Retrospective study on occurrence of tick borne haemoparasitic diseases in dairy animals of eastern Haryana

VANDNA BHANOT

Lala Lajpat Rai University of Veterinary and Animal Sciences, Haryana 125 011 India

Received: 2 October 2019; Accepted: 28 February 2020

ABSTRACT

Tick borne haemoparasitic diseases (THBDs) account for substantial losses in terms of decreased working capacity, growth and productivity of cattle. The occurrence of TBHDs in dairy animals of eastern Haryana was studied by screening 3,200 blood samples during the period of July 2014 to June 2019. The examination of stained blood smears from pyretic cross bred cows (2,339) and buffaloes (861) revealed significantly higher infection in cows (50.5%) than buffaloes (0.6%). Among the haemoprotozoan diseases, the occurrence of theileriosis in pyretic dairy animals was found to be high (32.6%), followed by anaplasmosis (2.4%) and babesiosis (2.0%). TBHDs were found most prevalent in summers (42.4%), followed by rainy season (38.3%) and least in winters (27.5%). Low Hb and TEC levels and increase in TLC count was noted in TBHDs affected animal as compared to healthy group. Year-wise, among haemoparasitic infection, particularly Theileriosis was higher during 2014–15 followed by decline in 2015–16 and later revealed increasing percentage of haemoparasitic infection in dairy animals every year.

Keywords: Anaplasmosis, Babesia, Haemoparasitic infection, Occurrence, Theileria

MATERIALS AND METHODS

A total of 3,200 (2,339 cattle and 861 buffalo) blood samples in anticoagulant vial from pyretic dairy animals from in and around Ambala presented at Disease investigation laboratory from July 2014 to June 2019 were examined. Blood smears were prepared on clean glass slides and stained with Giemsa stain by the standard technique. Smears were then fixed with methanol and stained with Giemsa’s stain and examined under microscope (100 ×) with immersion oil for the presence of haemoprotozoan infections. The haemoprototozoan were identified to species level as per morphological characters described by Soulsby (1982). The results of haematological examination were compiled and analysed for a period of five years. The values with reference of haematological parameters (Hb, TEC and TLC) were compared between healthy (n=10) and affected groups (n=20). District Ambala is situated on the north eastern rim of the state of Haryana. It lies at 27–39°–45′ north latitude and 74–33°–52′ east longitude. Ambala has tropical as well as semi-arid climate. The seasons were broadly classified into winter (December, January, February), summer (April, May, June), rainy (July, August, September) and spring/autumn (October, November, March).
RESULTS AND DISCUSSION

The study was conducted to notice the overall and seasonal occurrence of tick borne haemoprotozoan infection in dairy animals over a period of five years. Microscopic examination of 3,200 blood smears from dairy animals revealed 1,187 (37%) blood samples positive for blood parasites. The examination of Giemsa’s stained blood smears (Fig. 1) from pyretic cross bred cows (2,339) and buffaloes (861) revealed significantly higher infection in cows (50.5%) than buffaloes (0.6%). Among the haemoprotozoan diseases, out of 861 buffalo blood samples examined anaplasmosis (0.23%) and babesiosis (0.34%) was noticed which was less as compared to crossbred cattle.

The buffaloes have usually been recorded with lower infection of haemoprotozoa than cross-bred cattle from Gujarat (Vohra et al. 2012). Previous studies from cross-bred cows of Northern India including Haryana (Yadav et al. 1985, Chaudhri et al. 2013), Punjab (Aulakh et al. 2005) and Himachal Pradesh (Jithendaran 1997), bovine calves of semi-arid region from Rajasthan (Godara et al. 2010), cattle from Northern Kerala (Nair et al. 2011) and crossbred cattle and buffaloes of Kaira and Anand districts of Gujarat (Vohra et al. 2012) showed that TBHDs are extensively prevalent in large population of dairy animals and thus adversely affect milk production to a larger extent. However, variation in geo-climatic condition, breed, and exposure of vectors and age of the animals might contribute to variable prevalence of haemoprotozoan diseases in the study areas (Muhanguzi et al. 2010). Amid the haemoprotozoan diseases, the occurrence of theileriosis in crossbred cattle was found to be high (44.6%), followed by anaplasmosis (3.4%) and babesiosis (2.6%). Chaudhri et al. (2013) and Ganguly et al. (2017), also recorded significantly higher infection of Theileriosis among haemoprotozoan diseases in pyretic cows of eastern Haryana. Theileriosis has been reported from various geographical regions of the country and recorded as 21.1% in Tamil Nadu (Anandan et al. 1989), 16% in Northern Kerala (Nair et al. 2011), 17.7% in Karnataka (Muraleedharan et al. 1994), 45.4% in Dehradun, Uttarakhand (Kohli et al. 2014) and 4.86% in Punjab (Mahajan et al. 2013) and fatal in nature. Haemoprotozoan infection, particularly *Theileria* spp. infection was higher during 2014–15 followed by decline in 2015–16 and later revealed increasing percentage of haemoparasitic infection in dairy animals every year as also reported by Ganguly et al. (2017).

There is a distinguished seasonal variation with occurrence of haemoprotozoan infection. Notably higher percentage of haemoparasitic diseases was observed in summer (42.4%) followed by rainy and least in winter (27.5%). Further analysis of seasonal occurrence (Table 1) of haemoprotozoan diseases among cross bred cattle revealed of higher occurrence of *T. annulata* in summer (46.9%) and rainy (45%) season compared to winter (38.9%).

Velusamy et al. (2014) also reported theileriosis was found to be significantly high during summer (14.4%), followed by moderate in monsoon (13.8%) and less in fair seasons (11.5%). The present study is in accordance with the report of Chakraborty U (1993), from Ranchi, Bihar a

<table>
<thead>
<tr>
<th>Animals exam. spp.</th>
<th>Rainy</th>
<th>Spring/Autumn</th>
<th>Winter</th>
<th>Summer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. tested</td>
<td>932</td>
<td>374</td>
<td>252</td>
<td>781</td>
</tr>
<tr>
<td>T. annulata</td>
<td>420 (45%)</td>
<td>160 (42.8%)</td>
<td>98 (38.9%)</td>
<td>366 (46.9%)</td>
</tr>
<tr>
<td>B. bigemina</td>
<td>16 (1.7%)</td>
<td>8 (2.1%)</td>
<td>4 (1.6%)</td>
<td>34 (4.4%)</td>
</tr>
<tr>
<td>A. marginale</td>
<td>31 (3.3%)</td>
<td>12 (3.2%)</td>
<td>7 (2.8%)</td>
<td>26 (3.3%)</td>
</tr>
<tr>
<td>Buffalo</td>
<td>291</td>
<td>200</td>
<td>145</td>
<td>225</td>
</tr>
<tr>
<td>No. tested</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T. annulata</td>
<td>1 (0.3%)</td>
<td>1 (0.5%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B. bigemina</td>
<td>1 (0.3%)</td>
<td>1 (0.5%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. marginale</td>
<td>0</td>
<td>13 (2.3%)</td>
<td>7 (1.8%)</td>
<td>26 (3.3%)</td>
</tr>
<tr>
<td>Total</td>
<td>1,223</td>
<td>574</td>
<td>397</td>
<td>1,006</td>
</tr>
<tr>
<td>T. annulata</td>
<td>420 (34.3%)</td>
<td>160 (27.9%)</td>
<td>98 (24.7%)</td>
<td>366 (36.4%)</td>
</tr>
<tr>
<td>B. bigemina</td>
<td>17 (1.4%)</td>
<td>9 (1.6%)</td>
<td>4 (1%)</td>
<td>35 (3.5%)</td>
</tr>
<tr>
<td>A. marginale</td>
<td>32 (0.26%)</td>
<td>13 (2.3%)</td>
<td>7 (1.8%)</td>
<td>26 (2.6%)</td>
</tr>
</tbody>
</table>

Table 1. Seasonal occurrence of tick borne haemoprotozoan infections in dairy animals of eastern Haryana (July, 2014 to June, 2019)
high prevalence of theileriosis was observed during summer (17.64%), followed by rainy (7.32%) and less in winter (5%). In contradiction to our findings, there are few reports (Radostitis et al. 1994, Roy et al. 2004 and Vahora et al. 2012) of higher prevalence of theileriosis during monsoon season. Ganguly et al. (2017) also reported significantly higher prevalence of T. annulata was recorded in rainy (37.26%) and summer (32.49%) and less in winter (26.61%). B. bigemina and A. marginale infection was also observed highest during summer season and least in winter season (Table 1). High prevalence can be correlated to the high activity of their tick vectors during summer and rainy seasons (Sangwan et al. 1995, Anandan et al. 2009 and Vohra et al. 2012).

The values with reference of haematological parameters Mean±S.E. (Hb, TEC ×10⁶ and TLC×10³) were compared between healthy and affected groups. Low Hb (6.28±0.341) and TEC (3.94±0.326) levels and increase in TLC (10.185±0.503) count as compared to healthy animals (Hb-11.15±0.3727; TEC- 65±0.317; TLC- 6.2±0.448) was noted.

This persistent loss of blood caused by permanent blood sucking ticks leading to anaemia due to lower levels of Hb, PCV, TEC and TLC count (Durai et al. 2008) and replication of piroplasms in infected erythrocytes resulting lysis of erythrocytes leading to erythropagocytosis (Modi et al. 2015). The decreased erythrocyte counts could also be attributed to increased levels of activated complement products (Omer et al. 2003, Khan et al. 2011). According to Mbassa et al. (1994) these changes in haemogram occur due to anaemia which takes place due to toxic metabolites of tick-borne haemoproteozoa which have adverse effect on bone marrow as they intervene with the process of erythropoiesis. The alteration in haematological parameters observed during the infection are in agreement with the findings of Ganguly et al. (2017).

ACKNOWLEDGEMENTS

The author expresses her sincere sense of gratitude to the Worthy Vice Chancellor, LUVAS, Hisar, for providing research facilities and financial support.

REFERENCES

