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Growth and egg production traits are quantitative in
nature with a continuum between high and low-performing
birds, and the regions of the genome that control such traits
are termed as quantitative trait loci (QTL). Microsatellites
are widely accepted as a marker of choice to detect such
QTLs, and the markers linking such QTLs can be used in
marker-assisted selection (MAS) program to introduce or
preserve beneficial QTL alleles in the population (Debnath
et al. 2017). They are highly polymorphic, distributed
randomly throughout the genome displaying co-dominant
inheritance (Tautz 1989) and are extensively used to study
genetic structure, variability, diversity and relationship
analyses (Das ef al. 2015). Various microsatellites have been
reported to be associated with growth and layer economic
traits in chicken and its chromosome number-2 bears several
egg-weight/production-associated microsatellites along
with other QTLs (Chatterjee er al. 2008a). Abasht ef al.
(2006) also reported that this chromosome also harbors
genes controlling reproduction.

Rhode Island Red (RIR) is a well-recognized dual-
purpose brown-egger chicken breed and useful for backyard
poultry production. It has undergone a long-term selection
on the basis of 40-weeks part-period egg production over
last 33 years covering 30-generations of selection at I[CAR-
Central Avian Research Institute (CARI, Izatnagar)
(Anonymous 2014). For last few generations, part-period
egg production has been slowly declining due to reduction
in genetic variability, and utilizing genomics data for faster
genetic progress was suggested in future (Das et al. 2016).
The present investigation was carried out to assess the
impact of selection based on ADLO176 microsatellite-
genotypes and to reveal the underlying association of
microsatellite-genotypes at ADL0O176 and MCWO0044
located on chromosomal number-2 with grower and layer
economic traits in RIR chicken.
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A total of 114 birds comprising of 86 females and 28
males from the RIR-selected strain undergoing 30-
generations of selection based on 40-weeks part-period egg
production were genotyped for ADLO0176 microsatellite to
produce the experimental birds through molecular breeding.
The genotypes were then compared for 40-weeks egg
production and the females with DD-genotype followed by
CC-genotype revealed the highest production record,
whereas females with BB-genotype revealed the lowest
record (Debnath et al. 2015b). Eleven males belonging to
these three homozygous genotypes (DD: 3, CC: 6, BB: 2)
were selected and four females having corresponding
homozygous genotypes were assigned to each of these
males avoiding mating between full and half-sibs with the
help of pedigree records, and mated through artificial
insemination. The study was conducted on 103 pullets raised
out of 286 straight-run chicks (123 under DD-sire family,
148 under CC-sire family, 15 under BB-sire family)
(Table 1), obtained in four hatches and subjected to standard
housing, feeding and healthcare management and
vaccination protocol followed in this institute (Debnath et
al. 2015a). Following phenol-chloroform extraction method
(Kagami et al. 1990), genomic DNA was isolated from the
blood samples (0.5-1 ml) collected from jugular vein in
autoclaved heparinized (5 IU/ml) centrifuge tube. Having
assessed the quality of DNA through 0.8% horizontal
submarine agarose gel electrophoresis, purity and quantity
by NanoDrop® ND-1000 Spectrophotometer (NanoDrop
Technologies Inc., USA) (Debnath et al. 2017, Das et al.
2015), the samples were subjected to profiling for ADL0O176
and MCWO0044 microsatellites. The primer sequences: F-
5' TTGTGGATTCTGGTGGTAGC3'/ R-5' TTCTCCC-
GTAACACTCGTCA3' and F-5' AGTCCGAGCT-
CTGCTCGCCTCATA3' / R-5' ACAGTGGCTCAGT-
GGGAAGTGACC3', obtained from the published
literatures (Chatterjee et al. 2010, Chatterjee et al. 2008ab)
for amplification of corresponding ADLO176 and
MCWO0044 microsatellite loci were procured from M/s
Xecelris Genomics Labs Ltd., Ahmedabad (India). Annealing
temperature for each of the primer pairs was optimized
(54°C and 63°C, respectively) and PCR amplifications of
the DNA samples were carried out for each microsatellite
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marker as described in earlier literature (Debnath et al.
2017). The molecular sizes of the PCR-amplified products
were adjudged for their probable sizes through 2%
horizontal agarose gel electrophoresis. The microsatellite
alleles were then identified by running the PCR-amplified
products on horizontal MetaPhore™ agarose gel
electrophoresis (3.4% MAGE) (Debnath et al. 2019). The
molecular sizes of all the alleles at different microsatellite
loci were determined using the Quantity One® software
4.6.8 on GelDoc system (Biorad, USA). The observed
alleles with its probable genotypes were recorded in each
sample at each microsatellite locus (Debnath et al. 2019).
Locus-specific alleles at each microsatellite locus were
identified according to their molecular sizes and noted with
alphabet A to E in ascending order of their molecular sizes
(Das et al. 2015).

Data on grower and layer economic traits were recorded
on day-old chick weight (CW, in gram), body weights (BW,
in gram) at 16, 28 and 40™ weeks of age at empty stomach
and egg weight (EW, in gram) at 28 and 40" weeks of age
with the help of digital weighing balance. The first-egg
laying age was taken as age at sexual maturity (ASM, in
days), and the part-period egg production (EP, in numbers)
upto 28 and 40-weeks of age were recorded. Data were
analyzed by least squares analysis of variance taking sire
as random effect, hatch and microsatellite genotype as fixed
effect in the linear model using JMP 9.0.0 statistical program
package (SAS 2010). The least squares means estimated
under the genotypes of each microsatellite locus were
compared using critical difference (CD) test at 5% level of
probability of significance.

After crossing of the birds selected based on microsatellite
ADLO176, 123 chicks were produced under its DD-
genotyped sire family, 148 chicks under its CC-genotyped
sire family, and 15 chicks under its BB-genotyped sire family
(Table 1). Out of 286 straight-run chicks, 103 nos. of female
chicks were selected randomly and raised for this work.
The pullets raised out of these straight-run chicks when
genotyped revealed 7 genotypes at ADLO176 and 3
genotypes at MCW0044 locus and are presented in Table 1.
The more resultant genotypes at ADLO176 in the progeny-
pullets might be due to the fact that the selected line has
undergone 31-generations of selection for egg production
which might have resulted in accumulation of some
microsatellite alleles over generations, because the number
of short-tandem-repeats in a given microsatellite varies
greatly among individuals due to gain/ loss of repeat units
ata particular locus as a result of slippage during replication
or caused by the unequal crossing-over between homologous
tandem-repeats.

The results from the least squares analysis of variance
of different grower and layer economic traits under different
microsatellite genotypes are presented in Table 2 and their
estimated means in Table 3. The sire component of variance
was found significant on total variance accumulated in CW,
BW at 8, 12, 16, 20 and 28t weeks of age of the birds with
different ADLO176 microsatellite-genotypes while only in
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CW, BW at 12, 16 and 20t weeks of age of the birds with
different MCWO0044 microsatellite-genotypes. Whereas,
only housing weight (BW20) had significant hatch
component of variance in either case as of the locus
concerns. The microsatellite-genotypes at ADLO176 locus
demonstrated significant effect on BW28, BW40 and
EW40, while the genotypes at MCW0044 had significant
effect only on BW40. Previously, microsatellite-genotypes
at ADLO176 locus were reported for having significant
association with body weights at 40" weeks of age in a
selected line of RIR chicken (Das et al. 2016) and in three
pure lines of White Leghorn populations (Chatterjee et al.
2008b). Abasht et al. (2006) also reported significant
association of microsatellite-genotypes at ADLO176 and
MCWO0044 with egg numbers and egg weights.

The CD Test clarified that the birds with DD-genotype
at ADL0O176 locus had the highest BW28 while its AC-
genotype had the lowest BW28; although there was no
significant difference between DD and EE-genotype,
between EE and CC-genotype, and between AD and AC-
genotype. The birds with EE-genotype at ADLO0176 locus
revealed the highest BW40 being indifferent (P>0.05) under
DD or CC-genotype, while its AD-genotype revealed the
lowest BW40 being indifferent (P>0.05) under AC-
genotype. BB-genotype at MCWO0044 locus had the higher
BW40 than its AB/AA-genotype. Pullets with CC-genotype
at ADLO176 locus laid eggs with the highest weight at 401
weeks of age followed (P>0.05) by those with EE and DD-
genotype, while the lowest egg weight at 40" weeks of age
was found under AD-genotype followed (P>0.05) by AC-
genotype. Significant association between microsatellite-
genotypes and traits like age at sexual maturity, body
weights, egg weights and egg production could be quite
informative indicator for revealing relationships between
QTL and microsatellites (Das et al. 2016, Chatterjee et al.
2010), probably due to their linkage if the microsatellite be
very closely linked (about 20 cM) with the QTL associated
to a certain phenotype (Das et al. 2016, Chatterjee et al.
2010). It may be concluded that significant associations of
microsatellite-genotypes with production traits are
suggestive of rapid genetic improvement in growth and
layer economic traits of RIR chicken by adapting
microsatellite-marker based selection strategies.

SUMMARY

The present study aimed to assess impact of selection
based on microsatellite-genotypes at ADLO176 and the
association of microsatellite-genotypes at ADLO176 and
MCWO0044 located on chromosome number-2 with growth
and layer economic traits in RIR chicken could reveal
impact when the sire component influenced the growth and
layer economic traits of the progeny-birds with different
genotypes at ADL0176 and MCW0044 microsatellites. DD,
EE and CC/AD-genotypes at ADLO176 microsatellite had
corresponding higher (P<0.05) BW28, BW40 and EW40
of the progeny than other genotypes, while BB-genotype
at MCWO0044 had higher (P<0.05) BW40. Present findings
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could suggest the use of microsatellite-marker based
selection for faster genetic improvement of economic traits
in RIR chicken, provided its validation by taking larger
sample sizes.
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