

Association of lactation persistency with genetic variants of bovine growth hormone gene in Indian Sahiwal cows

SHWETA SACHAN*, I D GUPTA, ARCHANA VERMA, A K GUPTA, VINEETH M R and ANSHUMAN KUMAR

ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India

Received: 13 September 2019; Accepted: 3 October 2019

ABSTRACT

The aim of this study was to determine the associations of persistency with genetic variants of bovine growth hormone (bGH) gene in Indian Sahiwal cows. The data pertaining to the monthly test day milk yield (MTDMY) and first lactation length (FLL) of 305 lactating Sahiwal cows over a period of 23 years (1993–2016) were subjected to analysis. Persistency of milk yield was estimated by using test day based ratio method and Wilmink b function. Mean LL was 220.06±8.15 days in all studied Sahiwal cows, however, 276.67±10.25 days in cows with ≥100 days of LL and having 500 kg MY. The peak of milk yields was achieved at third TD of the first lactation. *Macrophage stimulating protein 1 (MspI)* and *Arthrobacter luteus1 (AluI)* restriction endonucleases were used to digest the amplified regions in intron 3 and exon 5, respectively of bGHgene. The bGH*MspI* restriction fragment length polymorphism (RFLP) yielded TT, CT and CC genotypes, whereas bGH-*AluI*RFLP yielded CC, CG and GG genotypes. Significant association was found between first lactation persistency estimated using test day based ratio method and bGH-*MspI* polymorphism. No significant association was found between first lactation persistency and bGH-*AluI* polymorphism. In summary, results of present study revealed that the TT genotype of bGH–*MspI* gene in Sahiwal cows has better lactation persistency than other genotypes.

Keywords: Growth hormone, Lactation persistency, Ratio method, Sahiwal cow, Wilmink function

The persistency of lactation is the ability of lactating animal to maintain a relatively constant milk yield throughout lactation (Strabel *et al.* 2001) or the potential of a cow to continue producing milk at a high level after attaining the peak of lactation (Cole and Null 2009). More persistent lactations are advantageous since they are associated with higher milk yield, lesser health problems and reduce feeding and reproductive costs (Dekkers *et al.* 1997). Many mathematical. models were developed to describe lactation persistency. Among them test day based ratio method and Wilmink model are two of them (Ali and Schaeffer 1987, Wilmink 1987).

The bovine growth hormone (bGH) gene is a member of multiple families having approximately 3396 bp and contains 5 exons which are separated by several introns and assigned with chromosome region 19q26 (Hediger *et al.* 1990). Although, a number of polymorphism were identified in bGH gene, among them 2 polymorphisms located in the intron 3 and exon 5 were found significant for their effects on lactation persistency and milk production traits (Lucy *et al.* 1993). The polymorphism which is digested by *MspI* restriction endonuclease (RE) is located on the intron 3 and the polymorphism in the exon 5 could be digested by *AluI* restriction enzyme (Zhang *et al.* 1993a). Two alleles occur following digestion with *MspI* restriction

*Corresponding author e-mail: shwetagb24@gmail.com

enzymes with T-insertion at +837 position and a C-G transition at +837 position (Lee *et al.* 1994). Two alleles were also found with *Alu*IRE digestion and the found alleles were designated as leucine amino acid (L) and valine amino acid (V).

Significant association of bGH variants with different production traits has been confirmed by various genetic studies. However, association of the effect of the GH gene with lactation persistency in indigenous cattle is not studied. Therefore, this study was designed to investigate the possible association of the bGH gene polymorphism with persistency of lactation in Sahiwal cows, in order to identify potential markers to be used as complementary parameters in the selection of pure-bred Sahiwal cattle with better persistent of lactation.

MATERIALS AND METHODS

Cattle farm and data collection: The data included in this study was collected from the history-cum-pedigree sheets and daily milk recording registers maintained in the data recording section of the Animal Genetics and Breeding Division of National Dairy Research Institute (NDRI), Karnal, India. The data on first lactation production traits of 305 lactating Sahiwal cows over a period of 23 years (1993–2016) were recorded and used in this study. Information regarding animal number, date of calving, sire number, dam number, date of first calving and first lactation

length (FLL) has been considered during data recording. The records of the animals with known pedigree and normal lactation were considered for this study. Culling, disposal in middle of lactation, abortion, stillbirth and other pathological conditions which affected the lactational yield were considered as abnormalities and hence such data were excluded from the analysis. To ensure the normal distribution, the outliers were removed and data within the range of mean±2 SD were only considered for the present study.

Determination of persistency of lactation: Test day based ratio method (Sollknerand Fuchs 1987) and Wilmink mathematical lactation curve model (Wilmink 1987) were used to determine the persistency of lactation. Wilmink model was the estimated slope of the lactation curve after peak milk yield. Percent persistency calculated by test day ratio method is as follow:

Persistency (%) =
$$\frac{\text{Milk yield at later test day}}{\text{Milk yield at earlier test day}} \times 100$$

Mean lactation persistency was calculated as sum of persistency between any two points on the lactation curve having 30 days interval divided by number of intervals.

Persistency by using Wilmink b function was determined by using following model:

$$Yt = a + bt + ce^{-0.05t}$$

where Y, adjusted milk yield on tth day of lactation; a, regression coefficient related to the level of production; b, regression coefficient related to production decrease after peak yield; c, regression coefficient related to production increase towards peak and t is the test day (TD). The value -0.05 is analogous to the approximate day of peak milk yield (Wilmink 1987). Animals reached upto TD6 were only used for persistency determination. Genetic association of persistency of lactation with bGHSNPs was studied using PCR-RFLP method.

Animals and genomic DNA extraction: DNA samples of 305 first lactating Sahiwal cows maintained at Livestock Research Center (LRC) of NDRI, Karnal, India were used in the present study. Peripheral blood samples were collected by jugular venipuncture in the EDTA coated vacutainer tubes (BD, Bioscience, India). Blood samples were stored at -20°C until DNA extraction. Phenolchloroform method, as guided by Sambrook and Russel (2001) with few modifications was used for DNA isolation. The quality and the quantity of DNA were checked by agarose gel electrophoresis (Maxi-Horizontal gel electrophoresis and power pack, GeNei, Bengaluru, India) and nanodrop spectrophotometer (Bio-Rad, India), respectively.

Primers, PCR conditions and genotyping: Primer sequence of MspI and AluI bGH genes were adopted from Satyanarayana et al. (2006) and Mitra et al. (1995), respectively. The set of forward and reverse primer for MSPI were CCCACGGGCAAGAATGAGGC and TGAGGAACTGCAGGGGCCCA respectively. However,

respective primers for *Alu*I were GCTGCTCCTG-AGGGCCCTTCG and GCGGCGGCACTTCATGACCCT. The used primer of *Msp*I and *Alu*I were designed to amplify a 329 and 223 bp fragments, respectively. PCR reactions were performed in a total volume of 25 µl consisting of 0.50 µl (0.10 µM) forward primer, 0.50 µl reverse primer, 13.50 µl PCR master mix (consisted of *Taq* DNA polymerase, dNTPs, MgCl₂ and reaction buffers), 2.0 µl templates DNA (33.33 ng/µl) and 8.50 µl milli Q water. The PCR amplification was performed in Thermal cycler (Bio-Rad PTC-200, India). The PCR cycling profile consisted of pre-denaturation at 95°C for 5 min, 40 cycles of denaturation at 94°C for 30 sec, annealing at 63°C for 30 sec followed by a final extension at 72°C for 10 min.

RFLPs and SNP detection: PCR products were digested in a total volume of 20 µl, containing 10 µl of PCR products, $0.30 \mu l$ of either MspI or AluI, $2 \mu l$ of $10 \times buffer$ and 7.70μl milli Q water at 37°C for 15 h in temperature controlled water bath. NEB cutter and cleaver, two bioinformatics software were utilized to detect the restriction enzyme sites for typing SNPs. Agarose gel (2.5%) was used to check the restricted PCR products. The agarose gels were photographed in the gel documentation system under the UV light for their respective genotypes. The forward and reverse sequences for each PCR fragments were assembled to form complete sequence for the respective region of bGH gene were visualized and edited using Bio Edit software (Burland 2000). Each edited sequence with corresponding reference sequences were performed with Clustal W multiple sequence alignment programme for DNA to identify SNPs (Larkin et al. 2007).

Restriction fragments using the *Msp*I enzyme originated two restriction patterns; 329 bp, corresponding to the (T) allele and 224 and 105 bp corresponding to the (C) allele. The analysis of the restriction fragments using the *Alu*I enzyme originated two restriction patterns; 223 bp, corresponding to the (G) allele and 171 and 52 bp, corresponding to the (C) allele.

Statistical analysis: Genotypic and allelic frequencies were calculated by using gene counting method (Falconer and Mackay 1996).

Genotypic frequency = $\frac{\text{No. of Sahiwal cows with specific genotype}}{\text{Total no. of Sahiwal cows in the study}}$

Allelic frequency of A = AA +
$$\frac{1}{2}$$
AB

Allelic frequency of B = BB +
$$\frac{1}{2}$$
AB

where AA and BB is the genotypic frequency of homozygote and AB is the genotypic frequency of heterozygote.

Association of bGHSNP genotype with persistency of lactation in Sahiwal cow was analyzed using Fixed Model Least Squares Analysis (Harvey 1990). The significant effect of SNP variants on persistency of lactation in Sahiwal cow were analyzed using the following model:

$$Y_{ij} = \mu + G_i + e_{ij}$$

where Y_{ij} , j^{th} observation on persistency of lactation of Sahiwal cow having i^{th} SNP genotypes; μ , overall mean; G_i , effect of i^{th} genotype of SNP and e_{ij} , random error associated with Y_{ij} observation and assumed to be NID (0, $\sigma^2 e$).

RESULTS AND DISCUSSION

Descriptive statistics findings: In the present study, among 305 Sahiwal cows, only 163 cows reached to TD6. Average LL of all 305 studied Sahiwal cows was 220.06±8.15 days. Among them, average LL of 180 cows which completed 100 days of LL and 500 kg milk yield was 276.67±10.25 days. About 58.70% of Sahiwal cows completed 185 days or TD6 of first lactation period while only 36.25% cows reached the standard level of 305 days in milk (DIM; TD10) (Table 1). The peak milk yield was achieved at TD3 (95 DIM) followed by gradual decrease. The daily milk yield in studied Sahiwal cows between TD3 and TD6 averaged 8.12 kg/day.

Table 1. Descriptive statistics of Sahiwal cows

Test day (TD)	Class range (days)	Number of observations	Milk yield (kg/day)	% of cows completing each TD
1	5–35	299	4.86	100.00
2	36-65	289	8.15	92.50
3	66–95	241	8.64	77.50
4	96-125	210	8.47	67.78
5	126-155	196	7.88	63.41
6	156-185	181	7.48	58.70
7	186-215	168	7.17	55.62
8	216-245	148	6.59	48.33
9	246-275	132	6.40	43.25
10	276-305	110	5.64	36.25
11	306–335	86	5.49	30.56

Similar to present findings, Pandey *et al.* (2018) also reported 267 days mean LL in Sahiwal cattle. However, records of higher LL were reported by Verma *et al.* (2018) as 311 days in Sahiwal cattle maintained at LRC of NDRI-Karnal, India. Manoj *et al.* (2013) also reported higher estimates of LL (290.41±6.29 days) in the same herd of Sahiwal cattle may be due to exclusion of lactation records having LL <100 days. Bajwa *et al.* (2004) stated that most of the indigenous cattle were found with average LL below 305 days. Similar to the present study, Dematawewa *et al.* (2007) also estimated higher peak milk yield at 93 DIM during the first lactation. However, early peak milk yield at 57.55 DIM during the first lactation was observed in first lactation Canadian Holsteins (Muir *et al.* 2004).

Lactation persistency estimates: In this study, means lactation persistency estimated using test day based ratio method and Wilmink b function were 87.86% and -7.06, respectively. Test day based ratio method is recent method of lactational persistency determination in dairy animals; therefore, limited information is available. DHI Cow Production Monthly Report (2017) stated that persistency

% estimated by test day based ratio method in Holstein Friesian, Ayrshire, Brown Swiss and Jersey cows during first lactation ranges between 95–98%. Similarly, higher lactation persistency compared to the present study (97 vs. 87.86%) was observed by Widyas *et al.* (2018) in Indonesian Friesian Holstein cows.

This trait was chosen as a phenotypic measure of persistency because of its ease of calculation and moderate heritability (Muir 2004). In accordance to the present findings, Daltro *et al.* (2019) found -7.952 and -12.000 values for Wilmink b function in Gyr and Holstein cows, respectively during first lactation. Otwinowska *et al.* (2016) estimated -0.0378 value of Wilmink b parameter in the first lactation of Polish Holstein-Friesian cows. However, Muir *et al.* (2004) estimated-0.03991 Wilmink b parameter in the first lactation of Canadian Holsteins. Negative value of parameters b showed that the lactation curve presents a typical pattern when fitted by Wilmink model (Macciotta *et al.* 2005).

Genotypic and allelic frequency: The PCR-RFLP results of present study revealed the polymorphism in intron 3 of bGH gene with 2 alleles (C and T) and in exon 5 of bGH gene with 2 alleles (C and G) (Table 2). Similar to the findings of the present study, 2 alleles at GH-MspI and AluI was found by Khatami et al. (2005), Zhou et al. (2005) and Pawar et al. (2007) whereas Ferraz et al. (2006) identified 3 alleles at bGH-AluI locus.

Table 2. Genotypic and allelic frequency of different genotype

RE	Locus	Genotype	Animal no.	Genotypic frequency	Allele	Allelic frequency
MspI	Int3	CC (4) CT (54)	305	0.013 0.177	С	0.095
AluI	Ex 5	TT (247) CC (216)	294	0.809 0.734	T C	0.898 0.862
		CG (75) GG (3)		0.255 0.010	G	0.137

Genotypic and allelic frequencies obtained in the present study agree with Gorbani *et al.* (2009), who reported genotypic frequencies of 0.787, 0.191 and 0.022 for (TT), (CT) and (CC) genotypes, respectively and 0.883 and 0.117 for (T) and (C) alleles in Iranian Holstein cows. Arango *et al.* (2014) reported 0.91 and 0.09 allelic frequencies for respective (T) and (C) alleles and the genotype frequencies were 0.77, 0.20 and 0.03 for (TT), (CT) and (CC) genotypes, respectively in Colombian Holstein cows.

The result of bGH-AluI locus in present study was similar to finding reported by Satyanarayana *et al.* (2006) in Sahiwal and Tharparkar cows. Zhang *et al.* (1993b) observed similar frequency (0.91 for C and 0.09 for G) in a breeding Holstein-Friesian bull population. Results of Sabour and Lin (1996) in Canadian Holstein-Friesian bulls (G: 0.09) also support the GH allele frequency data observed in our study. Ozdemir *et al.* (2018) reported the similar frequencies of the CC, CG and GG genotypes were 0.50,

Table 3. Association of bGH-*Msp*I and bGH-*Alu*I polymorphism with lactation persistency

Locus	Genotype	Mean lactation persistency			
		Test day based ratio method	Wilmink b parameter		
bGH- <i>Msp</i>]	TT I	92.095 ^a ±2.249 (43)	-7.669±0.832 (42)		
	TC	86.410 ^b ±2.949 (25)	-7.043±1.039 (30)		
	CC	86.524 ^{b±} 1.474 (95)	-8.108±0.562 (91)		
bGH-AluI	CC CG	88.083±1.301 (128) 87.886±2.448 (35)	-6.948±0.495 (120) -6.780±0.824 (43)		

0.48 and 0.02, respectively and the frequency of the C allele was 0.74 for the *bGH* gene in 186 studied Holstein cows.

Association analysis of bGH-MspI and bGH-AluI SNPs with persistency of lactation: Significant (P<0.05) association was found between bGH-MspI polymorphism and lactation persistency estimated using test day ratio method (Table 3). Sahiwal cows with TT genotype had significantly (P<0.05) higher lactation persistency than cows with TC and CC genotypes. However, no association among bGH-MspI polymorphism and lactation persistency observed while using Wilmink b function. Accordingly, no significant (P>0.05) association was found between lactation persistency and bGH-AluI polymorphism by using either method.

Mean with different superscript in column differs significantly (P<0.05), Sahiwal cows reached upto TD6 (163) had been considered for association study.

No information available regarding the association of bGH-MspI and bGH-AluI polymorphism with lactation persistency in dairy cows. However, Kovacs et al. (2006) reported that there was no association between lactation persistency and bGH-AluI polymorphism in a Hungarian Holstein-Friesian bull dam population.

In conclusion, the findings of this study revealed that the Sahiwal cows with TT genotype of bGH–*Msp*Igene has better lactation persistency than other genotypes.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge assistance of staff members of Animal Genetics and Breeding Division and Livestock Research Farm, NDRI, Karnal.

REFERENCES

- Ali T E and Schaeffer L R. 1987. Accounting for covariances among test day milk yields in dairy cows. *Canadian Journal Animal Science* 67: 637–44.
- Arango J G, Echeverri J Z and Lopez A H. 2014. Association of the bovine growth hormone gene with Holstein cattle reproductive parameters. *Revista MVZ Cordoba* **19**(3): 4249–58.
- Bajwa I R, Khan M S, Khan M A and Gondal K Z. 2004. Environmental factors affecting milk yield and lactation length in Sahiwal cattle. *Pakistan Veterinary Journal* **24**: 23–27.
- Burland T. 2000. DNASTAR's lasergene sequence analysis software. *Methods in Molecular Biology* **132**: 71–91.

- Cole J B and Null D J. 2009. Genetic evaluation of lactation persistency for five breeds of dairy cattle. *Journal of Dairy Science* 92: 2248–58.
- Daltro D S, Padilha A H, Gama L T, Silva M V G B, Panetto J C C, Machado J D, Neto B J and Cobuci J A. 2019. Heterosis in the components of lactation curves of Girolando cows. *Italian Journal of Animal Science* **18**(1): 267–78.
- Dekkers J C M, Ten Haag J H and Weersink A. 1997. Economic aspects of persistency in dairy cattle. *Livestock Production Science* **53**: 237–52.
- Dematawewa C M B, Pearson R E and Van Raden P M. 2007. Modeling extended lactations of Holsteins. *Journal of Dairy Science* **90**: 3924–36.
- DHI. 2017. Persistency of milk production, Western Canadian Dairy Herd Improvement Services pp. 1–4.
- Falconer D S and Mackay T F C. 1996. *Introduction to Quantitative Genetics*. 4th edn Addison Wesley Longman, Harlow
- Ferraz A L, Bortolossi J C, Curi R A, Ferro M I and Furlan L R. 2006. Identification and characterization of polymorphisms within the 5' flanking region, first exon and part of intron of bovine G H gene. *Journal of Animal Breeding and Genetics* 123: 208–12.
- Gorbani A, Vaez T, Bonyadi M and Amirinia C. 2009. A *MspI* PCR-RFLP within bovine growth hormone gene and its association with sperm quality traits in Iranian Holstein bulls. *African Journal of Biotechnology* **8**(19): 4811–16.
- Harvey W R. 1990. User guide for LSMLMW and MIXMDL package. Mix Model Least Squares and Maximum Likelihood Computer Programme. PC-2 Version Mimeograph, Columbia, Ohio, USA.
- Hediger R, Johnson S E, Barendse W, Drinkwater R D, Moore S S and Hetzel J. 1990. Assignment of the growth hormone gene locus to 19q26-qter in cattle and to 11q25-qter in sheep by *in situ* hybridization. *Genomics* 8: 171–74.
- Khatarni S R, Lazebnvi O E, Maksimenko V F and Sulimova G E. 2005. Association of polymorphisms of the growth hormone and prolactin genes with milk productivity in YarosIavI and black-and-white cattle. *Genetilea* **41**(2): 229.
- Kovacs K, Volgi-csik J, Zsolnai A, Gyorkos I and Fesus L. 2006. Associations between the *Alu*I polymorphism of growth hormone gene and production and reproduction traits in a Hungarian Holstein-Friesian bull dam population. *Archiv Fur Tierzucht, Wilhelm-Stahl-Allee 2, Dummerstorf* **49**(3): 236–49
- Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J and Higgins D G. 2007. Clustal W and Clustal X. Version 2.0. *Bioinformatics* 23: 2947–48.
- Lee B K, Crooker B A, Hansen L B and Chester-Jones H. 1994. Polymorphism in the third intron of somatotropin (bST) gene and its association with selection for milk yield in Holstein cows. *Journal of Animal Science* 72: 316.
- Lucy M C, Hauser S D, Eppard P J, Krivi G G, Clark J H, Bauman D E and Collier R J. 1993. Variants of somatotropin in cattle: Gene frequencies in major dairy breeds and associated milk production. *Domestic Animal Endocrinology* **10**: 325–33.
- Macciotta N P P, Vicario D and Cappio-Borlino A. 2005. Detection of different shapes of lactation curve for milk yield in dairy cattle by empirical mathematical models. *Journal of Dairy Science* 88: 1178–91.
- Manoj M, Gandhi R S, Raja T V, Atul G, Singh A and Sachdeva G K. 2013. Genetic parameters of various first lactation traits

- in Sahiwal cattle. *Indian Journal of Dairy Science* **66**(3): 278–80.
- Mitra A, Schlee P, Balakrishnan C R and Pirchner F. 1995. Polymorphisms at growth hormone and prolactin loci in Indian cattle and buffalo. *Journal of Animal Breeding and Genetics* **112**: 71–74.
- Muir B L, Fatehi J and Schaeffer L R. 2004. Genetic relationships between persistency and reproductive performance in first-lactation Canadian Holsteins. *Journal of Dairy Science* 87: 3029–37.
- Muir B L. 2004. 'Genetic of lactation persistency and relationships with reproductive performance in Holsteins'. PhD Dissertation, University of Guelph, Ontario, Canada.
- Otwinowska-Mindur A and Ptak E. 2016. Factors affecting the shape of lactation curves in Polish Holstein-Friesian cows. *Animal Science Papers and Reports* **34**(4): 373–86.
- Ozdemir M, Kopuzlu S, Topal M *et al.* 2018. Relationships between milk protein polymorphisms and production traits in cattle: a systematic review and meta-analysis. *Archives Animal Breeding* **61**: 197–206.
- Pandey A and Thakur M S. 2018. Different genetic variants' of ás 1-casein gene (csn1s1) and their association with lactation length (days) fat (%) and protein (%). *Journal Entomology and Zoology Studies* **6**(4): 123–25.
- Pawar R S, Tajane K R, Joshi C G, Rank D N and Bramkshtr B P. 2007. Growth hormone gene polymorphism and its association with lactation yield in dairy cattle. *Indian Journal of Animal Science* 77(9): 884–88.
- Sabour M P and Lin C Y. 1996. Association of bGH genetic variants with milk production traits in Holstein cattle. *Animal Genetics* 27: 105.
- Sambrook J and Russell D. 2001. Molecular Cloning: A

- Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
- Satyanarayana R, Gupta I D and Gupta N. 2006. Genotyping of α-Lactoglobulin gene by PCR-RFLP in Sahiwal and Tharparkar cattle breeds. *BMC Genetics* 7: 31.
- Sollkner J and Fuchs W. 1987. A comparison of different measures of persistency with social respect to variation of test-day milk yields. *Livestock Production Science* **16**: 305–19.
- Strabel T, Kopacki W and Szwaczkowski T. 2001. Genetic evaluation of persistency in random regression test day models. *Interbull Bulletin* **27**: 189–92.
- Verma R K, Gupta A K, Ratwan P, Patil C S and Kumar M. 2018. Prediction of lifetime milk production based on first lactation traits in Sahiwal cattle at organized dairy farm. *Haryana Veterinarian* 57(1): 55–58.
- Widyas N, Putra F Y, Nugroho T and Pramono A. 2018. Persistency of milk yield in Indonesian Holstein cows. OP Conference Series: Earth and Environmental Science 142(1): 012005.
- Wilmink J B M. 1987. Adjustment of test-day milk, fat and protein yield for age, season and stage of lactation. *Livestock Production Science* **16**: 335–48.
- Zhang H M, Brown D R, Denise S K and Ax R L. 1993a. PCR-RFLP analysis of the bovine somatotropin gene. *Journal of Animal Science* 71: 2276.
- Zhang H M, Maddock K C, Brown D R, Denise S K and Ax R L. 1993b. BGH gene frequencies in samples of US AI bulls. *Journal of Animal Science* 71: 93.
- Zhou G L, Liu H G, Liu C, Guo S L, Zhu Q and Wu Y H. 2005. Association of genetic polymorphism in GH gene with milk production traits in Beijing Holstein cows. *Journal of Biological Sciences* 30: 595.