

Indian Journal of Animal Sciences 90 (9): 1250–1254, September 2020/Article

Effects of selective extenders on buffalo semen quality at physical and molecular level

SOURAV BISWAS NAYAN^{1⊠}, KHONDOKER MOAZZEM HOSSAIN², MD. FAIZUL HOSSAIN MIRA³, GAUTAM KUMAR DEB³, MD. RAIHANUL HOQUE⁴, S M JAHANGIR HOSSAIN³ and KAZI MOHAMMED DIDARUL ISLAM²

Bangladesh Livestock Research Institute, Savar, Dhaka-1341 Bangladesh

Received: 26 November 2019; Accepted: 1 January 2020

ABSTRACT

This study was designed to investigate the effects of selective extenders on buffalo semen quality at physical and molecular level for screening a suitable extender for cryopreservation of buffalo semen. Semen was collected from four indigenous buffalo bulls using artificial vagina method twice in a week. After initial evaluation, each semen sample was divided into three aliquots and diluted with three different extenders (Tris-egg-yolk extender, Soya-milk extender and Andromed extender). After initial quality assessment the semen was frozen with liquid nitrogen vapor with a programmable bio freezer and finally stored at -196° C liquid nitrogen. Post thaw semen quality evaluation was performed after 24 h of storage. The expression of aldoketoreductase family 1 member B1 (AKR1B1) and A-kinase anchoring proteins (AKAP4) transcripts in fresh and three extenders groups (post thaw) of buffalo sperm were observed. The total, progressive, static and slow motility and hypoosmotic swelling (HOS) reactivity of pre-freeze and post thaw sperms were varied significantly among Andromed, Tris-egg-yolk and Soyamilk based extender. Similar variations were also observed for different kinetic parameters of pre-freeze and post thaw buffalo sperm. However, no significant variations were found in AKR1B1 and AKAP4 genes expression among Andromed, Tris-egg-yolk and Soya milk extender groups considering pre-freeze and post thaw sperms characteristics. It may be concluded that, Tris-egg-yolk semen extender might be used for cryopreservation of buffalo semen at efficiency level similar as commercially available semen extender like Andromed.

Keywords: AKAP4, AKR1B1, Buffalo semen, Cryopreservation, Extender

The global buffalo population is 185.29 million where Asian buffalo dominates the world population, representing 97% (179.75 million) of the total buffalo population (Singh et al. 2018). However, in Bangladesh, the total buffalo population is only 1.457 million (Hamid et al. 2016). One of the major constraints of this phenomenon is lack of a good buffalo semen cryopreservation system. The cryopreservation of semen is considered as a major tool for the propagation of superior germplasm with desired genetic traits. Moreover, the quality of frozen semen determines the success of Artificial insemination (AI) program but the success of artificial insemination (AI) in buffalo is still low (Herbowo et al. 2019). Though semen cryopreservation is routinely practicing for cattle, it is not common for buffalo in Bangladesh. Therefore, development of a suitable semen cryopreservation protocol is a mandatory to produce more F₁ crossbred heifers at field level. Various studies have revealed that cryopreservation induces capacitation like changes

Present address: ¹NPI University of Bangladesh; ²Khulna University, Bangladesh; ³Bangladesh Livestock Research Institute; ⁴Bangladesh Agricultural Univesity. [™]Corresponding author e-mail: sourav.ku.bd @gmail.com

(cryocapacitation) in spermatozoa (Kumar and Atreja 2011). Semen cryopreservation efficiency largely depends on semen extender and cryoprotectant used in the extenders among others (Foote 1970). Different types of semen extenders available for cryopreservation of semen. However, controversial results were observed in their efficiency of semen cryopreservation. Latest reports have indicated the presence and expression of mRNA transcripts in the fresh and frozen spermatozoa (Ostermeier et al. 2005) in the light of their prognostic and diagnostic significance. Thus, analysis of the mRNA in the semen of farm animals is highly warranted and proposed in the studies on cryopreserved spermatozoa. There are different mRNA populations in mature sperm that are highly associated with sperm motility, capacitation, and other parameters (Lambard et al. 2004). Presence of different transcript levels in sperm of different motility has been revealed independently (Platts et al. 2007 and Steger et al. 2008). The mRNA expression of selected buffalo genes responsible for sperm motility and fertility will definitely help to reach a conclusion about the semen quality as well as to find out an effective extender for the cryopreservation of buffalo semen.

MATERIALS AND METHODS

Animal Selection and management: The study was conducted on semen of four healthy indigenous buffalo bulls (Bubalus bubalis). The bulls were maintained uniform standard nutritional and managerial practices at the Buffalo Research Farm of Bangladesh Livestock Research Institute, Savar, Dhaka, Bangladesh which is located in a sub-tropical region.

Semen collection and evaluation: Selected bulls were under twice in a week semen collection schedule using an artificial vagina (Walton 1945). Semen collections were made in the early morning between 7.30 h and 8.30 h from March to May. After collection, the ejaculates were immediately transferred in to a water bath at around 37°C and evaluated for gross quality, motility, morphology and kinematics using a Computer Assisted Semen Analysis System (Hamilton Throne, IVOS II). Fresh semen drop was diluted with saline solution (NaCl) in a ratio of 1:100 and then put into 20 micron standard count 4 chambered leja slide for analysis.

Preparation of extenders: Extenders were prepared according to the compositions described in the Table 1. Trisegg yolk extender was prepared according to the Chaudhari et al. (2015) and soya milk was extracted in the laboratory according to El-Keraby et al. (2010).

Freezing Protocol: After mixing with the extenders, diluted semen was placed in a cold handling cabinet (Minitube, Germany) for 4 hours at 4°C for equilibration. The semen was diluted with the extender to give a sperm concentration of 20 million/dose. The semen samples were filled and sealed in standard printed straws (0.25 ml) using an automated sealing-filling machine (Minitube GmBH, Germany). After equilibration, freezing of straws was carried out in liquid nitrogen (LN₂) vapour using a programmable bio-freezer (Minitube, Germany). The straws

were then plunged in LN₂ (-196°C) for overnight storage.

Post Thaw evaluation of semen: Semen straws were thawed next day in a water bath at 37°C for 30 seconds and the sperm quality was further evaluated using the same protocol as described for fresh semen.

Hypoosmotic swelling (HOS) test: The plasma membrane integrity of spermatozoa was assessed using HOS test employing 150 mOs/L solutions of sodium citrate and fructose with 30 minutes of incubation at 37°C.

Gene expression analysis: Total RNA was extracted from sperm using the Maxwell®16 LEV simply RNA Cells Kit (Cat # AS1270) according to the manufacturer's guidelines and using Maxwell® 16 Instrument (Cat # AS2000). RNA samples were quantified using nanodrop instrument (Thermo Fisher Scientific, Wilmington, USA). RNA samples showing 260 to 280 ratio of 1.8–2 were considered for cDNA preparation. The GoScriptTM Reverse Transcription System was used for cDNA preparation. The cDNA was prepared as per manufacturers guidelines. Primer sequences (Table 2) were selected from Deb (2011). All primer pairs were checked for expected product size by electrophoresis on 1.5% agarose gel in 0.5x Tris-borate-EDTA buffer (45-mM Tris base, 45-mM boric acid, 1-mM EDTA; pH 8.0) containing 0.5 mg/mL ethidium bromide at least twice during the experiment. The qPCR was performed according to Deb (2011)in triplicates in a 7500 Fast instrument (Applied Biosystems, Japan) using a 20 µL reaction mixture containing 0.2-mM of each bovine-specific primer (0.5 µL forward and 0.5 µL reverse primers), 10 µl of SYBR green master mix (Maxima SYBR Green/ Fluorescein qPCR Master Mix, Thermo Fisher Scientific), $2.0~\mu L$ of diluted cDNA sample and 7 μl of nuclease free water. A negative control (NTC) was used for each gene. PCR products that exhibited only a single fusion temperature, which confirms a unique PCR product, were retained for further quantitative analysis. The target genes

Table 1. Composition of different semen extenders

Tris-egg yolk-citrate extender components		Soya milk extender components		Andromed extender
Tris (w/v)	3.028 g	Tris (w/v)	3.028 g	20% Andromed and 80% Mili Q Water as per manufacturers guidelines
Citric acid (w/v)	1.678 g	Citric acid (w/v)	1.678 g	
Fructose (w/v)	1.200 g	Fructose (w/v)	1.200 g	
Egg yolk (v/v)	20.0%	Soy milk (v/v)	25.0%	
Glycerol (v/v)	6.4%	Glycerol (v/v)	6.4%	
Streptomycin	660 µl	Streptomycin	660 µl	

Table 2. Primers used in gene expression studies

Gene	Primer sequence		
	Forward	Reverse	
GAPDH (control)	5'-AGGTCGGAGTGAACGGATTC-3'	5'-GGAAGATGGTGATGGCCTTT-3'	
AKR1B1	5'-TGCAACCCAAATACTCTTTT-3'	5'-AAAAGCCTAGCTGAAAGGAT-3'	
AKap-4	5'-TAGTTACGAAGCTGGGATGT-3'	5'-CTTCTCCAGTTGTCCATCAT-3'	

Table 3. Effect of different semen extenders on motility parameters (mean±SE) of buffalo sperms

NAYAN ET AL.

Freezing stage	Types of extender	Motility (%)					
		Total	Progressive	Static	Slow		
Fresh semen	_	92.9±0.3	74.6±2.8	7.14±0.3	1.9±0.40		
Pre-freeeze	Andromed	$77.1^{a}\pm1.0$	$59.8^{a}\pm1.0$	$22.94^{a}\pm1.0$	2.1±0.40		
	Tris-egg-yolk	$72.3^{b}\pm0.6$	$53.66^{b} \pm 1.3$	$27.7^{b} \pm 0.6$	2.32±0.40		
	Soya milk	$65.3^{\circ}\pm1.3$	$48.70^{\circ} \pm 1.2$	$34.7^{c} \pm 1.3$	3.18±0.49		
Post-thaw	Andromed	$52.3^{p}\pm1.1$	$47.42^{p}\pm1.3$	$47.7^{p}\pm1.1$	$2.18^{p}\pm1.12$		
	Tris-egg-yolk	46.0 ^q ±1.5	$39.82^{q} \pm 0.5$	53.1 ^q ±0.7	$2.70^{p}\pm0.18$		
	Soya milk	$33.5^{r} \pm 0.7$	$27.12^{r} \pm 0.5$	66.5°±0.7	4.36 ^r ±0.70		

^{*}n=20. Means bearing different superscripts among extenders at pre-freeze (a,b,c) and post-thaw (p, q, r) stage differ significantly (P<0.01).

were quantified by the $\Delta\Delta C$ (t) method. Normalization was performed against *GAPDH* reference gene. The mean of minimum three biological replicates was used for statistical analysis.

Artificial insemination: Cryopreserved semen straws were used for artificial insemination (AI) of naturally estrus buffalo. All the animal were Bangladeshi indigenous buffalo aged between 3.5–4.5 years with body weight between 370–395 kg and they were at their second parity averagely and at the postpartum stage all of them were at sound health condition. AI was done once after detection of heat following general procedure of AI. Pregnancy was diagnosed after 60 days by rectal palpation.

Data analysis: Data were analyzed by one way ANOVA and were presented as mean±SE.

RESULTS AND DISCUSSION

Post thaw motility: The total, progressive, static and slow motility of pre-freeze and post thaw sperms were varied significantly (P<0.01) among Andromed, Tris-egg-yolk extender and Soya-milk extender (Table 3). In general, motility parameters were significantly higher in semen diluted with Andromed extender compared to Tris-egg-yolk extender and Soya-milk extenders at all refrigeration storage intervals. The findings of the present study are in agreement with Meena et al. (2010) who also found higher sperm motility and viability in Tris-egg yolk based extender than Soybean based extender. Pre-freeze total and progressive motility and post-thaw total and progressive motility in case of tris-egg yolk extender are comparable with the findings of Akhter et al. (2011), Sing et al. (2013), Chaudhari et al. (2015), and Kumar et al. (2016). The findings of this study regarding motility parameters are also comparable with the reports of Singh et al. (2012), Singh et al. (2013) and Rehman et al. (2014). In case of Soya milk extender, motility parameters were lowest. Poor efficiency in case of soya milk extender was also reported in previous studies (Dhami et al. 1993, Rana et al. 2003). However, some researchers reported superiority of soya milk extender over egg yolk extender on bovine semen preservation (Thun et al. 2002, Aires et al. 2003, Stradaioli et al. 2007, Cresilho et al. 2012).

Table 4. Effects of selective extenders on plasma membrane integrity of buffalo sperm (mean±SE)

Freezing stage	Extender	HOS reactive sperm (%)
Fresh		72.32±0.24
Pre-freeze	Andromed Tris-egg-yolk Soya milk	63.23 ^a ±0.32 60.42 ^b ±0.42 58.65 ^c ±0.37
Post-thaw	Andromed Tris-egg-yolk Soya milk	46.81 ^a ±0.76 43.32 ^b ±0.82 39. 05 ^c ±0.84

Means bearing different superscripts among extenders at prefreeze and post-thaw (a,b,c) stage differ significantly (P<0.01).

Sperm membrane integrity: The HOS reactive sperm is a clear indication of plasma membrane integrity of sperm as well an indication that sperm is biochemically and functionally active. At pre-freeze and post-thaw stages, sperm plasma membrane integrity among three extenders groups was lower compared to fresh stage (Table 4). Sperm Plasma membrane integrity among three extenders groups at pre-freeze and post-thaw stages differ significantly (P<0.01). Membrane integrity was recorded higher in case of Andromed extender both at pre-freeze and post-thaw stage. Sperm Plasma membrane integrity in case of Trisegg-yolk extender was almost similar to Andromed extender group. Plasma membrane integrity observed in this study are comparable with the results obtained by Akhter *et al.* (2011), Chaudhari *et al.* (2015) and El-Sisy *et al.* (2016).

Sperm kinematics: Results showed significant variations (P<0.01) for different sperm kinematic parameters among Andromed, Tris-egg-yolk extender and Soya-milk extenders as shown in Table 5. Almost all of the values of kinematic parameters were recorded higher in case of andromed extender and these values in case of tris-egg-yolk extender were very close to it.

Gene expression: The expression of aldo-ketoreductase family 1 member B1 (AKR1B1) and A-kinase anchoring proteins (AKAP4) transcripts in fresh and three extenders groups (post thaw) of buffalo sperm has been shown in Table 6. No significant variations were observed in AKR1B1 and AKAP4 genes expression among andromed,

Table 5. Effect of different extenders on kinematic parameters (mean±SE) of fresh and post thawed buffalo sperms

FreezingStage	Types of extender	VAP (µm/s)	VSL (μm/s)	VCL (µm/s)	STR (%)	LIN (%)	ALHμm	BCFHz
Fresh Post-thaw	– Andromed Egg yolk Soya milk	98.7±0.7 84.7 ^a ±0.5 82.0 ^b ±0.5 63.2 ^c ±0.7	79.7±0.7 68.7 ^a ±0.7 66.5 ^b ±0.5 58.0 ^c ±0.9	140.8±0.7 139.8±0.7 138.6±0.9 139.3±0.9	88.9±0.8 85.3 ^a ±0.7 82.4 ^b ±0.6 67.9 ^c ±0.9	57.9±0.4 54.2 ^a ±0.5 53.0 ^a ±0.6 46.9 ^b ±0.6	7.4±0.6 7.0±0.5 7.0±0.3 6.6±0.4	27.9±0.6 26.2 ^a ±0.5 26.1 ^a ±0.4 19.4 ^b ±0.5

VAP, average path velocity; VSL, straight line velocity; VCL, curvilinear velocity; STR, straightness; LIN, linearity; ALH, Amplitude of lateral head displacement and BCF, beat cross frequency. Means bearing different superscripts (a,b,c) among extenders at post-thaw stage differ significantly (P<0.01).

tris-egg -yolk and soya milk extenders groups. The AKR1B1 transcript determines the fate of the embryo through the involvement in apoptic pathway. Moreover, expression of AKR1B1 in bovine blastocysts reliably predicts implantation, early embryo loss/resorption and normal calf delivery (El-Sayed et al. 2006). It is also involved in pregnancy failure through metabolism of progesterone and synthesis of prostaglandin F2 α (PGF2 α) in the bovine uterine endometrium (Gomez et al. 2009). Low expression of the AKR1B1 genes may indicate improved embryo quality (Deb et al. 2011). AKAP4 is the major protein in the fibrous sheath and is the product of an X-linked gene (Moss et al. 1997) expressed only in spermatids (Fulcher et al. 1995) and responsible for the progressive motility of the sperm and thereby fertility (Miki et al. 2002). Its function is also associated with semen freezability (Yeste 2016 and Chen et al. 2014).

Artificial insemination: Conception rates following AI at BLRI Buffalo Research Farm were higher in Andromed (88.89%) and Tris- egg- yolk extender (88.89%) groups than Soya milk extender group (33.33%) (Table 7). After conception, pregnancy was confirmed by rectal palpation. Considering pre-freeze and post-thaw sperms

Table 6. Expression patterns of AKR1B1 and AKAP4 transcripts in buffalo sperm cryopreserved using different semen extenders.

Semen group		Expression of genes in fold			
		AKR1B1	AKAP4		
Fresh		1.00	1.00		
Post-thaw	Tris-Egg-Yolk	1.38	1.47		
	Soya milk	1.24	0.79		
	Andromed	1.22	0.81		

Table 7. Effect of different extender on conception rate after AI using cryopreserved buffalo semen

Extender type	No. of animal inseminated	No. of animal conceived	Conception rate (%)
Andromed	9	8	88.89
Tris egg yolk extender	9	8	88.89
Soya milk based extender	9	3	33.33

characteristics this study suggests that, Tris-Egg-Yolk semen extender might be used for cryopreservation of buffalo semen at the same efficiency level compared to commercially available semen extender like Andromed.

ACKNOWLEDGEMENTS

The authors are thankful to the 'Buffalo Development Project (Component-B)' of Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka for funding this research work. We are also thankful to the Division of Biotechnology, Bangladesh Livestock Research Institute (BLRI), Savar, Dhaka, for providing laboratory support and providing animals for conducting this research.

REFERENCES

Aires V A, Hinsch K D, Mueller-Schloesser F, Bonger K, Mueller Shoedder S and Hinsch E. 2003. In vitro and In vivo comparison of egg yolk-based and soybean Lecithin-based extenders for cryopreservation of bovine semen. *Theriogenology* **60**: 269–79.

Akhter S, Ansari M S, Rakha B A, Andrabi S M H, Khalid M and Ullah. 2011. In vitro evaluation of liquid-stored buffalo semen at 5°C diluted in soya lecithin based extender (Bioxcell®), tris-citric egg yolk, skim milk and egg yolk-citrate extenders. *Reproduction in Domestic Animals* **46**: 45–49.

Chaudhari D V, Dhami A J, Hadiya K K and Patel J A. 2015. Relative efficacy of egg yolk and soya milk-based extenders for cryopreservation (-196°C) of buffalo semen. *Veterinary World* 8 (2): 239–44.

Chen X, Zhu H, Hu C, Hao H, Zhang J, Li K, Zhao X, Qin T, Zhao K, Zhu H and Wang D. 2014. Identification of differentially expressed proteins in fresh and frozen thawed boar spermatozoa by iTRAQ coupled2D LCMS/MS. Reproduction 147: 321–30.

Crespilho A M, Filho M F, Aqua J A, Nichi M, Monteiro G C, Avanzi B R, Martins A and Papa F O. 2012. Comparison of *in vitro* and *in vivo* fertilizing potential of bovine semen frozen in egg yolk or new lecithin based extenders. *Livestock Science* 149: 1–6.

Deb G K. 2011.'9-cis Retinoic acid enhances oocyte developmental competence during *in vitro* maturation of bovine cumulus oocyte complexes.' Doctor degree thesis of Philosophy. Division of Applied Life Sciences, Gyeongsang National University, Republic of Korea.

Dhami A J, Mohan G and Sahni K L. 1993. Effect of extenders and additives on preservability of cattle and buffalo semen at 5°C and –196°C. *Indian Journal of Animal Science* **63**: 492–98.

- El-Keraby F E, Osman K T, Ganah H B and E M El-Siefy. 2010. Soymilk-based extender for cryopreservation of bovine semen. *Journal of Animal and Poultry Production* **1**(2): 61–69.
- El-Sayed A, Hoelker M, Rings F, Salilew D, Jennen D, Tholen E, Sirard M A, Schellander K and Tesfaye D. 2006. Largescale transcriptional analysis of bovine embryo biopsies in relation to pregnancy success after transfer to recipients. *Physiology Genomics* 28: 84–96.
- Foote R H. 1970. Influence of extender, extension rate and glycerolizing technique on fertility of frozen bull semen. *Journal of Dairy Science* **53**: 1478.
- Fulcher K D, Mori C, Welch J E, O'Brien D A, Klapper D G and Eddy E M. 1995. Characterization of Fsc 1 cDNA for a mouse sperm fibrous sheath component. *Biology of Reproduction* **52**: 41–49.
- Gómez E, Gutiérrez-Adán A,Díez C, Bermejo-Alvarez P, Muñoz M, Rodriguez A, Otero J, Alvarez-Viejo M, Martín D, Carrocera S and Caamaño J N. 2009. Biological differences between *in vitro* produced bovine embryos and parthenotes Enrique. *Reproduction* 137: 285–95.
- Hamid MA, Ahmed S, Rahman MA and Hossain KM. 2016. Status of buffalo production in Bangladesh compared to SAARC countries. *Asian Journal of Animal Sciences* **10**: 313–29.
- Herbowo M T, Arifiantini R I, Karja N W K and Sianturi R G. 2019. Cryopreservation of swamp buffalo semen in skim milk yolk-based diluent with two different cryoprotectants. *Tropical Animal Science Journal* 42(1): 13–18
- Kumar N, Lone S A, Prasad J K, Jan M H and Ghosh S K. 2016. Effect of egg yolk powder on freezability of Murrah buffalo (*Bubalus bubalis*) semen. *Veterinary World* **9**(6): 601–04.
- Kumar R and Atreja S K. 2011. Effect of incorporation of additives in tris-based eggyolk extender on buffalo (*Bubalus bubalis*) sperm tyrosine phosphorylation during cryopreservation. *Reproduction in Domestic Animals* **47**: 485–90.
- Lambard S. *et al.* 2004. Analysis and significance of mRNA in human ejaculatedsperm from normozoospermic donors: relationship to sperm motility and capacitation. *Molecular Human Reproduction* **10**: 535–41.
- Meena G S, Raina V S, Gupta A K, Mohanty T K and Bishist R. 2010. Comparative performance of Biociphos and Tris-egg yolk based extenders for buffalo semen preservation. *Indian Journal of Animal Science* 80: 414–17.
- Miki K, Willis W D, Brown P R, Goulding E H, Fulcher K D and Eddy E. M. 2002. Targeted disruption of the Akap4 gene causes defects in sperm flagellum and motility. *Developmental Biology* **248**: 331–42.
- Moss S B, VanScoy H and Gerton G L. 1997. Mapping of a haploid transcribed and translated sperm-specific gene to the mouse x

- chromosome. Mammalian Genome 8: 37-38.
- Ostermeier G C, Goodrich R J, Diamond M P, Dix D J and Krawetz S A. 2005. Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. *Fertility and Sterility* **83**: 1687–94.
- Platts A E, Dix D J, Chemes H E, Thompson K E, Goodrich R, Rockett J C, Rawe V Y, Quintana S, Diamond M P, Strader L F and Krawetz S A. 2007. Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Human Molecular Genetics 16: 763–73.
- Rana C M, Dhami A J, Zalu G K, Vibhakar K V and Landani N. G. 2003. Preservation of Gir (*Bos indicus*) and Jafarabadi (*Bubalus bubalis*) semen at 5°C and ultralow temperature using Sephadex filtration technique. *Indian Journal of Animal Science* 73: 858–63.
- Rehman F U, Qureshi M S and Khan R U. 2014. Effect of soybean based extenders on sperm parameters of Holstein- Friesian bull during liquid storage at 4°C. *Pakistan Journal of Zoology* **46**: 185–89.
- Singh A K, Singh V K, Narwade B M, Mohanty T K and Atreja S K. 2012. Comparative quality assessment of buffalo (*Bubalus bubalis*) semen chilled (5°C) in egg yolk- and soya milk-based extenders. *Reproduction in Domestic Animal* **47**: 596–600.
- Singh M, Rajoriya J S, Kumar A, Ghosh S K and Prasad J K. (2018). Cryopreservation of buffalo (*Bubalus bubalis*) semen: Current status and future prospective. *Buffalo Bulletin* 37(2): 109–28.
- Singh V K, Singh A K, Kumar R and Atreja S K. 2013. Development of soya milk extender for semen cryopreservation of Karan Fries (crossbreed cattle). Cryo Letters 34: 52-61.
- Steger K, Wilhelm J, Konrad L, Stalf T, Greb R and Diemer T. 2008. Both protamine-1 to protamine-2 mRNA ratio and Bcl2 mRNA content in testicular xi spermatids and ejaculated spermatozoa discriminate between fertile and infertile men. *Human Reproduction* 23: 11–6.
- Stradaioli G, Noro T, Sylla L and Monaci M. 2007. Decrease in glutathione (GSH) content in bovine sperm after cryopreservation: Comparison between two extenders. *Theriogenology* 67: 1249–55.
- Thun R, Hurtado M and F Janett. 2002. Comparison of Biociphos-Plus and Tris egg yolk extender for cryopreservation of bull semen. *Theriogenology* **57**: 1087–94.
- Walton A. 1945. *The Technique of Artificial Insemination*, 2nd ed. London: Holborn Surgical Instrument Co.
- Yeste M. 2016. Sperm cryopreservation update: Cryo-damage, markers, and factors affecting the sperm freezability in pigs. *Theriogenology* **85**(1): 47–64.