5% or 1% level were partially to completely effective in ameliorating the adverse effects of aflatoxin in broiler chickens. Among three mycotoxin adsorbents tested, diatomaceous earth was least effective in comparison to sodium bentonite and zeolite. However, combination of the binders at a time was most effective in ameliorating the adverse effects of aflatoxin B, in broiler chickens. The present study further revealed that inclusion

of SB at any level to the 300 ppb aflatoxin-contaminated feed, partially ameliorated the ill effects of aflatoxin on DM and OM degradability.

Gas production and microbial biomass production: The gas production (GP) value in T₁ was higher (P<0.05) than that of T₂. The GP value between T₄ and T₅ was statistically similar (Table 2). The results revealed that aflatoxin contamination of feed at 300 ppb level decreased (P<0.05) the GP compared to that of control (T₁). This result was in agreement with Singh et al. (2020) who also reported reduced GP when the diet was contaminated with 100 to 300 ppb AFB, Also, Mojtahedi et al. (2013) reported that by increasing the level of AFB, from 0 to 900 ng/ml, the GP rate decreased from 0.071 to 0.051 and cumulative GP decreased from 196.4 to 166.0 ml/g DM, respectively. Similarly, Jiang et al. (2012) and Helferich et al. (1986a, b) also observed similar results of reduced gas production parameters when AFB, was added. These depressions in the GP suggested that microbial populations were altered by AFB, contamination of feed. Thus, the inclusion of SB to the 300 ppb aflatoxin contaminated feed significantly (P<0.05) alleviated the adverse effects of aflatoxin on GP in a dose dependent manner, however, even at the highest level (1.0%) of SB (T_5), the GP value was lower (P<0.05) than that of control (T₁), With respect to microbial biomass production (MBP), the MBP value in T, was higher (P<0.05) than that of T_3 . The MBP value among T_3 , T_4 and T₅ did not vary significantly. The results of present investigation revealed that aflatoxin contamination of feed at 300 ppb level resulted in significant decrease in the MBP value compared to that of control. This finding was in agreement with that of Singh et al. (2020) who also reported significantly reduced MBP due to aflatoxin contamination of feed at 100 to 300 ppb level in the diet of buffalo. The present study further revealed that inclusion of SB at 0.33% level (T₃) to the 300 ppb aflatoxin contaminated feed ameliorated the adverse effects of aflatoxin on MBP.

Table 3. Effect of aflatoxin on volatile fatty acids production

Treatment	TVFA (mM/100ml)	Acetate (mM/100ml)	Propionate (mM/100ml)	Butyrate (mM/100ml)	A:P ratio
T ₁	6.26±0.04°	4.51±0.09°	1.27±0.01 ^d	0.50±0.01d	3.55±0.08a
T_2	4.99 ± 0.04^{a}	3.56 ± 0.02^{a}	0.90 ± 0.01^{a}	0.35 ± 0.01^{a}	2.97 ± 0.96^a
T_3	$5.20{\pm}0.05^a$	3.59 ± 0.04^{a}	0.97 ± 0.01^{b}	0.39 ± 0.00^{b}	3.69 ± 0.04^{a}
T_4	5.59 ± 0.10^{b}	4.00 ± 0.05^{b}	1.07±0.03°	0.41 ± 0.01^{bc}	3.75±0.11 ^a
_T ₅	5.71±0.13 ^b	4.07±0.03b	1.09±0.03°	0.42±0.01°	3.75±0.12a

Values bearing different superscripts in a column differ significantly (P<0.05).

Also, the addition of SB level above 0.33% to the aflatoxin contaminated feed did not produce any beneficial effect in ameliorating adverse effects of aflatoxin on MBP.

Partitioning factor (PF): The PF value of T₁ was higher (P<0.05) than that of T₂. The PF value of all other treatment groups $(T_2 \text{ to } T_5)$ was lower (P < 0.05) than that of T₁. The present investigation revealed that aflatoxin contamination of feed at 300 ppb level resulted in decrease (P<0.05) in the PF value compared to that of control. This result was in agreement with that of Singh et al. (2020) wherein the buffalo diet was contaminated with 100 to 300 ppb aflatoxin. The present study further revealed that incorporation of SB at 0.33 to 1.0% levels to the 300 ppb aflatoxin contaminated feed significantly (P<0.05) ameliorated the adverse effects of aflatoxin on PF value in a dose dependent manner. However, even at the highest level (1.0%) of SB (T_s) inclusion to the aflatoxin contaminated feed, the PF value was lower (P<0.05) than that of control (T₁). A feed with higher PF value means that proportionally more of the degraded matter is incorporated into microbial mass, i.e. the efficiency of microbial protein synthesis is higher. Roughages with higher PF have been shown to have higher dry matter intake (Harikrishna et al. 2012).

Volatile fatty acids (VFAs) production: The total volatile fatty acids (TVFAs), acetate (A), propionate (P) and butyrate (B) values in T, were higher (P<0.05) than that of T₂. The TVFA and A value between T₂ and T₃; and between T₄ and T₅ were statistically similar (Table 3). The P and B value of T₂ was lower (P<0.05) than those of T₃, T₄ and T_5 . The B value between T_3 and T_4 ; and between T_4 and T₅ was statistically similar. The B value of T₃ was lower (P<0.05) than that of T_5 . The results revealed that aflatoxin contamination @ 300 ppb in feed significantly decreased the TVFA, A, P, and B production compared to that of control. This finding of reduced VFA due to aflatoxin concentration was in agreement with Jiang et al. (2012) and Singh et al. (2020) who also reported that the VFA concentration decreased with the increase of AFB, level in feed. Cellulose degradation, VFA production, ammonia production, and proteolysis were decreased by AFB, at 0.2-0.8 mg/kg body weight in acute bovine aflatoxicosis (Cook et al. 1986). Also, the production of VFA irrespective of substrate was inhibited by the increasing dose levels of AFB, which was consistent with the reduction in the asymptotic gas volume. The suppression of VFA, gas production and ammonia N implicated that microbial activity was inhibited regardless of substrate used. Contrary to this, Edrington et al. (1994) found no differences in ruminal VFA concentrations in growing lambs fed 2.5 mg AFB, per kg diet. Helferich et al. (1986a) also reported that AFB, at 60-600 ppb did not influence the production of VFA in steers. In another experiment, ingestion of 0.714 µmol AFB, per animal did not influence the ruminal VFA production in lactating goats (Helferich et al. 1986b). With regard to A:P ratio, the A:P ratio value in various treatments (T₁ to T₅) varied from 2.97 (T_2) to 3.75 $(T_4$ and $T_5)$. The A:P ratio value among various treatment groups (T₁ to T₅) did not vary significantly

(P>0.05). The present investigation revealed that aflatoxin contamination of feed at 300 ppb level (T₂) did not produce any significant effect on A:P ratio as compared to that of control (T₁), however, the A:P ratio value in aflatoxin contaminated group (T₂) was numerically lower than that of control. Incorporation of SB to the aflatoxin (300 ppb) contaminated feed (T3 to T5) did not produce any effect on the A:P ratio compared to that of aflatoxin contaminated group (T_2) , however, the A:P ratio of groups T_3 to T_5 was numerically higher than that of (T2). This finding revealed that aflatoxin (300 ppb) contamination of feed did not change the A:P ratio significantly. However, Singh et al. (2020) reported increased A:P ratio value when the bufffalo diet was contaminated with 100 to 300 ppb aflatoxin. Further, the addition of SB to the aflatoxin contaminated feed did not produce any significant effect on the A:P ratio.

It was concluded that aflatoxin contamination of feed at 300 ppb level significantly affected the *in vitro* rumen fermentation in terms of reduced truly degradable dry matter, truly degradable organic matter, gas production, microbial biomass production, partitioning factor and total volatile fatty acids concentration. Incorporation of sodium bentonite up to 1.0% level to the aflatoxin contaminated feed partially ameliorated the adverse effects of aflatoxin on *in vitro* rumen fermentation parameters.

REFERENCES

Blummel M, Makkar H P S and Becker K. 1997. *In vitro* gas production: A technique revisited. *Journal of Animal Physiology and Animal Nutrition* 77: 24–34.

Cook W O, Richard J L, Osweiller G D and Trampel D W. 1986. Clinical and pathologic changes in acute bovine aflatoxicosis: Rumen motility and tissue and fluid concentrations of aflatoxins B₁ and M₁. American Journal of Veterinary Research 47: 1817–25.

Cottyn B G and Boucque C V. 1968. Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. *Journal of Agricultural and Food Chemistry* 16: 105–07

Diaz D E, Hagler Jr W M, Blackwelder J T, Eve J A, Hopkins B A, Anderson K L, Jones F T and Whitlow L W. 2004. Aflatoxin binders II: Reduction of aflatoxin M₁ in milk by sequestering agents of cows consuming aflatoxin in feed. *Mycopathologia* **157**: 233–41.

Edrington T S, Harvey R B and Kubena L F. 1994. Effect of aflatoxin in growing lambs fed ruminally degradable or escape protein sources. *Journal of Animal Science* **72**: 1274–81.

Fehr P M and Delage J. 1970. Effect of aflatoxin on rumen fermentations. *Comptes rendus hebdomadaires des séances de l'Académie des sciences Paris (Series D)* **270**(3): 550–53.

Gholami-Ahangaran M, Rangsaz N and Azizi S. 2016. Evaluation of turmeric (*Curcuma longa*) effect on biochemical and pathological parameters of liver and kidney in chicken aflatoxicosis. *Pharmaceutical Biology* **54**(5): 780–87.

Harikrishna C, Mahender M, Ramana Reddy Y, Gnana Prakash M, Sudhakar K and Pavani M. 2012. Evaluation of *in vitro* gas production and nutrient digestibility of complete diets supplemented with different levels of thermotolerant yeast in Nellore rams. *Veterinary World* **5**(8): 477–85.

Helferich W G, Baldwin R L and Hsieh D P H. 1986b. [14C]-

- aflatoxin B₁ metabolism in lactating goats and rats. *Journal of Animal Science* **62**: 697–705.
- Helferich W G, Garrett W N, Hsieh D P H and Baldwin R L. 1986a. Feedlot performance and tissue residues of cattle consuming diets containing aflatoxins. *Journal of Animal Science* **62**: 691–96.
- Jiang Y H, Yang H J and Lund P. 2012. Effect of aflatoxin B₁ on *in vitro* ruminal fermentation of rations high in alfalfa hay or rye grass hay. *Animal Feed Science and Technology* **175**: 85–89.
- Kiessling K H, Pettersson H, Sandholm K and Olsen M. 1984. Metabolism of aflatoxin, ochratoxin, zearalenone, and three trichothecenes by intact rumen fluid, rumen protozoa, and rumen bacteria. Applied and Environmental Microbiology 47(5): 1070–73.
- Magnoli AP, Monge MP, Miazzo RD, Cavaglieri LR, Magnoli CE, Merkis CI, Cristofolini AL, Dalcero AM and Chiacchiera SM.
 2011. Effect of low levels of aflatoxin B1 on performance, biochemical parameters, and aflatoxin B1 in broiler liver tissues in the presence of monensin and sodium bentonite.
 Poultry Science 90: 48–58.
- Menke K H and Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid. *Animal Research Development* **28**: 7–55.
- Menke K H, Raab L, Salewski A, Steingass H, Fritz D and Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor *in vitro*. *Journal of Agricultural Science* **93**: 217–22.
- Mohamed E Z. 2011. Impact of mycotoxins on humans and animals. *Journal of Saudi Chemical Society* **15**(2): 129–44.
- Mojtahedi M, Danesh Mesgaran M, Vakili S A and Hayati-Ashtiani M. 2013. Effect of Aflatoxin B₁ on *in vitro* rumen microbial fermentation responses using batch culture. *Annual Review and Research in Biology* **3**(4): 686–93.
- Pasha T N, Farooq M U, Khattak F M, Jabbar M A and Khan A D. 2007. Effectiveness of sodium bentonite and two commercial products as aflatoxin adsorbents in diets for broiler chickens. *Animal Feed Science and Technology* **132**: 103–10.
- Rizzi L, Lambertini L, Marchesini L and Zaghini A. 1995. Affinity sorbent of aluminosilicate for afatoxin B1: Effects on digestibility in growing lambs. Proceedings of the 50th Congresso Nazionale S.I.S. Vet. Gra. che Scuderi, Messina, Italy, pp. 591–92.
- Rosa C A R, Miazzo R, Magnoli C, Salvano M, Chiacchiera S M, Ferrero S, Saenz M, Carvalho E CQ and Dalcero A. 2001. Evaluation of the efficacy of bentonite from the South of Argentina to ameliorate the toxic effects of aflatoxin in broilers. *Poultry Science* 80: 139–44.
- Safaeikatouli M, Jafariahangari Y and Baharlouei A. 2010. Effects of dietary inclusion of sodium bentonite on biochemical characteristics of blood serum in broiler chickens. *International Journal of Agricultural and Biological Engineering* **12**: 877–80.
- Silambarasan S, Singh R and Mandal A B. 2013. Evaluation of the ability of adsorbents to ameliorate the adverse effects of

- aflatoxin B₁ in broiler chickens. *Indian Journal of Animal Sciences* **83**(1): 73–77.
- Silambarasan S, Singh R and Mandal A B. 2015 Efficacy of certain adsorbents on carcass traits and livability of broiler chickens fed aflatoxin B₁ contaminated diet. *Indian Journal of Poultry Science* **50**(1): 113–17.
- Silambarasan S, Singh R and Mandal A B. 2016. Evaluation of adsorbents to ameliorate the adverse effects of aflatoxin B₁ on blood biochemicals, immune response and histopathology of liver in broiler chickens. *Indian Journal of Poultry Science* **50**(3): 267–71.
- Singh R and Shamsudeen P. 2008. Aflatoxigenic potential of *Aspergillus parasiticus* MTCC 411 and *Aspergillus parasiticus* NRRL 2999 under laboratory conditions. *Indian Journal of Poultry Science* **43**(2): 245–46.
- Singh R, Park S, Koo J S and Balasubramanian B. 2020. Influence of various concentrations of aflatoxin B₁ on *in vitro* rumen fermentation of a buffalo diet. *Korean Journal of Agricultural Science* **47**(1): 131–38.
- Singh R. 2019a. Ameliorative efficacy of Mycodetox B₁ on liveability, immunity and organ pathology during experimental aflatoxicosis in turkey poults. *Livestock Research International* 7(1): 49–54.
- Singh R. 2019b. Effect of dietary inclusion of Mycodetox B₂ on liveability, immunity and organ pathology during aflatoxicosis in turkey poults. *Livestock Research International* 7(2): 55–61.
- Singh R. 2019c. Effect of supplementation of toxin binder (Mycodetox B₂) on liveability, immune response and pathology of organs during aflatoxicosis in Japanese quails. *Journal of Poultry Science and Technology* 7(1): 1–7.
- Stoev S D. 2013. Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. *Critical Reviews in Food Science and Nutrition* 53(9): 887–901.
- Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fibre, neutral detergent fibre and non starch polysaccharides in relation to animal nutrition. *Journal of Dairy Science* 74: 3583–97.
- Veldman A, Borggreve G J, Mulders E J and Van der Lagemaat D. 1992. Occurrence of the mycotoxins ochratoxin A, zearalenone and deoxynivalenol in feed components. Food Additives and Contaminants 6: 647–55.
- Westlake K, Mackie R I and Dutton M F. 1989. *In vitro* metabolism of mycotoxins by bacterial protozoal and ovine ruminal fluid preparations. *Animal Feed Science and Technology* **25**: 169–78.
- Yeanpet C, Thamrongyoswittayakul C, Wachirapakorn C, Songsermsakul P, Somphon N and Wongnen C. 2018. Efficacy of mycotoxin adsorbents on aflatoxin B₁ decontamination and *in vitro* rumen fermentation. *Prawarun Agriculture Journal* **15**(1): 260–68.
- Zaghini A, Lambertini L, Rizzi L and Roncada P. 1993. *Effects of a bentonite supplemented diet on prevention of aflatoxicosis in growing lambs*. Proceedings of the 47th Congresso Nazionale S.I.S. Vet. Gra. Che Scuderi, Messina, Italy, Pp. 1329–33.