
Thermals came about by the heat differences between
the land and air. These differences then create the rising air
columns which are extremely important for birds and gliders
because both use these warm air streams to fly into the air
in a cheaper way (Reddy 2016). There were two main
objectives in this study. The first one was figuring out
whether the thermal performance of the cinereous vulture
matched well with other vulture species and comparing its
thermal performance to the other birds observed in the
literature. The second objective was understanding whether
tracking and observation of the cinereous vulture’s turn
performance in a thermal with glider were convenient and
figuring out the pros and cons of this approach. There was
a study that involved observing vulture from motorglider
(Pennycuick 1971). That work explained vulture’s better
performance in thermal even though it performed a low
glide performance compared to motorglider. Differences
between the soaring techniques of human-made aerial
vehicles and birds were also studied (Akos et al. 2008).
Flight performance equations of turning radius in thermal
were created from experimental studies (Gillies 2011). In
that work, the different soaring techniques for peregrine
falcon, stork, paraglider, and hang glider were discussed
and also the turning performances were calculated and
compared. The soaring ability and flight performance of
vultures also attracted researchers’ attention owing to long-
broad wings which were excellent for soaring. On the other

hand, there was enough work on conversation biology of
cinereous vultures in Turkey (Yamaç and Bilgin 2012).
Energy consumption of the soaring for raptors was
discussed according to a heart rate of vultures (Duriez et
al. 2014). Thermals directly linked to daily weather
condition, so thermal energies at different periods in a day
determines the birds’ flight time, also these conditions varied
seasonally especially important for immigrants (Van Loon
2011, Duerr et al. 2015). Wind effect on the soaring flight
as well as gliding speed and performance are of great
importance. The effects of wind can be measured from the
soaring data of birds because the birds generally follow the
thermal’s movements until the top (Weinzierl et al. 2016).
No bird can use a single thermal until the end of the day;
therefore, it must change thermals and fly next one. For
this reason, they must optimize their speed to provide a
lower sink rate until the next one (Taylor 2016, Singh et al.
2018). Decision making also plays an important role to
select take-off time for soaring (Harel et al. 2016). Wing
size also affects the soaring performance by creating contact
area with thermal and lower wing loading always provides
a lower turning radius and stall speed (Grilli 2017). In
addition, the cinereous vultures were near-threatened bird
species and it was a great chance to identify them near an
airfield (BirdLife International 2017). Furthermore, the
soaring ability can be changed with the bank angle
(Williams 2018). However, the vultures’ broad wings (that
have a low AR) increase the induced drag. So, the vultures
solved that problem by creating natural winglets with their
thumb feathers at wingtips. The effect of these structures
and the drag were measured by experimental data from the
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ABSTRACT

Soaring has great importance to large and heavy terrestrial birds because they can gain altitude without using
power in this way. The cinereous vultures were near threatened species in the world, so it was hard to observe them
while circling in thermals or slope soaring. Although there were enough works on conservation and breeding
biology of those birds, there was not any study on the soaring technique. In this work, cinereous vulture observed
and tracked in thermal columns using a glider to figure out whether the turn performance of the cinereous vulture
matched well with other vulture species. Finding the pros and cons of tracking and observation of the cinereous
vulture’s turn performance in a thermal by a glider was another objective of the study. The results indicated that the
cinereous vulture can complete the thermal circling with a narrower radius which provides advantages to stay in
the strongest part of the thermal.
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wind tunnel, soaring performance was also observed
(Pennycuick 1983, Williams 2018). Humans tried to
develop new skills to use thermals better by understanding
the soaring flight of birds. However, birds use these
upstream air movements more complex. Sometimes, they
make S turns in thermals or passes thermals without any
manoeuvre with level flight. Some birds fly with a flock
like storks generally turn different directions. However,
raptors generally turn into a fixed direction like glider pilots.
For these reasons, comparison of different bird species or
human strategies and connection of flight performance to
soaring strategy are important. However, there hasn’t been
any study on cinereous vulture’s soaring technique. In this
study, theoretical calculations were proved by tracking and
observation with camera records and GPS data of glider.
Also, the results compared with other soaring birds studied
in the literature.

MATERIALS AND METHODS

It was the first time, a biologist, as a trained pilot, flew
in a glider to observe and track the soaring behavior of
cinereous vulture in Turkey. The observations described in
this paper were based on a three hours flight using an SZD-
50 Puchacz glider which has camera on the left wing and
could turn in thermals at lower speeds. Altitude in the
airfield was 2,765 feet at sea level. Despite the low
temperature, the flight path of the glider and cinereous
vulture was covered by altocumulus clouds which created
temporary thermals. The first flight took 2 hours and the
second one lasted for an hour. Flying altitudes were
minimum 300 m and maximum 600 m AGL after released
from the cable of the winch. Weather conditions were ideal
for slope soaring due to a strong wind from the north. In
addition, other observations made on top of the hill which
was located near the nest of a cinereous vulture and circling
movement is recorded by video camera. From these
recordings, circling time is calculated correctly. Moreover,
the weight of the vulture and wing area were measured in
order to find wing loading which is the key point of the
turning performance. Calculating the thermal turning radius
(r) of cinereous vulture was extremely important for this
study. There are many different variants in thermals. The
first one was the wing loading (W/S) which was the ratio
of body weight to wing area. Wing loading determines the
airspeed of the bird during the non-flapping flight. Another

important factor on turning radius was the bank angle ( ).

Thermals have different power in different areas. Some
areas would be more powerful or less and therefore, it was
important for the soaring birds to stay in powerful areas. If
the bird can turn sharper (low turning radius), it would stay
in powerful areas easily. However, that sharp turn decreases
the contact area between the bird and thermal hence an
optimum bank angle must be kept. Although other factors
were important too, the air density was limited by
environment and the lift coefficient (CL) were limited by
bird and glider’s aerodynamics.

The turn radius of a flyer can be calculated in two ways.
In Eq. 1, it was calculated with the aid of wing loading and
bank angle. In Eq. 2 the turn radius calculated with the aid
of velocity (V) and load factor (n).

... (1)

... (2)

The load factor (n) was the ratio of the lift of the flyer to its
weight.

... (3)

Rewriting the Eq. (2) by leaving the load factor alone we
get a load factor(ncheck) for checking the load factor found
from Eq. (3).

... (4)

In literature, the airspeed of vulture in thermal was expected
at about 13 m/s. It was compatible with velocity estimation
comes from bird size in Eq. 5. which was derived by
Alerstam et al. (2007).

... (5)

Still, there were two unknown parameters lift coefficient
and bank angle (CL and) for vulture so, by validating the
loading factor (n) value from Eq. (3) and Eq. (4), the bank
angle θ took an average value (25–35) for the vultures
studied before (William et al. 2018). The lift coefficient
validated from the bank angle and load factor relations, i.e.
Eq. (3) and Eq. (4). Therefore, the lift coefficients can be
estimated when the n values overlapped. Interestingly, the
lift coefficients calculated experimentally were about 0.5–
0.75 times of the theoretical lift coefficients presented in
the literature.

RESULTS AND DISCUSSION

The first eye contact with the cinereous vulture was at
400 metres while it was circling in thermal. Then,
approaching the bird from behind at about the same height
as the glider was possible. Later, the bird and the glider
were able to turn in the same thermal until the 500 metres.
As soon as it passed 500 metres, the bird left the thermal
and flew directly to the west side of the airfield for seeking
prey. During the thermal circling, we had to use a spoiler
that functioned as an airbrake to descend to the bird’s level.
Later, the vulture came back to slope soaring path to gain
altitude. The flight with the vulture lasted for 1:30 h until it
landed on its nest. During the flight, it wasn’t easy to fly at
the same altitude as the vulture due to differences between
the birds’ and the glider’s turning performance. This
difference can be seen in Fig. 1.
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As it was expected, the vulture used lower bank angles
during seeking phase for the thermal. When it felt it was in
the centre of the thermal, the vulture increased the bank
angle to stay in the centre of the thermal column. The wind
was the main effect that determined the shape of the turning
radius. The prevailing wind came from the north, so when
the bird-headed into the north it levelled its wings to reduce
drag which pushed it back and covers distance before
turning again. When the bird-headed into the south, it
increased bank angle and started a steep turn. In that way,
it avoided the wind effect on circling in the thermal. In the
sink rate and turn radius graph were given for different bank
angles.

It can be clearly seen that the cinereous vulture used
different techniques between soaring flights and cross-
country flights. It spread its wings while soaring to increase
wing area. Wider wing area means lower sink speed and more
effective area for rising air. On the other hand, thumb feathers
were opened to reduce drag like a winglet and alula was used
as a slot. Both properties were used for more performance
at a lower speed which was of great importance for narrow
circling. It also uses its variable wings in closed form when

flying long distances to gain more speed during the cross-
country flight. In the thermal, the vulture can circle narrower
than glider during centring in the thermal thus avoiding a
weaker lift area in the thermal. Moreover, the predicted
higher bank angle decreases thermal performance by
decreasing contact area with thermal. This fact illustrated
in Fig. 2.

Turning performance comparison for the bird and the
sailplane was given in Table 1. The table gave us an idea
about understanding the observability of cinereous vulture
with a glider. There was a gap between the circling
velocities, it meant that the stalling velocity of glider limited
the pursuit. Despite vulture completed one tour in 14
seconds at a lower speed, the glider completed one tour in
21 seconds. Also, the vulture’s wing loading provided for a
narrower circling radius in the centre of the thermal.
Cinereous vulture had a low turning radius which brought
the turn sharper and staying easily in powerful areas of the
thermal column.

According to Akos et al. turning radius of the stork was
23 metres and falcon’s radius was 22 metres. So, the 30
metres radius of cinereous vulture significantly higher with
30 degrees bank angle. Besides, turning radius of a
Himalayan griffon vulture (Gyps himalayensis) and griffon
vulture (Gyps fulvus) almost the same size and determined
as 32 metres by Williams et al. The result of the study and
the comparison with other studies can be seen in Fig. 3.
These differences probably come from the difference in
birds’ size. The wingspan and wing area of the stork and
falcon are lower than cinereous vulture but their weight is

Fig. 1. Contact with the cinereous vulture and sharing thermal.
Turning direction of the vulture was counter-clockwise. We
entered the thermal by right turning then changed it to counter
clockwise to follow the vulture.

Fig. 2. Garmin flight data recorder could record the altitude,
vertical acceleration, speed, and global position of the glider. All
data were examined in TaskNAV, which is an Analysis System
for Glider Pilots.

Table 1. Turning performance data of the sailplane and the
cinereous vulture

Parameter Sailplane Cinereous vulture

Wing loading, W/S (N/m2) 285.00 65.00
Lift coefficient, CL 0.95 0.75
Turn Angle, θ (degree) 37.00 30.00
Turn Radius, r (m) 83.50 30.00
Velocity, V (m/s) 25.00 13.00
n from Eq. (3) 1.25 1.15
ncheck from Eq. (4) 1.25 1.15

Fig. 3. The turn radius vs wing loading of sailplane, paraglider
and soaring birds.
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also lower which provides a lower wing loading and has a
great effect on turning radius. The slight differences between
a cinereous vulture and other vultures can be explained by
slight differences in body masses and wing shapes.

These birds need strong thermals due to its high wing
loading. For this reason, most of the individuals can be
observed in the centre-west of Anatolia where is arid and
has strong thermals. Of course, there is a possibility to see
them out of Anatolia because cinereous vultures can use
slope soaring effectively. However, existing records showed
that the cinereous vultures were seen in the west of Anatolia,
especially in breeding season during foraging.

Vultures can adjust their speed and bank angle to
minimize their sink rates by protecting a position close to
the thermal column core. Observing vulture from glider
may be inconvenient due to the high performance of glider.
During the thermal circling, while we completed one tour,
it almost completed 1.5 tours and it used a stronger area of
thermal. Therefore, it was impossible to keep the same level
as the vulture. On the other hand, the speed of vulture lower
than that of the glider and we couldn’t observe it properly
in slope soaring path. In addition, glider’s sink speed was
also low too and the flight would be more dangerous
because of that speed extremely close to stall speed of glider
especially during the rolling. Hence, using a paraglider or
a hang glider would be more efficient when inside and
outside the thermal as their parameters are much closer to
that of the vulture. Due to data limitation in using telemetry
GPS which includes an accelerometer, variometer, and
altimeter, it’s better to fly by manned or unmanned aircrafts
for observing soaring behaviour of these birds.

REFERENCES

Akos Z, Nagy M and Vicsek T. 2008. Comparing bird and human
soaring strategies. Proceedings of the National Academy of
Sciences 105(11): 4139–43.

Alerstam T, Rosén M, Bäckman J, Ericson P G and Hellgren O.
2007. Flight speeds among bird species: allometric and
phylogenetic effects. PLoS Biology 5(8): e197.

BirdLife International. 2017. Aegypius monachus. (amended
version published in) The IUCN Red List of Threatened
Species. 2017: e.T22695231A118573298.

Duerr A E, Miller T A, Lanzone M, Brandes D, Cooper J and
O’Malley et al. 2015. Flight response of slope soaring birds
to seasonal variation in thermal generation. Functional Ecology

29(6): 779–90.
Duriez O, Kato A, Tromp C, Dell’Omo G, Vyssotski A L and

Sarrazin F et al. 2014. How cheap is soaring flight in raptors?
A preliminary investigation in freely-flying vultures. PLoS
ONE 9(1): e84887.

Gillies J A, Thomas A L and Taylor G K. 2011. Soaring and
manoeuvring flight of a steppe eagle Aquila nipalensis. Journal
of Avian Biology 42(5): 377–86.

Grilli M G, Lambertucci S A, Therrien J F and Bildstein K L.
2017. Wing size but not wing shape is related to migratory
behavior in a soaring bird. Journal of Avian Biology 48(5):
669–78.

Harel R, Duriez O, Spiegel O, Fluhr J, Horvitz N and Getz et al.
2016. Decision-making by a soaring bird: time, energy and
risk considerations at different spatio-temporal scales.
Philosophical Transactions of the Royal Society B 371(1704):
20150397.

Pennycuick C J. 1971. Gliding flight of the white-backed vulture
(Gyps africanus). Journal of Experimental Biology 55(1): 13–
38.

Pennycuick C J. 1983. Thermal soaring compared in three
dissimilar tropical bird species, Fregata magnificens,
Pelecanus occidentals and Coragyps atratus. Journal of
Experimental Biology 102(1): 307–25.

Reddy D. 2016. Autonomous thermal soaring of a fixed wing
UAV using temperature sensors. California State University,
Long Beach.

Singh D, Gupta V K, Thakur S and Sharma A. 2018. Design of
fixed wing unmanned aerial vehicle based on magnificent
Frigatebird. International Journal of Engineering and
Technology 7(4.39): 165–68.

Taylor G K, Reynolds K V and Thomas A L. 2016. Soaring
energetics and glide performance in a moving atmosphere.
Philosophical Transactions of the Royal Society B 371(1704):
20150398.

Van Loon E E, Shamoun-Baranes J, Bouten W and Davis S L.
2011. Understanding soaring bird migration through
interactions and decisions at the individual level. Journal of
Theoretical Biology 270(1): 112–26.

Weinzierl R, Bohrer G, Kranstauber B, Fiedler W, Wikelski M
and M Flack A. 2016 Wind estimation based on thermal soaring
of birds. Ecology and Evolution 6(24): 8706–18.

Williams H J, Duriez O, Holton M D, Dell’Omo G, Wilson R P
and Shepard E L. 2018. Vultures respond to challenges of near-
ground thermal soaring by varying bank angle. Journal of
Experimental Biology 221(23): jeb174995.

Yamaç E and Bilgin C C. 2012. Post-fledging movements of
Cinereous Vultures Aegypius monachus in Turkey revealed
by GPS telemetry. Ardea 100(2): 149–156.

52


