Effect of feeding management practices on water intake in Tharparkar and Rathi cattle of Indian hot arid zone

B K MATHUR1, R N KUMAWAT1, M L SONI2 and A S SIROHI3

ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan 342 003 India

Received: 3 October 2019; Accepted: 17 March 2020

Keywords: Arid cattle, Grazing, Stall feeding, Water intake

Water is becoming a scarce natural resource in the world and competition for drinking water has increased in many locations across the world (Parker and Brown 2003). The possible shortage of water also affects livestock productivity by affecting metabolic processes (Looper and Waldner 2007) and through dry matter production. The livestock sector uses more than 8% of the global water used, with the major portion going to irrigate feed crops for livestock (7% of the global usage) (Schlink et al. 2010). For cattle, peak demands are likely to occur during the summer months, but drinking water intake by animals reared outdoors is affected by the dry matter content of their food supply as well as by weather conditions and, in the case of dairy cows, by milk yields.

Overall, water used for product processing, drinking and servicing livestock is insignificant at global levels (less than 1% of global water), but it may be important in dry areas, in terms of the proportion of water used (Steinfeld et al. 2006). Therefore all procedures involving water use in animal production must be reviewed in order to increase its capture and use with positive effects for the productive systems (Araújo et al. 2010). Very few studies have been conducted so far to measure nutritional requirements of water intake for indigenous cattle breeds (Mathur et al. 2010). For cattle, water intake and milk yield in the morning and afternoon regularly, twice weekly for six weeks. The daily water intake of animals over the weeks of respective season was averaged to get daily response. Animals were provided dry fodder as roughages ad lib. and left over fodder weighed. The roughage source included pearl millet stover, wheat straw and dried Cenchrus ciliaris grass. Balanced concentrate was provided to animals as per production stage of lactating and heifers. No green fodder was available to stall fed animals. The data were analyzed by using t-test as per Snedecor and Cochran (1994).

All the animals were maintained under similar management conditions of loose housing system. Observations were recorded for water intake, dry matter intake and milk yield in the morning and afternoon regularly, twice weekly for six weeks. The daily water intake of animals over the weeks of respective season was averaged to get daily response. Animals were provided dry fodder as roughages ad lib. and left over fodder weighed. The roughage source included pearl millet stover, wheat straw and dried Cenchrus ciliaris grass. Balanced concentrate was provided to animals as per production stage of lactating and heifers. No green fodder was available to stall fed animals. The data were analyzed by using t-test as per Snedecor and Cochran (1994).

On the basis of the geographical locations of the experimental stations [experiment stations lie at 26°15’N (Jodhpur) and 28°03’N (Bikaner) latitude], it can be inferred that the climate was tropical, with hot and dry weather for most of the year. The yearly temperature ranges from a minimum of 4°C to a maximum of 49.2°C. The average annual rainfall of Jodhpur were 370 mm, and of Bikaner 282.95±3.21 mm. Average daily water intake (DWI) values of experimental animals during different seasons are given in Table 1. This intake was higher during summer season than in the other seasons.
seasons in the animals of both the breeds. This might be due to higher demand of water to maintain physiology of animal during thermal stress conditions. During winter and summer season, Rathi cows had higher DWI/kg W^{0.75} than Tharparkar cows in both stall-fed and grazing systems. However, Sirohi et al. (2018) reported average 32.84 L DWI in indigenous cattle in semi-arid zone of the country. Water intake and requirements are influenced by physiological state, breeds, rate of milk yield and dry matter intake and environmental factors (Payne 1966).

It was observed that water intake (ml/kg W^{0.75}) was least in experimental animals during winter season than in the other seasons. Water intake in lactating cows and heifers of both the breeds followed the pattern of THI during summer season (Figs 1 and 2). The water requirement of animals increase with increasing temperature and it is also shown that water losses tend to increase under such conditions (Lardy et al. 2008). The nutrient needs of these animals probably differ from those prescribed in the feeding standards of temperate countries (NRC 1989, AFRC 1990) because of differences in genetic makeup, mature body size and growth rate, quality of feeds, climatic conditions and differences in efficiency of nutrient utilization.

Table 2 and 3 depict average water and dry matter intake and milk yield of lactating Tharparkar and Rathi cattle during summer season.

Table 2. Daily water intake (liters) of experimental animals during different seasons at Jodhpur and Bikaner

<table>
<thead>
<tr>
<th>Season</th>
<th>Stall fed</th>
<th>Heifers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tharparkar</td>
<td>Rathi</td>
</tr>
<tr>
<td>Rainy</td>
<td>45.49±3.25</td>
<td>47.73±2.09</td>
</tr>
<tr>
<td>Winter</td>
<td>45.88±3.34</td>
<td>41.29±0.71</td>
</tr>
<tr>
<td>Summer</td>
<td>58.62±2.59</td>
<td>55.64±1.44</td>
</tr>
<tr>
<td>Winter</td>
<td>45.88±3.34</td>
<td>41.29±0.71</td>
</tr>
<tr>
<td>Summer</td>
<td>58.62±2.59</td>
<td>55.64±1.44</td>
</tr>
</tbody>
</table>

Table 2. Water and dry matter intake and milk yield of lactating Tharparkar and Rathi cattle during summer season

<table>
<thead>
<tr>
<th>Group</th>
<th>Body weight (kg)</th>
<th>Metabolic body weight (kg W^{0.75})</th>
<th>Dry matter intake (kg/head/day)</th>
<th>Water intake (ml/kg W^{0.75})</th>
<th>Milk yield (ml/l of water intake)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tharparkar Stall fed</td>
<td>349.00±3.17</td>
<td>80.74±0.55</td>
<td>10.49±0.14</td>
<td>56.0±1.96</td>
<td>693.55±19.14</td>
</tr>
<tr>
<td>Grazing</td>
<td>328.80±1.94</td>
<td>77.21±0.34</td>
<td>8.18±0.09</td>
<td>54.76±1.75</td>
<td>709.23±17.36</td>
</tr>
<tr>
<td>Rathi    Stall fed</td>
<td>249.15±0.35</td>
<td>62.71±0.07</td>
<td>7.56±0.17</td>
<td>52.89±0.81</td>
<td>843.35±11.60</td>
</tr>
<tr>
<td>Grazing</td>
<td>257.30±1.32</td>
<td>64.24±0.25</td>
<td>5.92±0.16</td>
<td>56.18±1.71</td>
<td>874.56±20.16</td>
</tr>
</tbody>
</table>

Figures with different superscripts differ significantly (P<0.05).
The findings of the study revealed that water intake increases with rise of THI, however, arid cattle breeds’ milk production were not adversely affected. Grazing Rathi cows had lesser water intake/kg W0.75 and per kg milk yield basis, however, Rathi heifers had lesser water intake/kg W0.75 basis under stall fed and grazing system of management in their native tract.

SUMMARY

The present study was conducted to assess the effects of grazing and stall feeding on water intake in Tharparkar and Rathi cattle in their native tract of hot arid zone. Lactating cattle (Tharparkar 10; Rathi 10) and heifers (Tharparkar 10; Rathi 10) of each breed were divided into two groups, forming grazing and stall-fed group at Jodhpur and Bikaner districts of Rajasthan. Observations were recorded for water intake, dry matter intake and milk yield in the morning and afternoon regularly, twice weekly for six weeks during each season (summer, winter and rainy) continuously for two years. Water intake in lactating cows and heifers of both the breeds followed the pattern of THI during summer season. Rathi cows had higher water intake/kg W0.75 than Tharparkar cows, however, Tharparkar heifers had higher water intake/kg W0.75 than Rathi heifers. Grazing Rathi cows had significantly higher water intake than stall-fed cows. Study revealed that Tharparkar cows had lesser water intake per kg W0.75 and per kg milk yield basis; however, Rathi heifers had lesser water intake per kg W0.75 basis in their native tract.

ACKNOWLEDGEMENTS

The authors are thankful to the Director, ICAR-Central Arid Zone Research Institute for providing necessary facilities for conducting the experiment. The assistance of technical staff is duly acknowledged for recording of observations.

REFERENCES


