

Comparison of daughter's performance of progeny tested sires with pedigree selected sires in Holstein Friesian crossbred cattle

ASHISH C PATEL*, NILESH NAYEE, SUJIT SAHA, SWAPNIL GAJJAR and D N RANK

Anand Agricultural University, Anand, Gujarat 388 001 India

Received: 5 October 2019; Accepted: 24 October 2019

ABSTRACT

The present study was conducted to compare the estimated breeding values of progeny tested sires and pedigree selected sires for test day milk yield of crossbred Holstein Friesian cattle. First lactation milk yield records (1,20,198) of 12,971 daughters sired by 267 sires were collected from INAPH database maintained by NDDB. Variance and covariance components for test-day milk yield (TDMY) were estimated by different random regression test day models (RRTDM), viz. Cubic B- Spline function, Quadratic B-Spline function, Legendre polynomial (LP) function and Wilmink function using Average Information Restricted Maximum Likelihood (AIREML). Considering various criteria for comparison of different orders of TDMs, LP of 6th order for TDMY was the best fitted model for further estimation of breeding values. The heritability estimates ranged from 0.15 to 0.39 for TDMY using Leg 2 model. The additive genetic correlations were higher than the phenotypic correlations among different TDs. The additive genetic correlations between test day yields varied from 0.73 to 0.99. The expected progeny difference (EPD) for TDMY calculated based on dam's yield for the top ten and bottom ten PS bulls was 2,662.5 kg; whereas, the actual progeny difference (APD) for these bulls was -28.47 kg. While, EPD for top 10 and bottom 10 PT bulls selected based on EBVs was 2,820.52 kg whereas the APD for PT bulls was 890.48 kg. The difference in expected and actual MY of progeny was higher in PS bulls as compared to PT bulls indicating that the pedigree information for EPDs had a poor association with APDs and sire superiority is not reflected in progeny's actual performance. The rank correlation between ranks of all PS and PT bulls were very poor and non-significant. The bulls selected based on estimated breeding values will give faster genetic progress and decision to select replacement bulls based on breeding values instead of dam's yield will have positive effect on genetic progress.

Keywords: Breeding value, Crossbred, Holstein Friesian, Pedigree selection, Progeny testing

India's livestock sector is one of the largest in the world, which employs more than 8% of the countries' labour force and has emerged as an important growth leverage of Indian economy with nearly 4.50% of total GDP and 25.8% of agriculture sector's GDP during 2016-17 (Anonymous 2018). Among livestock, dairy cattle and buffalo play a major role in India's total milk production. According to 19th Livestock Census (2012), Govt. of India, cattle and buffaloes contribute about 37.28% and 21.23% of total livestock population of India, respectively. Of the total cattle population, indigenous cattle contribute 79.57% and 20.43% crossbred cattle resulted through crossing exotic dairy breeds primarily Holstein Friesian and Jersey with mostly indigenous descript / non-descript cattle. India is the largest milk producing country of the world, producing 176.3 million tonnes milk during 2017-18 which contributed nearly 21% of world's total milk production (Anonymous 2018). Among the estimates of total milk production of the country, Gujarat contributes about 7.70% and ranks fourth in the country (Anonymous 2018).

*Corresponding author email: aashishvet@gmail.com

For genetic improvement of livestock populations, selection of the best individuals of the current generation and their use as parents of the next generation can be the major goal of an animal breeding scheme. There are several criteria for selection of breeding bulls, viz. pedigree selection (PS), full sib family selection (FSFS) or half sib family selection (HSFS), progeny testing (PT) etc. More commonly criterion used for selection of bulls at younger stage is pedigree selection (PS). An effective PS depends on the accuracy of the genetic evaluation of parents.

In the early days, breeding values of dairy sires and cows for production traits were predicted from 305-day full lactation yields, which usually compiled from the individual milk samples taken at every 30 days in milk. Now-a-days, genetic evaluation of dairy animals for milk production is done based on test-day yields (TDY) instead of 305-days lactation yield. 305-days milk yields (305-DMY) can also be predicted from test days milk yields using various regression methods but they do not account for an individual test-day effect on the test-day yield of a cow and persistency (Schaeffer and Dekkers 1994), while test-day model (TDM) accounts for both the effects along with prediction of

Estimated Breeding Values (EBVs) for 305-days yields. Among the various test day models, Splines, Wilminks and Legendre polynomial functions of random regression models (RRM) are the models of choice for genetic evaluations of Holstein cattle (Bignardi *et al.* 2009).

NDDB initiated a robust online and offline data capturing and analysis system for improving dairy cattle-buffalo productivity through the establishment of a national database - Information Network for Animal Productivity and Health (INAPH) in 2008. The INAPH supports the monthly test days milk recording (milk yield, fat%, protein%, lactose%) along with other reproduction and health traits (Anonymous 2012) under progeny testing (PT) programme. The availability of data of performance of progenies of crossbred bulls over large period provides an excellent opportunity to study the changes in breeding values and ranking of bulls based on PT and pedigree. However, to the best of our knowledge, no comparative study has been reported in Crossbred Holstein Friesian (CBHF) cattle because of few PT programmes implemented. The present study was undertaken to compare sire evaluation methods (selection based on dam yield and selection based on progeny testing) for TDMY in CBHF.

MATERIALS AND METHODS

Data were retrieved from INAPH database maintained by NDDB. Data comprised 1,23,135 first lactation test day milk yield records of 15,255 daughters recorded during 2008–2018 of 303 sires born after 2003. The pedigree

details of sires were collected from SAG, Bidaj. The animals without sire information were eliminated from the study. After elimination of 2% of data as outliers, 1,20,599 first lactation records of 13,015 daughters sired by 267 sires were retained in data file. Variance and covariance components for test-day milk yield (TDMY) were estimated by various random regression test days models (RRTDM), viz. Cubic B-Spline function at 4, 5, 6 orders, Quadratic B-Spline function at 3, 4, 5, 6 orders, RRM Legendre polynomial (LP) function at 0, 1, 2, 3, 4, 5 orders and Wilmink function were fitted on TDMY for sire evaluation using Average Information Restricted Maximum Likelihood (AIREML). All the models were fitted with herd (village) effect, AFC (age at first calving) classes and YSC (year of calving * season of calving) taken as fixed effects, whereas HYMR (herd * year of milk recording * month of milk recording), OWN (owner effect) as random effects. Permanent environment (PE) and animal effects were taken as random regressions (Table 2).

Spline function: Quadratic spline function at n^{th} orders (n = 3, 4, 5, 6) and cubic function at n^{th} orders (n = 4, 5, 6)

$$\begin{aligned} &Y_{tghijk} = \mu + Herd_h + YSC_j + AFCCL_j + HYMR_g + OWN_k + DIM_t \\ &+ a_i + b_i \times DIM + e_{tghijk} \end{aligned}$$

Wilmink function: (Wilmink 1988)

$$\begin{aligned} &Y_{tghijk} = \mu + Herd_h + YSC_j + AFCCL_j + HYMR_g + OWN_k + DIM_t \\ &+ a_i + b_i \times DIM + c_i \times exp(-0.05 \times DIM) + e_{tghijk} \end{aligned}$$

Legendre Polynomial (LP) a 0, 1, 2, 3, 4, 5, 6th orders (Mrode and Thompson 2005)

Table 1. Number of records, mean and its standard error (SE) for test day milk yield for effect of year of recording, month of recording, year of calving, season of calving and AFC classes

				0.5	U,							
Year of recording	N	Mean	SE	Month of recording	N	Mean	SE	Year of calving		N	Mean	SE
2008	598	9.11	0.11	January	9,277	8.88	0.04	2008		891	8.87	0.10
2009	1,050	9.19	0.11	February	9,242	9.18	0.04	2009		1,115	9.04	0.11
2010	1,076	9.66	0.12	March	9,324	9.58	0.04	2010		1,171	9.88	0.11
2011	1,661	9.97	0.08	April	10,181	9.78	0.04	2011		1,919	9.89	0.08
2012	2,599	10.14	0.07	May	11,041	9.83	0.04	2012		3,652	9.76	0.06
2013	6,491	9.76	0.05	June	11,582	9.72	0.03	2013		8,328	9.36	0.04
2014	10,768	9.50	0.03	July	11,510	9.63	0.03	2014		11,810	9.43	0.03
2015	15,864	9.59	0.03	August	11,211	9.28	0.03	2015		19,201	9.21	0.03
2016	27,583	9.06	0.02	September	9,185	8.95	0.03	2016		32,124	8.79	0.02
2017	32,313	8.80	0.02	October	9,257	8.68	0.03	2017		30,699	9.08	0.02
2018 (till July)	20,195	9.51	0.03	November	9,198	8.55	0.03	2018 (t	ill July)	9,288	10.90	0.04
				December	9,190	8.62	0.04					
Overall	120,198	9.26	0.010		120,198	9.26	0.01			120,198	9.26	0.01
	P<0.01				P<0.01					P<0.01		
Season of calvir	ng		N	Mean	SE	A	AFC class	ses	N	N	Iean	SE
Winter (Novem	ber–Febru	iary)	38,155	9.59	0.019	5	547–912		15,530	9	0.89	0.03
Summer (March		3,	52,579	9.23	0.015	g	912-1,277	7	57,240	9	.47	0.02
Monsoon (July-			29,464	8.87	0.020	1	1,277–1,6	42	33,979		3.91	0.02
Overall	,		120,198	9.26	0.010		,642–2,0		10,894		3.48	0.03
P<0.01			,				2,007–2,3		2,555		3.42	0.07
							Overall		120,198		0.26	0.01
						I	P<0.01		,			

Levels of fixed effects Mean SD Min. Max Levels of random effects Random Regressions

Table 2. Summary of effect-wise levels, mean, standard deviation, minimum and maximum values for TDMY

$$\mathbf{Y}_{\mathrm{tghijkl}} = \mathbf{Herd_h} + \mathbf{YSC_j} + \mathbf{AFCCL_j} + \mathbf{HYMR_g} + \mathbf{OWN_k} + \mathbf{PSC_j} + \mathbf{PSC_j$$

$$\sum_{k=0}^{nf} \varphi_{ktl} \ \beta_l \ + \ \sum_{k=0}^{nf} \varphi_{ktl} \ u_{kl} \ + \ \sum_{k=0}^{nf} \varphi_{ktl} \ pe_{kl} \ + e_{tghijkl}$$

where $Y_{tghijkl}$, j^{th} test-day milk yield of t^{th} test day; μ , intercept; HYMR, herd \times year of milk recording \times month of milk recording as random effect with subclass g; Herd, herd effect as fixed effect with subclass h; AFCCL, age at first calving classes as fixed effect with subclass j; OWN, owner effect as random effect with subclass k; YSC, year and season of calving as fixed effect with subclass l; DIM, number of days in milk on test-day, DIM≥5, if DIM< 5 then DIM = 5; a_i, random effect of ith animal (genetic plus within lactation permanent environment effect), b_i, random regression coefficient on Spline factors for tth DIM; c_i, random regression coefficient on the Wilmink (1987) factor for tth DIM; β_1 , fixed regression coefficients; u_{k1} and pe_{k1} the lth random regression for animal additive genetic and permanent environmental effects, respectively, for animal k; \emptyset_{ktl} , l^{th} Legendre polynomial for the test-day record of cow k made on tth day in milk; nf, order of polynomials fitted as fixed regressions (Legendre polynomial of nth order used as fixed effects); nr, order of polynomials for u and pe effects (Legendre polynomial of nth order used as random effects); ethijkl, random residual effect; ukl and pekl, 1th random regression for animal additive genetic and permanent environmental effects, respectively, for animal k; \emptyset_{ktl} , l^{th} Legendre polynomial for the test-day record of cow k made on tth day in milk.

All test day models at various orders were evaluated using various criteria, viz. Log likelihood function (LogL) (Mrode and Thompson 2005), Akaike's information criterion (AIC) (Akaike 1973), Corrected Akaike's information criterion (AICc) (Akaike 1987), Bayesian information criterion (BIC) (Schwarz 1978), Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Square Error (MSE) (Barnston 1992) and selected best order of test day model for estimation and comparison of breeding values of sires using Univariate Best Linear Unbiased Prediction (BLUP) model.

The genetic parameters, heritability and genetic correlations at various test days for TDMY were estimated. Comparison of breeding values of bull selected based on Dam's performance (Pedigree based selection (PS bulls)) and bull selected based on progeny's performance (PT bulls) was carried out by comparing expected progeny difference (EPD) with Actual progeny difference (APD) for both criteria. The Expected progeny difference (EPD) for TDMY was calculated based on dam's yield for the top 10 and bottom 10 PS bulls ((avg. Dam's MY of top ten bulls –

avg. Dam's MY of bottom ten bulls) / 2), while for PT bulls, EBVs is not comparable directly to daughter's yield, so, the EPD for PT bulls was calculated as ((avg. EBVs for MY of top ten bulls – average EBVs for MY of bottom ten bulls) / $2 \times h^2$ of trait).

RESULTS AND DISCUSSION

Three different lactation curve parameters of Random Regression (RR) test day models, viz. Spline function, Wilmink function and Legendre polynomials were found significant for non-genetic effects included in RR models (P<0.01), viz. year of recording, month of recording, calving year, calving season and age at first calving classes. The number of records, mean values and standard errors for various effects, viz. year of recording, month of recording, year of calving, season of calving and age at first calving for test day milk yield are presented in Table 1. The highest TDMY was observed in winter followed by summer and monsoon, however the highest TDMY was observed during May month of summer season.

Assessment of different test day models of various orders namely B-Spline Cubic function of 4, 5, 6 orders and B-Spline Quadratic function of 3, 4, 5, 6 orders, Legendre polynomials of 0, 1, 2, 3, 4, 5, 6 orders and Wilmink function were successfully converged of the iterative process. Only Bignardi et al. (2012) have reported problems of convergence of the iterative process, viz. B-spline quadratic and cubic models of 8th order for milk yield trait. While, Legendre polynomial functions were successfully converged for iterative process of 3^{rd} and 4^{th} orders (Padilha et al. 2017), of 3rd to 6th orders for MY, FY and PY (Biassus et al. 2010), of 4th order for MY (Naserkheil et al. 2016) and of 3rd to 5th orders for MY (Dornelles et al. 2016).

Comparison of efficiencies and selection of best fitted test day models of different orders: The goodness of fit of all TDM models was investigated using various criteria, viz. Log L, AIC, AICc, BIC, RMSE, MAE, MSE and are presented in Table 3. Based on the lowest values of each criteria best test day model at best order was selected for estimation and comparison of breeding values of sires. Based on all criteria, LP function of 6th order was the best fitted model. While, LP function of 5th order and B-spline cubic function of 6th order were found as second and third best fitted models, respectively. Peixoto et al. (2014) earlier reported that the LP model of 6th order attained the best values of Log L and AIC, while of 3rd order for BIC criteria. Biassus et al. (2010) also reported the models with the highest orders of LPs showed the best quality of adjustments of records. Mostly higher orders of LP are suggested as best for various yield traits based on Log L and AIC e.g. 4th

Table 3. Comparison of efficiencies and selection of best fitted TDM

Model No. of parameters -2 Log L			AIC	AICC	BIC	MSE	MAE	RMSE	
Leg 0	5	282,932.38	282,942.38	282,942.38	282,990.84	1.98	0.96	1.41	
Leg 1	9	261,426.10	261,444.10	261,444.10	261,531.32	1.25	0.76	1.12	
Leg 2	15	248,751.96	248,781.96	248,781.96	248,927.34	0.89	0.64	0.94	
Leg 3	23	241,934.42	241,980.42	241,980.42	242,203.36	0.70	0.57	0.84	
Leg 4	33	238,767.02	238,833.02	238,833.04	239,152.88	0.60	0.52	0.77	
Leg 5	45	$237,321.46^{(2)}$	237,411.46(2)	237,411.50(2)	237,847.64 ⁽²⁾	$0.53^{(2)}$	$0.49^{(2)}$	$0.73^{(2)}$	
Leg 6	59	236,643.48(1)	236,761.48 ⁽¹⁾	236,761.54 ⁽¹⁾	237,333.34(1)	$0.48^{(1)}$	$0.47^{(1)}$	$0.69^{(1)}$	
Qua 3	15	249,378.42	249,408.42	249,408.42	249,553.80	0.89	0.64	0.94	
Qua 4	23	242,986.46	243,032.46	243,032.46	243,255.40	0.72	0.57	0.85	
Qua 5	33	239,646.74	239,712.74	239,712.76	240,032.60	0.62	0.53	0.78	
Qua 6	45	237,898.10	237,988.10	237,988.14	238,424.28	0.54	$0.49^{(2)}$	0.74	
Cub 4	23	242,209.36	242,255.36	242,255.38	242,478.30	0.71	0.57	0.84	
Cub 5	33	239,010.64	239,076.64	239,076.66	239,396.50	0.61	0.52	0.78	
Cub 6	45	237,417.12	237,507.12	237,507.14	237,943.28	$0.53^{(2)}$	$0.49^{(2)}$	$0.73^{(2)}$	
W_1	5	363,426.94	363,436.94	363,436.94	363,485.40	4.02	1.41	2.00	

order by Padilha et al. (2017), 6th order for MY, FY and PY by Biassus et al. (2010), 6th order of LP by Bignardi et al. (2011), 4th order for MY by Naserkheil et al. (2016) and 5th order of LP for MY by Dornelles et al. (2016), 5th and 6th order of LP for AG effect and PE effect by Behzadi and Mehrpoor (2018) for TDMY. As the orders of Legendre polynomial, B-spline function or B-spline quadratic function increased, relative efficiency in models was also improved. However, the relative contribution of each eigenvalue of the additive genetic (co) variance to total explainable variation (Table 4) suggested that as orders of lactation curve parameters for TDMs increased, the relative contribution of eigenvalues got decreased. The contribution of third eigenvalue were observed as only 1.10%, 0.94%, 0.90%, 0.90%, 0.89% for LP of 2nd, 3rd, 4th, 5th and 6th orders, respectively. While, for B-spline cubic and Quadratic functions, contribution of fourth eigenvalue was negligible to total explainable variation. Hence, for present study and routine genetic evaluations of MY, Legendre polynomial function of 2^{nd} order was suggested because the contribution to explainable variability for animal effects at higher orders (> 2^{nd} order) was found negligible.

Estimation of genetic parameters from test day models of different orders: The genetic parameters, heritability and genetic correlations at various test days, viz. 30, 60, 90, 120, 150, 180, 210, 240, 270, 300 and 330 days were estimated using variance, covariance values of different test day models. The heritability estimates ranged from 0.15 to 0.39 using Leg_2. Heritability estimates have been reported in the range of 0.13 to 0.66 in Holstein cattle by Behzadi and Mehrpoor (2018) and 0.18 to 0.50 in Sahiwal cattle by Monalisa et al. (2014), 0.39 in Holstein Frisian by Swalve (1995), 0.32 in Hostein by Jamrozik and Schaeffer (1997), 0.40 in Holstein by Mostert et al. (2004). Whereas, lower to moderate heritabilities have been reported as 0.17 to 0.32 in Guzerat cattle by Peixoto et al. (2014), 0.16 to 0.24 in Gyr breed by Ledic et al. (2002), 0.07 to 0.19 in Holstein by Bignardi et al. (2009), 0.14 to 0.34 in Girby Herrera et

Table 4. Eigenvalues and relative contributions (%) of nth eigenvalue (in bracket) of the additive genetic (co)variance matrix to total explainable variation for different TDMs

Model	% contribution of n th eigenvalue										
	First	Second	Third	Fourth	Fifth	Sixth	Seventh				
				MY							
Leg_1	5.56 (96.92)	0.18 (3.08)	_	_	_	_					
Leg_2	5.87 (95.53)	0.21 (3.36)	0.07 (1.10)	_	_	_	_				
Leg_3	5.51 (96.05)	0.17 (2.96)	0.05 (0.94)	0.00(0.04)	_	_	_				
Leg_4	5.57 (96.11)	0.17 (2.91)	0.05 (0.90)	0.00 (0.06)	0.00 (0.02)	_	_				
Leg_5	5.48 (96.04)	0.17 (2.91)	0.05 (0.90)	0.01 (0.11)	0.00 (0.05)	0.00(0.00)	_				
Leg_6	5.44 (95.81)	0.17 (3.04)	0.05 (0.89)	0.01 (0.20)	0.00 (0.04)	0.00 (0.01)	0.00(0.01)				
Cub_4	281.23 (95.48)	9.79 (3.32)	2.35 (0.80)	1.18 (0.40)	_	_	_				
Cub_5	93.55 (87.34)	9.45 (8.83)	3.44 (3.22)	0.62 (0.58)	0.04 (0.04)	_	_				
Cub_6	52.59 (82.70)	9.77 (15.36)	0.97 (1.52)	0.24 (0.37)	0.03 (0.05)	0.00(0.00)	_				
Qua_3	27.09 (74.67)	7.30 (20.13)	1.89 (5.20)	_	_		_				
Qua_4	15.21 (64.77)	7.80 (30.17)	1.04 (4.41)	0.15 (0.65)	_	_	_				
Qua_5	12.13 (71.49)	3.76 (22.14)	1.03 (6.10)	0.03 (0.19)	0.01 (0.09)	_	_				
Qua_6	14.11 (78.11)	3.09 (17.09)	0.78 (4.30)	0.08 (0.42)	0.02 (0.09)	0.00 (0.00)	_				

al. (2008), 0.14 to 0.24 in Guzerat breed by Santos et al. (2013), 0.20 to 0.35 in Holstein cattle by Bignardi et al. (2011) and 0.05 to 0.32 in Sahiwal cattle by Dongre and Gandhi (2014).

Heritability estimates for TDMY were lower in last month (0.15) while highest in third and fourth month of lactation (0.39). The heritability trend was found to follow lactation curve, it had increasing trend during the period of peak yield, but declined slightly at the end of lactation. The heritability estimates during different months of lactation were medium and high, indicating that there is scope of individual selection for genetic improvement for crossbred cattle. Low heritability estimates at the end of lactation might have been due to low milk production, stress of cows from calving in initial phase and insufficiency of energy due to early gestation in terminal phase of lactation responsible for high variation in TDMY.

The additive genetic correlations among different TDs were higher than the phenotypic correlations varied from 0.73 to 0.99 and 0.24 to 0.74, respectively (Table 5). The higher values of genetic correlations were observed between adjacent test-day records in the beginning but slightly lower at the end of lactation. Higher estimates of genetic correlations among TDMY are reported in Holstein as 0.47 to 0.98 (Torshizi et al. 2013). Rekaya et al. (1999), Olori et al. (1999) and Cobuci et al. (2005) also reported high genetic correlation estimates between test days milk yield records using RRM. The phenotypic correlations between test days were moderate to high. The phenotypic correlations had also higher values in adjacent periods but decreased with increasing interval between TD yields. Phenotypic correlations among different test days for TDMY of similar magnitude were reported, viz. 0.24 to 0.81 in Guzerat cattle (Peixoto et al. 2014) and 0.21 to 0.63 (Naserkheil et al. 2016) for TDPY in Iranian Holstein, obtained between last adjacent test day records.

Comparison of breeding values of bulls selected based on Dam's yield (pedigree selection) and bulls selected based on their progeny's yield (progeny testing): The breeding values of sires for TDMY and reliability (from lowest to highest) ranged from –951.77 kg to 1,683.70 kg and 28%

Table 5. Genetic (above diagonal) and phenotypic (below diagonal) correlations among different test days for TDMY using Leg_2

Test days	5	86	169	252	335
5	1.00	0.96± 0.01	0.92± 0.02	0.89± 0.06	0.73± 0.06
86	0.65 ± 0.005	1.00	0.99 ± 0.003	0.95 ± 0.01	0.86± 0.05
169	0.46 ± 0.008	0.74 ± 0.004	1.00	0.98 ± 0.006	0.77± 0.06
252	0.36 ± 0.009	0.61 ± 0.006	0.71 ± 0.004	1.00	0.88± 0.03
335	0.24± 0.01	0.24 ± 0.01	0.48 ± 0.01	0.55 ± 0.007	1.00

to 96%. Out of 172 sires, 72 sires with positive EBVs and 152 sires with greater than 60% reliabilities of EBVs. Daughter's performances of first lactation were compared for top ten and bottom ten bulls selected based on Dam's milk yield (pedigree selection) and bulls selected based on their progeny's yield (progeny testing). Here, only sires with the reliabilities of EBVs >60% were considered for comparison. All second lactation dam's yield were corrected to first lactation yield using modified sender correction factors.

The breeding values for top 10 and bottom 10 progeny tested bulls ranged from 505.23 kg to 1,683.70 kg and -951.77 kg to -509.68 kg for MY (Tables 6 and 7). The differences in daughter's performance of top and bottom progeny tested bulls were compared with pedigree selected bulls. The differences in daughter's performance for top 10 and bottom 10 PS bulls was observed as –17.50 kg while, the differences in daughter's performance for top ten and bottom ten PT bulls was observed as 890.48 kg for MY. The observed differences in daughter's performance between top 10 and bottom 10 were statistically significant for PS bulls and PT bulls. Expected progeny difference (EPD) for MYcalculated based on dam's yield for the top 10 and bottom 10 PS bulls was 2439.56 kg ((Average Dam's MY of top ten bulls - Average Dam's MY of bottom ten bulls) / 2), whereas, the actual progeny difference (APD) for these bulls was –28.47 kg. However, for PT bulls, EBVs is not comparable directly to daughter's yield, so, the EPD for PT bulls was calculated as ((average EBVs for MY of top ten bulls – avg. EBVs for MY of bottom ten bulls) / $2 \times$ h² of trait). The EPD for PT bulls based on EBVs for top ten and bottom ten bulls was 2,820.52 kg whereas the APD for these PT bulls was 890.48 kg. The difference in expected and actual MY of progeny was much higher in PS bulls as compared to PT bulls. The daughter's average yield of bottom 10 PS bulls was higher than that of top 10 PS bulls. If EPDs were calculated based on EBVs of the sire, the difference in EPDs closely represented APDs for PT bulls. So, the pedigree information for EPDs had a poor association with APDs. The progenies of bulls with highest lactation yield of dams are expected to have poor association with EBVs. The present finding indicating that the selection based on progeny's performance (daughter's yield) is more reliable than based on pedigree (dam's performance). Consequently, for accurate selection of young bulls, pedigree index based on EBVs of their parents is suggested to use instead of simple based on dam's performance.

Rank correlation of sires' estimated breeding values for MY: Spearman's rank correlation was estimated to know the correlation between ranks of the both PS and PT bulls. Based on overall reliabilities of estimated BVs, the rank correlation between ranks of all PS and PT bulls were very poor and non-significant, 0.122. Rank correlation remained poor and non-significant (0.142) even when only bulls with EBVs with greater than 60% reliability were considered. Thus, ranking of sire based on less than 60% and greater than 60% reliabilities of EBVs is not much affected. The

Table 6. Comparison MY of daughters of top 10 and bottom 10 PS bulls

Bull No		Top ten I	S sire	S		Bottom ten PS sires						
	Dam's yield	EBVs	Rel. (%)	No. of daughters	Daughters' average milk yield	Bull No.	Dam's yield	EBVs	Rel. (%)	No. of daughters	Daughters' average milk yield	
Top PS 1	8768.26	655.28	78	25	3845.53	Bott PS 1	3082.11	-77.90	84	39	3158.84	
Top_PS_2	7819.11	216.32	80	31	3476.12	Bott PS 2	2929.76	-351.82	72	19	3066.97	
Top_PS_3	7591.45	-270.57	94	104	2627.97	Bott PS 3	2918.37	139.41	63	12	3164.14	
Top_PS_4	7591.45	-142.56	86	47	3292.22	Bott_PS_4	2856.21	525.44	65	12	2949.13	
Top_PS_5	7591.45	-10.21	93	92	2854.69	Bott PS 5	2800.00	-757.36	94	116	2545.83	
Top_PS_6	7591.45	106.59	95	147	2902.64	Bott PS 6	2716.11	343.06	67	14	3742.16	
Top_PS_7	7426.84	580.00	71	18	3778.16	Bott PS 7	2653.07	-23.79	87	46	2780.13	
Top_PS_8	7381.31	-155.59	91	69	2937.82	Bott PS 8	2640.81	89.88	80	30	3500.19	
Top PS 9	7381.31	23.28	94	110	3025.25	Bott PS 9	2495.46	-82.60	63	12	3443.98	
Top PS 10	7164.16	-468.97	95	125	2622.43	Bott PS 10	2423.66	108.11	72	17	3186.45	
Average	7630.68	53.36	88	76.80	3136.28	Average	2751.56	-8.76	75	31.70	3153.78	

Table 7. Comparison of MY of daughters of top 10 and bottom 10 PT bulls

Bull No		Top ten I	T sire	S		Bottom ten PT sires					
	Dam's yield	EBVs	Rel. (%)	No. of daughters	Daughters' average milk yield	Bull No.	Dam's yield	EBVs	Rel. (%)	No. of daughters	Daughters' average milk yield
Top_PT_1	4,570.63	1,683.70	81	27	3,711.00	Bott_PT_1	4,300.00	-509.68	92	79	2,691.16
Top_PT_2	6,065.28	1,019.60	82	31	3,552.60	Bott_PT_2	4,582.89	-520.46	93	96	2,605.43
Top_PT_3	6,684.33	764.18	84	37	3,362.26	Bott_PT_3	4,793.91	-541.03	90	67	2,749.74
Top_PT_4	5,820.99	662.53	84	35	3,194.81	Bott_PT_4	4,304.00	-553.56	95	132	2,564.37
Top_PT_5	8,768.26	655.28	78	25	3,845.53	Bott_PT_5	4,464.68	-591.78	90	61	2,784.68
Top_PT_6	7,426.84	580.00	71	18	3,778.16	Bott_PT_6	4,378.00	-722.38	94	122	2,451.77
Top PT 7	6,831.43	570.73	65	14	4,066.79	Bott PT 7	5,332.40	-733.70	95	153	2,571.72
Top_PT_8	2,856.21	525.44	65	12	2,949.13	Bott_PT_8	4,728.24	-748.74	93	87	2,484.27
Top_PT_9	5,077.60	505.30	94	111	3,061.51	Bott_PT_9	2,800.00	-757.36	94	116	2,545.83
Top_PT_10	3,441.11	505.23	74	18	3,137.40	Bott_PT_10	4,644.00	-951.77	94	122	2,305.47
Average	5,754.27	747.20	78	32.80	3,465.92	Average	4,432.81	-663.05	93	103	2,575.44

present finding indicated that the huge changes are expected in ranking of top ten sires if selected based on dam's performance in place of selected based on progeny performance. Almost 88% for sires changed from the set of top 10 bulls irrespective of R% for MY. High magnitude of change in the sire ranking may lead to change in the genetic gains for both criteria of selection of bulls under large-scale field-based animal breeding programmes. Thus, for genetic improvement, selection and use of PT sires are more promising than sires selected based on their dam's performance.

Random Regression models with lactation curve parameter as Legendre polynomial function were the optimum model among all test day models compared under the study. Amongst various orders of Legendre polynomials of RRM, as the order of LP increased, the efficiency of model also increased. Model with LP of 6th order was found as best fitted model, however, for routine genetic evaluations of MY model with Legendre polynomial of 2nd order is suggested because the contribution to explainable variability for animal effects at higher orders (> 2nd order)

was negligible. The heritability trend for TDMY was found to follow lactation curve, it showed increasing trend up to the period of peak yield during the period of third and fourth (4th) month (0.39), later remained stable in the mid-lactation followed by slight decline (0.15) at the end of lactation (11th month of lactation). The higher values of genetic correlations were observed between adjacent test-day records in the beginning but decreased slightly at the end of lactation. The difference in expected and actual MY of progeny of top and bottom 10 was higher for PS sires as compared to PT sires, indicating that the superiority of dams is not translated in daughters' superiority reliably. Thus, selection of sires based on progeny's performance is more reliable than that based on pedigree (dam's performance) for achieving stable genetic gain. Bull selection based on dam's yield is thus prone to error. The bulls selected based on EBVs will give faster genetic progress, hence all efforts should be made to select replacement bulls based on breeding values instead of dam's yield. It is suggested that standards in India for selection of bulls for frozen semen production may include breeding values of bull as one of its selection criteria for breed improvement programmes.

ACKNOWLEDGEMENTS

We are thankful to the authorities of National Dairy Development Board (NDDB), Anand for providing the progeny testing project data for present study.

REFERENCES

- Anonymous. 2012. National Dairy Plan Phase I, Manual on Progeny Testing Project, Volume IVA, Project Management Unit (located in NDDB).
- Anonymous. 2018. Basic Animal Husbandry and Fisheries Statistics 2018, Govt. of India, Ministry of Agriculture, Department of Animal Husbandry, Dairying and Fisheries, Krishi Bhawan, New Delhi.
- Akaike H. 1973. Information theory and an extension of the maximum likelihood principle. (Eds) Petrov B N, Csaki F. Second international symposium on information theory. AkademiaiKaido', Budapest. Reprinted in Kotz S, Johnson N L (Eds). Breakthroughs in Statistics, Vol. 1. Springer-Ver- lag, New York.
- Akaike H. 1987. Factor analysis and AIC. *Psychometrika* **52**: 317–32.
- Barnston AG. 1992. Correspondence among the correlation, RMSE and Heidke Forecast verification measures, refinement of Heidke score. *Notes and Correspondence* 7: 699–709.
- Behzadi M R B and Mehrpoor Z. 2018. Estimation of genetic parameters of first lactation test-day milk yield using random regression models in Iranian Holstein cows. *Journal of Animal and Plant Sciences* **28**(1): 24–32.
- Biassus I D O, Cobuci J A, Costa C N and Cardoso L L. 2010. Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models. *Revista Brasileira de Zootecnica* **39**(12): 2617–24.
- Bignardi A B, El Faro L, Cardoso V L, Machado P F and Albuquerque L G. 2009. Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil. *Livestock Science* 123: 17.
- Bignardi A B, Faro L E, Torres R A A, Cardoso V L, Machado P F and Albuquerque L G. 2011. Random regression models using different functions to model test-day milk yield of Brazilian Holstein cows. *Genetics and Molecular Research* **10**(4): 3565–75.
- Bignardi A B, Faro L E, Santana M L, Rosa G J M, Cardoso V L, Machado P F and Albuquerque L G. 2012. Bayesian analysis of random regression models using B-splines to model testday milk yield of Holstein cattle in Brazil. *Livestock Science* 150: 401–06.
- Cobuci J A, Euclydes R F, Lopes O S, Costa C N, Torres R A and Pereira C S. 2005. Estimation of genetic parameters for test-day milk yield in Holstein cows using a random regression model. *Genetic Molecular Biology* **28**: 75–83.
- Dongre V B and Gandhi R S. 2014. Genetic and phenotypic parameters of fortnightly test day and first lactation 305-day or less milk yield in Sahiwal cattle. *International Journal of Livestock Research* 4(3): 17–20.
- Dornelles M A, Rorato P R N, Gama L T L, Bondan F C B, Everling D M, Michelotti V T and Feltes G L. 2016. Random regression models using different functions to estimate genetic parameters for milk production in Holstein Friesians. *Ciencia Rural* **46**(9): 1649–55.
- Herrera L G G, Faro L E, Albuquerque L G, Tonhati H and Machado C H C. 2008. Genetic parameters of test-day and

- accumulated 305 day milk yields in first lactation of Gyr cattle. *Revista Brasileira de Zootecnia* **7**(10): 1774–80.
- Jamrozik J and Schaeffer L R. 1997. Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. *Journal of Dairy Science* 80: 762–70.
- Ledic I L, Verneque R D, Faro L E, Tonhati H, Martinez M L, Oliveira M D, Costa C N, Teodoro R L and Fernandes L D. 2002. Genetic evaluation of Gir breed sires for milk production at the control day and 305-days of Lactation. *Revista Brasileira De Zootecnia* 31(5): 1964–72.
- Monalisa D, Gandhi R S, Raja T V, Singh A, and Sachdeva G K. 2014. Genetic studies on monthly test-day milk records in Sahiwal cattle. *Indian Journal of Animal Sciences* **84**(6): 706–08
- Mostert B E, Groeneveld E and Kanfer F H J. 2004. Test day models for production traits in dairy cattle. *South African Journal of Animal Science* **34**(2): 35–38.
- Mrode R A and Thompson R. 2005. Linear models for the prediction of animal breeding value. Second edition, CABI Publication
- Naserkheil M, Ashtiani S R M, Javaremi A N, Son J and Lee D. 2016. Random regression models using Legendre polynomials to estimate genetic parameters for test-day milk protein yield in Iranian Holstein dairy cattle. *Asian Australasian Journal of Animal Science* 29(12): 1682–87.
- Olori V E, Hill W G, Mcguirk B J and Brotherstone S. 1999. Estimating variance components for test day milk records by restricted maximum likelihood with a random regression animal model. *Livestock Science* 61: 53–63.
- Padilha A H, Costa C N, Neto J B, Daltro D S and Cobuci J A. 2017. Selecting random regression models under different minimum number of test day records. *Livestock Science* 199: 69–73
- Peixoto M G C D, Santos D J A, Borquis R R A, Bruneli F A T, Panetto J C C and Tonhati H. 2014. Random regression models to estimate genetic parameters for milk production of Guzerat cows using orthogonal Legendre polynomials. *Pesquisa Agropecuaria Brasileira* **49**(5): 373–83.
- Rekaya R, Carabano M J and Toro M A. 1999. Use of test-day yields for the genetic evaluation of production traits in Holstein Friesian cattle. *Livestock Production Science* **57**: 203–17.
- Santos D J A, Peixoto M G C D, Aspilcueta R R, Verneque R S, Panetto J C C and Tonhati H. 2013. Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (*Bos indicus*) cows. *Genetics and Molecular Research* 12(1): 143–53.
- Schaeffer L R and Dekkers J C M. 1994. Random regressions in animal models for test-day production in dairy cattle. *Proc.* 5th World Congress Genetics Application Livestock Production, Guelph 18: 443.
- Schwarz G. 1978. Estimating the dimension of a model. *Annuals of Statistics* **6**: 461–64.
- Swalve H H. 1995. The effect of test day models on the estimation of genetic parameters and breeding values for dairy yield traits. *Journal of Dairy Science* **78**: 929–38.
- Torshizi M E, Aslamenejad A A, Nassiri M and Malovrh S. 2013. Analysis of test day milk yield by random regression models and evaluation of persistency in Iranian dairy cows. *Iranian Journal of Applied Animal Science* **3**(1): 67–76.
- Wilmink J B M. 1987. Comparison of different methods of predicting 305-day milk yield using means calculated from within-herd lactation curves. *Livestock Production Science* 17: 1–17.