Expression of immunogenic genes of *Mycobacterium avium* subsp. *paratuberculosis*

P MANESH KUMAR¹, K VIJAYARANI² AND K KUMANAN³*²

Madras Veterinary College, Chennai, Tamil Nadu 600 007 India

Received: 1 October 2020; Accepted: 31 March 2022

Keywords: Immunogenic genes, Johne’s disease, *Mycobacterium avium* subsp. *paratuberculosis*, Paratuberculosis

Johne’s disease (JD), caused by *Mycobacterium avium* subsp. *paratuberculosis* (MAP), is a chronic inflammatory bowel syndrome in wild and domestic ruminants. JD is of economic importance worldwide and because of its chronic nature, early diagnosis and control has always been challenging. Currently available vaccines do not confer good protection. Similarly, the present day diagnostic tools are unable to detect early, subclinical infections. Moreover, these assays will not be useful in differentiating vaccinated animals from infected animals. To resolve the above issues, recombinant antigen based vaccines and assays could be an alternative in rapid diagnosis and control of JD. MAP codes for various immunogenic proteins, and a 38 kb locus region of MAP considered as the pathogenicity island consisting of mpt operon that is associated with virulence of the organism (Stratmann et al. 2004, Li et al. 2018). The mpt operon codes for mptA, mptB, mptC, mptD, mptE and mptF genes and among these, mptD genes for proteins exposed on the surface of MAP (Heinzmann et al. 2008). Similarly, 35-kDa antigen gene codes for a strongly immunoreactive major membrane protein (MMP) and is associated with its virulence (Banasure et al. 2001, Bannantine et al. 2003). Since these genes could be candidates for developing newer diagnostics and vaccines, we generated recombinant mptD and 35 kDa antigens.

A cattle isolate of MAP recovered in 2007 from Tamil Nadu, India (GenBank number: NZ_CP015495.1) was used. Genomic DNA was isolated by cetyl trimethyl ammonium bromide (CTAB) method. The 35 kDa antigen and mptD gene were amplified by PCR using the following newly designed primer pairs (MptD FP 5’ CAT ATG ACC GCG ACC AGC AGC A 3’; MptD RP 3’ GAA TTC CGC GGC CGC CT 5’; MptD 35 kDa FP 5’ CAT ATG GCG ACC CGC TTT GTG 3’; MptD 35 kDa RP 3’ GAA TTC CTG GCC CAG CGG TTT 5’).

mptD gene was amplified with an initial denaturation at 94°C for 5 min followed by 35 cycles of denaturation (94°C for 45 sec), annealing (52°C for 45 sec), extension (72°C for 1 min) and a final extension of 72°C for 7 min. Likewise, 35 kDa antigen gene was also amplified with the same conditions except that annealing was at 50°C for 45 sec. Amplified PCR products of both the genes were cloned into pTZ57R/T cloning vector. Recombinant plasmids that were found positive by colony PCR were subjected to restriction enzyme (RE) digestion using EcoRI and Ndel to release the insert in order to confirm as recombinant clones for subsequent transformation into expression host.

Recombinant vector was subjected to RE digestion with EcoRI and Ndel, and the released insert was purified and subsequently used for cloning. pET22b vector was digested with EcoRI and Ndel, and the digested vector was gel purified. Further, the mptD and 35 kDa antigen genes were cloned into pET22b vector and transformed into DH5a cells. Recombinant plasmids identified by RE digestion were again digested using EcoRI and Ndel to confirm the recombinants. The rpET-22b/mptD and rpET-22b/35kDa vectors containing the mptD and 35 kDa genes respectively were isolated from *E. coli* DH5a host cells and transformed into BL21 (DE3) host system. BL21 (DE3) cells containing recombinant rpET-22b/mptD and rpET-22b/35kDa were induced with 1 mM IPTG (Isopropyl β-d-1 thiogalactopyranoside) and expression was checked by SDS-PAGE.

Good recombinant antigens can be used as a double edged weapon both as diagnostic and protective antigen, and the search for such antigens continues (Li et al. 2018). These recombinant proteins can be of use in DIVA (Differentiating Infected from Vaccinated Animals) strategies. In this context, we cloned and expressed two important proteins of MAP namely, mptD and 35 kDa antigen which have been reported to be associated with virulence and hence could be of diagnostic and or immunogenic importance (Banasure et al. 2001, Bannantine et al. 2003, Stratmann et al. 2004). The A260/A280 ratio of isolated MAP genomic DNA was found to be between 1.7 and 1.8 indicating the purity of the DNA as expected. mptD and 35 kDa antigen genes were amplified with the designed primers resulting in the amplification of 630 bp and 830 bp products, respectively. PCR amplified mptD and 35 kDa antigen genes were cloned separately into pTZ57R/T and then transformed into *E. coli* DH5a cells. Plasmid DNA extracted from the transformed colonies were subjected to restriction enzyme digestion which resulted in 630bp and 830bp inserts of

¹Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu.
² Corresponding author email: kumananrani@gmail.com
and 35 kDa antigen genes. Recombinant plasmids rpET-22b/35kDa and rpET-22b/mptD were subjected to RE digestion with EcoRI and NdeI. RE digestion released inserts of about 630 bp and 830 bp from rpET-22b/mptD and rpET-22b/35kDa, respectively (Figs 1, 2).

Expression of recombinant proteins was maximum at 4 h after IPTG induction (Figs 3 and 4). Recombinant proteins with immunogenic potential can be used as candidates for developing different diagnostic assays or vaccines against JD. mpt proteins are expressed on the mycobacterial cell wall surface and reported to be associated with the virulence of the organism. Moreover, mptD codes for proteins exposed on the surface of MAP during infection (Heinzmann et al. 2008). Mpt operon clones of M. bovis BCG were found to reduce the amplification of MAP significantly in mice. Similarly, 35 kDa antigen gene codes for a strongly immunoreactive MMP that plays a role in invasion of epithelial cells and associated with the virulence of the organism (Banasure et al. 2001, Bannantine et al. 2003). Earlier work on the 35 kDa antigen protein had indicated that p35 recombinant protein has the potential for use in the serodiagnosis of animals with JD (El-Zaatari et al. 1996).
As these genes are reported to possess immunogenic properties, surface expressed, and associated with virulence of the organism, they could be of use in generating recombinant antigens of diagnostic value (Stratmann et al. 2006). The major issue in the prevention and control of JD is the early diagnosis of sub-clinically infected animals. MAP is a slow growing pathogen and subclinically infected animals do not show the symptoms until several months of infection, but still will be excreting the pathogen and contaminating the environment. In this scenario, the need of the hour is a good antigen which can detect early infections. Furthermore, immunogenic recombinant antigens could be of use in developing a vaccine which apart from being protective, could also aid in differentiating vaccinated from infected animals. In this context, this study has generated recombinant mptD and 35 kDa antigens which might open up the avenue for the development of newer diagnostics and vaccine candidates for MAP. Having expressed these two important proteins, it is now possible for us to explore the possibilities of testing these recombinant antigens either as diagnostic or immunogenic antigens which could be of use in the early diagnosis and control of MAP infections.

SUMMARY

Johne’s disease is an economically important disease caused by Mycobacterium avium subsp. paratuberculosis (MAP). Continuous efforts are being made to identify MAP genes with antigenic and immunogenic capabilities which may serve as vaccine candidates and diagnostic antigens. mptD and 35 kDa antigen genes of MAP amplified by polymerase chain reaction resulted in 630 bp and 830 bp products respectively. Both mptD and 35 kDa antigen genes were cloned into pTZ57R/T cloning vector, and subsequently subcloned into pET22b and expressed in BL21 (DE3) host system. The expressed recombinant antigens could be tested in diagnostic assays and might open up the avenue for the development of newer diagnostics and vaccine candidates for Johne’s disease.

ACKNOWLEDGEMENTS

The authors thank the Department of Biotechnology, Government of India, New Delhi for partly supporting this work. The authors also thank the Dean, FBS, Tamil Nadu Veterinary and Animal Sciences University, Chennai for the facilities.

REFERENCES

