Prevalence of antimicrobial resistance genes among *Escherichia coli* isolated from poultry

ARPIT¹, M CHANDRA¹⊠, G KAUR¹, D NARANG¹ and A K ARORA¹

Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141 004 India

Received: 3 March 2021; Accepted: 6 September 2023

ABSTRACT

Antimicrobial resistance has become a global threat. In the poultry industry, antibiotic usage has been widespread and been used for multiple purposes, viz. growth promoters, therapeutic agent and prophylaxis. This usage has probably led to accumulation of antimicrobial resistant genes. A study on presence of antibiotic resistant genes in poultry farms of Ferozepur and Ludhiana, Punjab were undertaken. A total of 50 faecal samples were collected from eight farms. The samples were processed for isolation of *E. coli* by using selective media, were identified using various biochemical tests and confirmed with the help of PCR. A total of 35 *E. coli* isolates were obtained and all were subjected to antibiotic sensitivity test against 10 antibiotics. Also, these isolates were subjected to amplification of antibiotic resistance genes, viz. *blaTEM*, *blaSHV*, *DHAM*, *MOXM*, *sul1*, *dhfrV*, *aadA*, *tetA* and *tetB* using published primers. The isolates revealed resistance to penicillin (100%), ampicillin/sulbactum (100%), erythromycin (94.28%), streptomycin (91.4%), tetracycline (60%), chloramphenicol (60%), trimethoprim (51.4%), co-trimoxazole (48.57%), gentamicin (8.5%) and colistin (8.5%). Seven isolates were found to be positive for *blaTEM*, nine for *sulI*, four for *dhfrV*, 11 for *aadA* and *cmlA*, respectively, while none of the isolate showed the *blaSHV*, *DHAM*, *MOXM*, *tetA* and *tetB*. The present study revealed that the multiple AMR genes may be prevalent among *E. coli* isolates of poultry origin which needs urgent attention.

Keywords: Antibiotic resistance, Antibiotic resistance genes, E. coli, Poultry, Prevalence

Antimicrobial resistance (AMR) is a global problem. As per one estimate, drug resistant infections are likely to cause 10 million deaths annually by the year 2050 (O'Neill 2016). Antibiotics have been used widely in poultry production as growth promoters, prophylactic and therapeutic agents that could lead to development of antimicrobial resistance (Plata *et al.* 2022). Antimicrobial resistant pathogens results in treatment failure which leads to high economic loss. Antimicrobial resistant bacteria also pose a risk to human health (Nhung *et al.* 2017).

In poultry, *E. coli* plays a pivotal role in maintaining homeostasis of intestinal morphology. Though, most strains of *E. coli* are commensal, some strains are pathogenic too. Both virulent and avirulent *E. coli* have been shown to colonize and persist efficiently in the intestinal tract of poultry. But, whenever, there is imbalance in the presence of stressors (Dominick and Jensen 1984), extra intestinal movement of *E. coli* occurs, leading to colibacillosis. Avian strains of *E. coli* also raise public health concern as these strains share serotypes as well as virulence factors with human pathogens (Dhamal *et al.* 2013). The faecal

Present address: ¹Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab. ™Corresponding author email: drmuditchandra@rediffmail.com

E. coli from poultry that harbour antibiotic resistant genes could transmit to the humans and lead to accumulation of resistant genes. Further, these bacteria could transfer the AMR genes to the normal endogenous bacterial population too (Bogaard et al. 2001). In view of this, the present study was aimed to know the presence of antibiotic resistance and associated genes in the E. coli of poultry origin.

MATERIALS AND METHODS

Collection of samples: Poultry faecal samples (n=50) were collected from two poultry farms of Ferozepur and six poultry farms of Ludhiana from August 2019-February 2020. The samples with cold chain were transported to the Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab for further processing.

Isolation and identification: All the faecal samples were subjected to the isolation of *E. coli* following the standard protocol (Cruickshank *et al.* 1975). About 10 g of each faecal material was inoculated into 100 ml of buffered peptone water and incubated at 37°C for 12-24 h. A loopful of broth culture was streaked onto MacConkey's Lactose Agar (MLA) and Eosine Methylene Blue Agar (EMB) and incubated at 37°C for 12-24 h. After incubation the pink colonies on MLA and colonies with metallic sheen on EMB were confirmed by various biochemical tests, viz. oxidase,

catalase, indole, methyl red, voges proskauer's, citrate and triple sugar iron. After the biochemical confirmation, isolates of *E. coli* were sub-cultured on nutrient agar slants and stored at 4°C.

Antibiotic sensitivity test: Antimicrobial susceptibility testing was performed as per the method of Bauer et al. (1965). Overnight grown culture of individual bacteria in LB broth was uniformly spread onto Muller Hinton Agar with the help of a sterilized cotton swab. Antibiotic discs, viz. penicillin (1IU), ampicillin/sulbactum (10/10 mcg), gentamicin tetracycline (30 mcg), (10) mcg), chloramphenicol (30 mcg), erythromycin (15 mcg), streptomycin (10 mcg), co-trimoxazole (25 mcg), colistin (10 mcg) and trimethoprim (5 mcg) were placed at an appropriate distance and incubated for 16-24 h. The zone of inhibition was measured in mm with the help of a ruler and the isolates were classified as sensitive/resistant as per the guidelines of CLSI (2018).

Extraction of DNA from bacteria: The DNA from all the *E. coli* isolates was extracted using NucleoSpin® Microbial DNA kit as per manufacturer's instructions and stored at -20°C till further use. The optical density (OD) at 260 nm and 280 nm of the individual sample was measured by using a Nanodrop (Thermoscientific, USA) and a ration of 1.6-1.8 was considered satisfactory.

Polymerase chain reaction for confirmation of E. coli: All the E. coli isolates were subjected to identification by amplification of the specific gene using polymerase chain reaction (PCR) as per Riffon et al. (2001) (Table 1). The reaction mixture was prepared by adding 12.5 μl (2×one Taq Master Mix) (New England Bio Labs, USA), 1 μl of 20 pmol/ul of each forward and reverse primers (Cusabio,

China), 1 µl of template DNA (100 ng/µl) and the reaction was made up to 25 µl using Nuclease free water. PCR was performed on a thermocycler (Veriti, ABI, USA) with the following conditions: an initial denaturation at 94°C for 5 min and 35 cycles each of denaturation at 94°C for 45 s, annealing at 60°C for 1 min and extension at 72°C for 1 min followed by a final extension at 72°C for 10 min. PCR reaction products were run on agarose gel electrophoresis (1.5%) at 80 V for an hour. Following electrophoresis, DNA bands were visualized under UV trans-illuminator and the images were captured using Gel Documentation System (AlphaImager, Alpha Innotech).

Polymerase chain reaction for antibiotic resistance: All the *E. coli* isolates were subjected to PCR to identify the presence of blaTEM, blaSHV, sull, dhfrV, cmlA, aadA, DHAM, MOXM, tetA and tetB antibiotic resistance genes using published primers (Table 1). The reaction mixture was prepared by adding 12.5 μl (2× one Taq Master Mix) (New England Bio Labs, USA), 1 μl each of 20 pmol/ ul forward and reverse primers for each of the antibiotic resistant gene (Metabion International AG, Germany), 1 μl of template DNA (100 ng/μl) and 9.5 μl of nuclease free water. The PCR conditions for amplification of blaTEM, blaSHV, dhfrV, Sul1 genes were: an initial denaturation at 94°C for 5 min followed by 30 cycles of 94°C for 30 sec, annealing at 50°C for 30 s and extension at 72°C for 1.5 min and final extension at 72°C for 10 min.

The PCR conditions for amplification of *tetA*, *tetB*, *DHAM*, *MOXM*, *cmlA*, *aadA* genes were: an initial denaturation at 95°C for 5 min followed by 30 cycles of denaturation at 94°C for 30 s, annealing at 58°C for 30 s, extension at 72°C for 1 min and final extension at 72°C for

Table 1. Primers used for E. coli and antibiotic resistance genes

Organism/Antibiotics	Genes/Target	Primers 5'-3'	Product length	References
E. coli	23 S rRNA	F: ATCAACCGAGATTCCCCCA R: TCACTATCGGTCAGTCAGGAG	232 bp	Riffon et al. (2001)
Beta lactam	blaTEM	F: GAGTATTCAACATTTTCGT R: ACCAATGCTTAATCAGTGA	857 bp	Maynard et al. (2004)
	blaSHV	F: TCGCCTGTGTATTATCTCCC R:CGCAGATAAATCACCACAATG	768 bp	Maynard et al. (2004)
Tetracycline	tetA	F: CGATCT TCCAAG CGTTTG TT R:CCAGAAGAA CGAAGCCAG TC	105 bp	Faldynova et al. (2013)
	tetB	F:TACAGGGATTATTGGTGAGC R:ACATGAAGGTCATCGATAGC	162 bp	Faldynova et al. (2013)
Sulphonamide	sulI	F:TTCGGCATTCTGAATCTCAC R:ATGATCTAACCCTCGGTCTC	822 bp	Shehata et al. (2016)
Trimethoprim	dh fr V	F :CTGCAAAAGCGAAAAACGG R:AGCAATAGTTAATGTTTGAGCTAAAG	432 bp	Maynard et al. (2004)
Streptomycin	aadA	F:TGATTTGCTGGTTACGGTGAC R:CGCTATGTTCTCTTGCTTTTG	284 bp	Van et al. (2008)
Ampicillin	MOXM	F:GCTGCTCAAGGAGCACAGGAT R:CACATTGACATAGGTGTGGTGC	520 bp	Van et al. (2008)
	DHAM	F:AACTTTCACAGGTGTGCTGGGT R:CCGTACGCATACTGGCTTTGC	405 bp	Van et al. (2008)
Chloramphenicol	cmlA	F:CCGCCACGGTGTTGTTGTTATC R:CACCTTGCCTGCCCATCATTAG	698 bp	Van et al. (2008)

10 min.

The PCR products were subjected to agarose gel electrophoresis (1.5%) at 80 V for an hour. Following electrophoresis, DNA bands were visualized under UV trans-illuminator and the images were captured by using Gel Documentation System (AlphaImager, Alpha, Innotech).

RESULTS AND DISCUSSION

Isolation and identification of E. coli species: A total of 50 faecal samples collected from two poultry farms of Ferozepur and six poultry farms of Ludhiana were processed for the isolation of E. coli. Out of a total of 50 faecal samples, 35 faecal samples (70%) were positive for E. coli which is in agreement with the study conducted by Wani et al. (2004), Rahman et al. (2008), Wesonga et al. (2010) and Bandyopadhyay et al. (2011) but in contrast to a study conducted by Muglikar et al. (2019) in which recovery rate of E. coli was 33.77% only. In poultry, E. coli resides in the lower digestive tract and it colonizes in the first 24 h after hatching (Ballou et al. 2016) which may be the possible reason behind high recovery rate of E. coli in the present study. Another possible reason behind high recovery of E. coli is that the samples were collected from the faeces of healthy birds while the others collected tissue samples from birds suspected for colibacillosis.

Antibiotic sensitivity testing: The bacterial isolates revealed resistance to penicillin (100%), ampicillin/sulbactum (100%), erythromycin (94.28%), streptomycin (91.4%), tetracycline (60%), chloramphenicol (60%), trimethoprim (51.4%), co-trimoxazole (48.57%), gentamicin (8.5%) and colistin (8.5%).

The present study showed the highest rate of resistance among *E. coli* isolates to penicillin, methicillin, ampicillin /sulbactum, erythromycin and streptomycin which was observed to be consistent with the findings of Shehata *et al.* (2016) and Muglikar *et al.* (2019). The bacterial isolates showed a high degree of susceptibility to gentamicin, and colistin as reported by Joshi *et al.* (2012), Magray *et al.* (2018) and Kaushik *et al.* (2018).

PCR for identification of genus and antibiotic resistant genes: PCR amplification using gene specific primers produced the expected band of 232 bp indicative of *E. coli*. Out of 35 isolates resistant for penicillin, seven (20%)

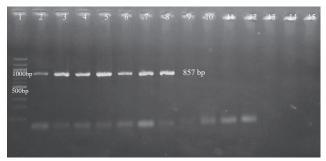


Fig. 1. Amplification of *blaTEM* resistance gene (Lane 1: 100 bp Ladder, Lane 2-8: Positive samples, Lane 9-15: negative samples).

isolates were found to harbour the *blaTEM* gene (Fig. 1), while none of the isolate showed the *blaSHV* gene. The above finding was similar to the findings of various workers (Obeng *et al.* 2012, Dhawde *et al.* 2018 and Hussain *et al.* 2019). Ibrahim *et al.* (2019) in a study observed that avian pathogenic *Escherichia coli* isolates possessed *blaTEM* gene and *blaSHV* genes with a prevalence of 72.9% and 1.8%, respectively, which were in agreement with the findings of the present study, however, they observed a very high prevalence of *blaTEM* gene. In this study none of the isolates showed *DHAM* and *MOXM* genes which was similar to the findings of Farrokhnazar *et al.* (2016), Nhung *et al.* (2017) and Liu *et al.* (2019).

Resistance to tetracycline is mediated by efflux proteins, ribosomal protection, enzymatic inactivation and target modification (Chopra and Roberts 2001). Different types of tet genes found in gram negative bacteria may encode for efflux proteins or ribosomal protection or both. Out of 21 tetracycline resistant isolates subjected to amplification of tetA and tetB genes none showed either tetA and or tetB. Amplification of tetA and/or tetB gene is an inconsistent findings; Miles et al. (2006), Faldynova et al. (2013), Liu et al. (2019) reported very low prevalence or absence of this gene in the resistant isolates, while in a study conducted by Ibrahim et al. (2019) tetA gene was found to be most predominant gene among tetracycline resistant isolates. Lack of tetA and tetB gene among tetracycline resistant isolates might be due to the fact that in this study only two genes for tetracycline resistance were tested, while the phenotypic resistance might have been conferred to the isolates by other genes like tetC, tetD, tetE, tetG, tetH, tetI, tetJ, tetY, tet30 and tet31, etc. (Grossman 2016). However, further studies are required to substantiate this finding.

Resistance to sulfonamides and trimethoprim is caused by non allelic and drug resistant variants of the chromosomal target enzymes di-hydropteroate synthase (*sul* genes) and dihydrofolate reductase (*dfr* genes), respectively (Sköld 2001). Out of 17 isolates resistant for sulphonamides, seven (41.17%) isolates harboured *sulI* gene (Fig. 2) which is in agreement with the studies performed by Momtaz *et al.* (2012), Faldynova *et al.* (2013) but in contrast to Shehata *et al.* (2016) in which all the tested isolates showed the presence of *sulI* gene.

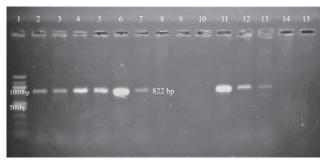


Fig. 2. Amplification of *sul1* gene (Lane 1: 100 bp Ladder, Lane 2-7: 11-13 positive samples, Lane 8-10: 14-15 negative samples).

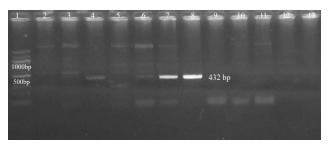


Fig. 3. Amplification of *dhfrV* resistance gene (Lane 1: Ladder, Lane 4, 6-8: positive samples, Lane 2-3, 5, 9-13: negative samples).

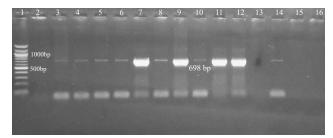


Fig. 4. Amplification of *cmlA* gene (Lane 1: 100bp Ladder, Lane 3-12: 14 positive samples, Lane 2, 13, 15, 16: negative samples).

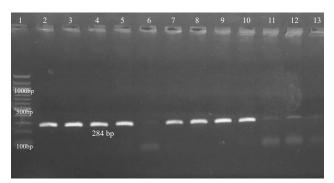


Fig. 5. Amplification of *aadA* gene (Lane 1: 100 bp Ladder, Lane 2-5: 7-12 positive samples, Lane 6: 13 negative samples).

Out of 18 isolates resistant for trimethoprim, four isolates (22%) were found to be positive for *dhfrV* gene (Fig. 3). These results agreed with the findings of Obeng *et al.* (2012), Shehata *et al.* (2016) but were in contrast with the findings of Dehdashti *et al.* (2019) who reported all the isolates negative for *dhfrI* and *dhfrV* genes. The reason for this variation might be the difference in isolation source/ host species, since this study used poultry isolates whereas they worked on buffaloes isolates.

All 21 isolates which showed the resistance to chloramphenicol were screened for *cmlA* gene and 11 (52.38%) isolates had *cmlA* gene (Fig. 4) which was in agreement with the findings of Momtaz *et al.* (2012), Shehata *et al.* (2016) and Poirel *et al.* (2018).

Out of 32 isolates resistant for streptomycin, 11 (34.37%) isolates harboured *aadA* gene (Fig. 5) which was in accordance with the findings of Obeng *et al.* (2012) and Younis *et al.* (2017).

The high percentage of the isolates exhibiting AMR phenotype compared to the specific AMR gene might be

due to the presence of some other AMR genes that confer the similar AMR phenotype. Moreover, the target gene might be located on plasmids, while in this study the genomic DNA has been used for testing of the AMR genes among bacterial isolates.

ACKNOWLEDGEMENTS

The authors are grateful to the ICAR Niche area of Excellence on Antibiotic Resistance: Animal Human Interface for providing necessary consumables required during the research work. The authors are also thankful to the Director Research, GADVASU for providing the necessary laboratory facilities.

REFERENCES

Ballou A L, Ali R A, Mendoza M A, Ellis J C, Hassan H M, Croom W J and Koci M D. 2016. Development of the chick microbiome: how early exposure influences future microbial diversity. Frontiers in Veterinary Science 3: 2.

Bandyopadhyay S, Mahanti A, Samanta I, Dutta, T K, Ghosh M K, Bera A K, Bandyopadhyay S and Bhattacharya D. 2011. Virulence repertoire of Shiga toxin-producing *Escherichia coli* (STEC) and enterotoxigenic *Escherichia coli* (ETEC) from diarrhoeic lambs of Arunachal Pradesh, India. *Tropical Animal Health and Production* 43: 705–10.

Bauer A W, Kirby W M, Sherris J C and Turck M. 1966. Antibiotic susceptibility testing by a standardized single disk method. *American Journal of Clinical Pathology* **45**(4): 493–96.

Bogaard V D, London N, Driessen C and Stobberingh E E. 2001. Antibiotic resistance of faecal *Escherichia coli* in poultry, poultry farmers and poultry slaughterers. *Journal of Antimicrobial Chemotherapy* **47**(6): 763–71.

Chopra I and Roberts M. 2001. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. *Microbiology and Molecular Biology Reviews* **65**(2): 232–60.

CLSI. 2018. Performance Standards for Antimicrobial Susceptibility Testing, M100. 28th Edition.

Cruickshank R, Dugid J P, Marmion B P and Swain R H A. 1975. *Medical Microbiology*. 12th Edition, **2**: 170. Churchill Living Stonne, Edinburgh, London.

Dehdashti S, Ghanbarpour R and Hajikolaei M R H. 2019. Molecular detection of Shiga toxin-producing and antibiotic-resistant *Escherichia coli* isolates from buffaloes in southwest of Iran. *Tropical Animal Health and Production* 51: 1725–36.

Dhamal K, Chakraborty S, Barathidasan R, Tiwari R, Rajagunalan S and Singh S D. 2013. *Escherichia coli*, an economically important avian pathogen, its disease manifestations, diagnosis and control, and public health significance: A review. *Research Opinions in Animal and Veterinary Sciences* 3(6): 179–94.

Dhawde R, Macaden R, Saranath D, Nilgiriwala K, Ghadge A and Birdi T. 2018. Antibiotic resistance characterization of environmental *E. coli* isolated from river Mula-Mutha, Pune district, India. *International Journal of Environmental Research and Public Health* **15**(6): 1247.

Dominick M A and Jensen A E. 1984. Colonisation and persistence of *Escherichia coli* in axenic and monoaxenic turkeys. *American Journal of Veterinary Research* 45: 2331–35.

Faldynova M, Videnska P, Havlickova H, Sisak F, Juricova H, Babak V, Steinhauser L and Rychlik I. 2013. Prevalence of

- antibiotic resistance genes in faecal samples from cattle, pigs and poultry. *Veterinarni Medicina* **58**(6): 298–304.
- Farrokhnazar E, Bidhendi S M and Karimi S. 2016. Prevalence of Amp C type extended spectrum Beta lactamases genes in clinical samples of *Escherichia coli* isolated from poultry and human. *International Journal of Medical Research and Health Sciences* **5**(7): 83–93.
- Grossman T H. 2016. Tetracycline Antibiotics and Resistance. Cold Spring Harbor. *Perspectives in Medicine* **6**(4): a025387.
- Hussain A, Shaik S, Ranjan A, Suresh A, Sarker N, Semmler T, Wieler L H, Alam M, Watanabe H, Chakravortty D and Ahmed N. 2019. Genomic and functional characterization of poultry *Escherichia coli* from India revealed diverse extended-spectrum β-lactamase-producing lineages with shared virulence profiles. *Frontiers in Microbiology* **10**: 2766.
- Ibrahim R A, Cryer T L, Lafi S Q, Basha E A, Good L and Tarazi Y H. 2019. Identification of *Escherichia coli* from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. *BMC* Veterinary Research 15: 159.
- Joshi S, Singh R and Singh S P. 2012. Antibiotic resistance profile of *Escherichia coli* isolates from Colibacillosis in and around Pantnagar, India. *Veterinary World* **5**(7): 405–08.
- Kaushik P, Anjay A, Kumari S, Dyal S and Kumar S. 2018. Antimicrobial resistance and molecular characterization of E. coli from poultry in eastern India. Veterinaria Italiana 54(3): 197–204.
- Liu Z, Klümper U, Shi L, Ye L and Li M. 2019. From pig breeding environment to subsequently produced pork: Comparative analysis of antibiotic resistance genes and bacterial community composition. *Frontiers in Microbiology* **10**: 43.
- Magray S N, Wani S A, Kashoo Z A, Bhat M A, Adil S, Farooq S, Rather M A, Kabli Z A, Banday M T and Nishikawa Y. 2018. Serological diversity, molecular characterisation and antimicrobial sensitivity of avian pathogenic *Escherichia coli* (APEC) isolates from broiler chickens in Kashmir, India. *Animal Production Science* **59**(2): 338–46.
- Maynard C, Bekal S, Sanschagrin F, Levesque C R, Brousseau R, Masson L, Larivie're S and Harel J. 2004. Heterogeneity among virulence and antimicrobial resistance gene profiles of extraintestinal *Escherichia coli* isolates of animal and human origin. *Journal of Clinical Microbiology* 42(12): 5444–52.
- Miles T D, McLaughlin W and Brown P D. 2006. Antimicrobial resistance of *Escherichia coli* isolates from broiler chickens and humans. *BMC Veterinary Research* 2: 7.
- Momtaz H, Rahimi E and Moshkelani S. 2012. Molecular detection of antimicrobial resistance genes in *E. coli* isolated from slaughtered commercial chickens in Iran. *Veterinarni Medicina* 57(4): 193–97.
- Muglikar M D, Kalyani I H, Desai D, Patel J M, Patel D R, Makwana P and Solanki J B. 2019. Serotyping and antimicrobial susceptibility pattern of avian pathogenic *Escherichia coli*. *International Journal of Current Microbiology and Applied*

- Sciences 8(12): 505-11.
- Nhung N T, Chansiripornchai N and Carrique-Mass J J. 2017. Antimicrobial resistance in bacterial poultry pathogens: A review. Frontiers in Veterinary Science 4: 126.
- O'Neill J. 2016. Tackling drug-resistant infections globally: Final report and recommendations. Review of Antimicrobial Resistance. Pp 5, HM Government and Wellcome Trust, London.
- Obeng A K, Richard H, Ndi O, Sexton M and Barton M. 2012. Antibiotic resistance, phylogenetic grouping and virulence potential of *Escherichia coli* isolated from the faeces of intensively farmed and free range poultry. *Veterinary Microbiology* **154**: 305–15.
- Plata G, Baxter N T, Susanti D, Volland-Munson A, Gangaiah D, Nagireddy A, Mane S P, Balakuntla J, Hawkins T B and Mahajan A K. 2022. Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Communication Biology 5: 293
- Poirel L, Madec J Y, Lupo A, Schink A K, Kieffer N, Nordmann P and Schwarz S. 2018. Antimicrobial resistance in *Escherichia* coli. Microbiology Spectrum 6(4): 1–27.
- Rahman M, Rahman B M and Rahman B. 2008. Antibiogram and plasmid profile analysis of isolated *Escherichia coli* from broiler and layer. *Research Journal of Microbiology* **3**(2): 82–90.
- Riffon R, Sayasith K, Khalil H, Dubreuil P, Drolet M and Legace J. 2001. Development of a rapid and sensitive test for identification of major pathogens in bovine mastitis by PCR. *Journal of Clinical Microbiology* **39**: 2584–89.
- Shehata M E, EL-Sherbiny G M, Mohamed A H and Shafik H M. 2016. Molecular and phenotypic characterization of some antimicrobial resistance genes in *Escherichia coli* isolated from human and broiler chickens. *International Journal of Current Microbiology and Applied Sciences* **5**(12): 953–65.
- Sköld O. 2001. Resistance to trimethoprim and sulfonamides. *Veterinary Research* **32**(3-4): 261–73.
- Van T T H, Chin J, Chapman T, Tran L T and Coloe P J. 2008. Safety of raw meat and shellfish in Vietnam: An analysis of *Escherichia coli* isolations for antibiotic resistance and virulence genes. *International Journal of Food Microbiology* **124**(3): 217–23.
- Wani S A, Samanta I, Bhat M A and Nishikawa Y. 2004. Investigation of shiga toxin-producing *Escherichia coli* in avian species in India. *Letters in Applied Microbiology* 39: 389–94.
- Wesonga S M, Muluvi G M, Okemo P O and Kariuki S. 2010. Antibiotic resistant *Salmonella* and *Escherichia coli* isolated from indigenous *Gallus domesticus* in Nairobi, Kenya. *East African Medical Journal* 87(5): 205–10.
- Younis G, Awad A and Mohamed N. 2017. Phenotypic and genotypic characterization of antimicrobial susceptibility of avian pathogenic *Escherichia coli* isolated from broiler chickens. *Veterinary World* **10**(10): 1167–72.