Baby corn production and utilization of remaining fodder in total mixed ration of buffalo calves

M P S BAKSHI^{1⊠}, M WADHWA¹ and BALWINDER KUMAR²

Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141 004 India

Received: 24 February 2020; Accepted: 30 March 2021

ABSTRACT

This study was taken up to find out suitable maize variety cultivated with or without fertilizer for baby corn ear production and evaluation of leftover fodder/green stalks as livestock feed. Experiment-1: Six varieties of hybrid maize [PMH-1 grain (V₁), Bulland (V₂), African Tall (V₄), Dekalb 7074 Monsanto (V₅), Proagro 4640 (V₆), Egyptian variety G-5414 (V_7)] and one composite maize variety J1006 (V_3) were cultivated without fertilizer (F_1) , with either Azotobacter treated seed (F2), recommended dose of fertilizer (F3), or F2 + F3 (F4) at the University Farm. Experiment-2: The leftover fodder of the best baby corn hybrid variety and that from V₃ were evaluated in total mixed ration (TMR) as feed for buffalo calves. In Experiment-1 the weight of edible cob without husk and fodder yield were the highest (P<0.01) in V₂. The in vitro net gas production, digestibility of nutrients and ME availability from the fodder was the highest in V_7 comparable to V_2 but higher than other varieties. The fodder from baby corn G-5414 was considered as the best. In Experiment-2 the chemical composition and in vitro evaluation of TMRs containing either conventional maize fodder (TMR-1; J-1006) or baby corn fodder (TMR-2; Baby corn G-5414) were comparable. Both the TMRs were iso-nitrogenous and iso-caloric. The digestibility of proximate and a cell wall constituent was considerably higher in calves fed TMR-2 than those fed TMR-1. The efficiency of nitrogen utilization, blood profile and excretion of purine derivatives in the urine were comparable in both groups. It was concluded that fresh baby corn fodder can be utilized efficiently by the ruminants without any adverse effect on the health of animals.

Keywords: Baby corn production, Buffalo calves, *In vitro*, Leftover green fodder, Utilization

The shortage of feedstuffs in India have been reported from time to time (Bakshi and Wadhwa 2004, Ravi Kiran et al. 2012). The Planning Commission's Working Group on Animal Husbandry and Dairying's reported a deficit of 64.21 and 24.83% in demand and supply in 2020 (Rathod and Dixit 2019). Therefore, in order to bridge this gap, newer alternate fodder resources need to be explored.

Different genotypes of maize, viz. baby corn, green cob and pop corn, seed varieties besides fodder varieties are gaining immense popularity. Baby corn and green cobs are in high demand. Baby corn is ear of maize (*Zea mays* L.) plant harvested young, before fertilization. After 50–55 days of sowing, three to five baby corn ears are hand-picked from each plant as soon as 2–5 cm silk emerges from the ear tips. In India, the average baby corn production is about 7.5–8.5 tonnes/ha. Out of this the human-edible husked baby corn cob is only 15%, while the remaining 85% constitutes of outer peel/husk with a silky thread-like

Present address: ¹Department of Animal Nutrition, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141 104; ²Krishi Vigyan Kendra, Booh, Harike, distt. Tarn Taran, Punjab 143 412 India. [™]Corresponding author e-mail: bakshimps2@gmail.com

structure called baby corn husk with silk. It contains 11-12% CP and can be fed fresh or after ensiling and is readily acceptable, palatable, relished by the animals and has nutritive value comparable to conventional maize fodder (Bakshi and Wadhwa 2012, Bakshi et al. 2016, Anonymous 2017). Another by-product is green stalks with leaves, also called leftover baby corn fodder. Keeping in view the harmful effects of chemical fertilizers on the environmental health and escalation in the cost of crop production, these should be used judiciously. Integrated nutrient management (INM) is effective tool for judicious application of fertilizers. The adoption of INM practices will increase the supply and availability of soil nutrients to the crop, reduce the production cost and will boost the economic status of the farmers. This study was taken up to find out suitable maize variety cultivated with or without fertilizer for baby corn ear production and evaluation of leftover fodder/green stalks in the total mixed ration (TMR) of buffalo calves.

MATERIALS AND METHODS

Experiment-1: Six varieties of hybrid maize [PMH-1 grain (V_1) , Bulland (V_2) , African Tall (V_4) , Dekalb 7074 Monsanto (V_5) , Proagro 4640 (V_6) , Egyptian variety G-

5414 (V_7)] and one composite maize variety J1006 (V_3) were cultivated without fertilizer (F_1) , with *Azotobacter* treated seed (F_2) , recommended dose of fertilizer (F_3) , or $F_2 + F_3$ (F_4) with three replicates at University fodder production area of Department of Animal Breeding and Genetics, GADVASU, Ludhiana. The sowing was done in 30 cm apart rows with plant to plant spacing of 20 cm. The net plot size was 9.6 m^2 $(2.4 \times 4 \text{ m})$, each plot had 8 lines containing 20 plants per row. Herbicide atrazine was applied as pre-emergence @ 1.0 kg/ha to control the weeds in crop. The soil of the experimental field was loamy sand in texture, low in available nitrogen and phosphorus and high in available potash. Therefore, recommended dose of fertilizer, i.e. 60 kg N and 30 kg P_2O_5 /ha was applied at the time of sowing (Anonymous 2010).

Nutritional evaluation of leftover fodder: The fodder from different maize hybrids (7) cultivated with different fertilizers (4) in three replicates was evaluated by in vitro gas production technique (IVGPT) in triplicate (Menke et al. 1979, Menke and Steingass 1988). The data were analyzed by 7×4 factorial design (Snedecor and Cochran 1994) by using SPSS (2009) version 16.0 and the means were tested for the significant difference by using Duncan's multiple range test.

Experiment-2: Comparative evaluation of conventional maize fodder and baby corn fodder in TMR: Two TMRs containing either conventional maize fodder or baby corn fodder were formulated. Both the TMRs contained concentrate mixture, conventional maize or baby corn fodder and wheat straw in 42: 44: 14 ratio on DM basis. The finely ground samples of both the TMRs were analyzed for proximate and cell wall constituents. The nutritional value of TMRs was evaluated by IVGPT.

In vivo evaluation: A 45-d feeding trial was conducted on 8 male Murrah buffalo calves (live weight 127.63±3.63 kg). The animals divided into 2 equal groups were offered TMRs containing concentrate mixture, either BC fodder or conventional maize fodder and wheat straw in 44: 42: 14 ratio on DM basis as per NRC (2001). The formulated concentrate mixture used in the TMR contained maize 20, wheat 15, deoiled mustard cake 10, mustard cake 10, soybean meal 15, rice bran 15, deoiled rice bran 12, common salt 1 and mineral mixture 2 parts each. A seven days metabolism trial was conducted before the termination of the experiment.

Analytical methods: The finely ground samples of feedstuffs, orts and faeces were analyzed for proximate components (AOAC 2007), cellulose (Crampton and Maynard 1938) and other cell wall constituents (Van Soest et al. 1991). Hemi-cellulose was determined by difference in NDF and ADF. The urine samples were analysed for total-N (AOAC 2007). Volatile fatty acids (VFAs) production in the in vitro fermentation media were also estimated by using GLC (Cottoyn and Boucque 1968). Methane produced during the in vitro fermentation in the syringes was estimated by using the equation based on VFA proportions (Widiawati and Thalib 2009). The data were analyzed by using one way ANOVA (Snedecor and Cochran 1994) by using SPSS (2009) version 16.0 and the means were tested for the significant difference by using Tukey's b test.

RESULTS AND DISCUSSION

Experiment 1: Quality parameters of baby corn cob: The length of cob with husk and silk, that of cob with husk and that of cob only was the lowest (P<0.01) in Bulland variety and the highest (P<0.01) was observed in J-1006

Table 1. Effect of different cultivated maize hybrids and fertilizers on the physical parameters of baby corn and on leftover fodder yield

Para-		Varieties of baby corn tested (V)							Type of fertilizers used (F)				PSE
meter	V_1	V_2	V_3	V_4	V_5	V_6	V_7		F_1	F_2	F ₃	F ₄	-
L-1	32.64 ^c	27.21a	32.78°	31.98 ^{bc}	31.11 ^{bc}	28.88 ^{ab}	30.37 ^{bc}	0.75	29.78 ^A	30.95 ^{AB}	30.15 ^{AE}	31.95 ^B	0.63
L-2	25.42e	20.40a	25.48e	24.01 ^d	22.87°	21.27ab	21.99 ^{bc}	0.23	22.66^{A}	22.98^{A}	22.70^{A}	23.68^{B}	0.21
L-3	10.17^{b}	9.43a	11.23 ^d	10.96 ^{cd}	10.25 ^b	10.55bc	9.59a	0.12	10.04^{A}	10.19^{A}	10.50^{B}	10.52^{B}	0.10
G-1	8.62 ^b	8.34 ^b	8.75 ^b	8.44 ^b	7.49^{a}	7.85a	7.72a	0.10	8.14	8.23	8.16	8.17	0.08
G-2	5.95 ^b	7.07^{c}	5.97^{b}	5.99 ^b	5.06^{a}	5.20^{a}	5.06a	0.16	5.58	5.74	5.84	5.86	0.14
W-1	74.18 ^b	56.11a	72.59^{b}	66.38^{b}	48.93a	51.56a	51.50a	1.85	57.97 ^A	61.08^{AB}	59.75 ^A	61.92^{B}	1.50
W-2	17.11 ^b	22.49°	22.22°	21.25°	14.40 ^{ab}	15.15 ^{ab}	12.86a	0.63	17.02	18.26	18.65	17.78	0.52
W-3	57.07 ^d	33.62a	50.37 ^{bc}	45.13 ^b	34.53a	36.41a	38.64a	1.39	40.95^{A}	42.82^{A}	41.10^{A}	44.14^{B}	1.16
W-4	76.93°	59.92a	69.39 ^b	67.99 ^b	70.57^{b}	70.62^{b}	75.03°	1.15	70.64^{AB}	70.10^{A}	68.79^{A}	71.29^{B}	0.95
FY	284.75 ^{bcd}	333.13 ^d	327.33 ^d	313.91 ^{cd}	214.51 ^a	232.51 ^{ab}	256.89abc	15.50	268.12	270.76	298.74	283.92	11.72

V₁, PMH1; V₂, Bulland; V₃, J1006; V₄, African tall; V₅, DeKalb 7074 Monsanto, V₆, Proagro 4640 (Bharti Dolmento); V₇, Baby corn G-5414 (Bharti Dolmento); F₁, Control (No fertilizer); F₂, Azotobacter treated seed only; F₃, Recommended dose of fertilizer for baby corn (60 kg N and 30 kg P₂O₅/ha at the time of sowing); F₄, Recommended rate of fertilizer + *Azotobacter* treated seed, L-1, Length of cob with husk and silk, cm; L-2, Length of cob with husk only, cm; L-3, Length of edible cob only, cm; G-1, Girth of cob with husk, cm; G-2, Girth of cob without husk, cm; W-1, Weight of cob with husk, g; W-2, Weight of cob without husk, g; W-3, Weight of husk only, g; W-4, Weight of husk, as % of weight of cob with husk; FY-Fodder yield, q/ha; Means with different superscripts^{a,b,c} for different varities of baby corn and superscripts^{A, B, C} for different fertilizers used within a row differ significantly; PSE, Pooled standard error.

variety (Table 1). The values reported earlier (Kumar et al. 2015, Singh et al. 2015) were considerably lower than those obtained in the present study. The length of cobs of traditional baby corn varieties was comparable to that of Bulland variety. The length of the ears and the girth of cob with husk was comparable in V_1 to V_4 , but higher than that of V₅ to V₇ varieties. The girth of cob without husk was the highest (P<0.05) in Bulland variety than all other varieties. It was followed by that of V_1 , V_3 and V_4 varieties which had comparable diameter of cob without husk; but higher (P<0.05) than that of V_5 to V_7 varieties, which in turn were comparable. Earlier studies (Kumar et al. 2015, Singh et al. 2015) revealed lower girth of cobs without husk as compared to the present values. The weight of cob with husk was the lowest (P<0.01) in V₅ variety comparable with V₂, V₆ and V₇, but significantly lower than V₁, V₃ and V₄, which were comparable. The weight of edible cob without husk, fit for human consumption was the highest (P<0.01) in V_2 followed (P<0.01) by V_1 and lowest (P<0.01) weight of cob without husk was observed in V₇. Singh et al. (2015) reported lower weight of cobs without husk and silk as compared to the present values. The weight of the husk was the highest (P<0.01) in V_1 followed by V_3 and V_4 varieties. The weight of husk was comparable in all the remaining varieties. Weight of husk, as per cent of weight of cob with husk was the highest (P<0.01) in V₁ comparable with that of V_7 and the lowest weight was recorded in V_2 , while the weight of husk of remaining varieties was comparable and in between. The fodder yield was the highest in V₂ comparable with that of V₁, V₃ and V₄. The lowest (P<0.01) fodder yield was recorded in V₅ which was comparable with that of V₆ and V₇. Earlier Kumar et al. (2015) reported that fodder yield of 6 different baby corn varieties varied between 107.55 to 266.9 g/ha, which was considerably lower than the one obtained in the present study. However, Singh et al. (2015) reported that leftover fodder yield varied from 308 to 375 q/ha.

Organic sources of fertilizers application on soil not only amended the crop productivity but also sustain and maintain the soil physical and chemical properties such as organic carbon, water holding capacity along with supplying N, P and K (Singh *et al.* 2017). These also help in making unavailable sources of elemental nitrogen, fixed phosphates, micronutrients, and decomposed plant residues into an available form to aid to plant to absorb the nutrients (Kumar *et al.* 2014). These also cause reduction in cost of cultivation as well enhance nutrition value of the sink without any residual toxicity which can influence human health and moreover maintain ecological balance.

The effect of different fertilizers on the physical parameters irrespective of the varieties revealed that the length of cob with husk and silk, cob with husk and that of edible cob only was higher (P<0.01) in the group cultivated with F_4 as compared to all other groups cultivated with or without fertilizers (Table 1). The length of cobs with or without husk and silk was comparable in groups cultivated with (F_2 and F_3) or without (F_1) fertilizers, except that the length of cob (without husk and silk) was comparable in groups cultivated with F_3 and F_4 fertilizers. The weight of cob with husk, was the highest (P<0.01) in group cultivated with F_4 fertilizer as compared to all other groups. Hekmat and Abraham (2016) advocated that addition of organic sources had significant influence on all yield parameters and also yield of cob and fodder of baby corn.

The weight of cob with husk, was comparable in groups cultivated with (F_2 and F_3) or without (F_1) fertilizers. The weight of edible cob without husk, fit for human consumption was not affected by the type of fertilizer used. The weight of the husk was the highest (P<0.01) in group cultivated with F_4 fertilizer as compared to all other groups. The weight of husk was comparable in groups cultivated with (F_2 and F_3) or without (F_1) fertilizers. Weight of husk, as per cent of weight of cob with husk was the highest (P<0.01) in F_4 comparable with that of F_1 as compared to groups cultivated with other fertilizers. The fodder yield was comparable in all the groups and was not affected by the type of fertilizer used.

The effect of different varieties on the chemical

Table 2. Effect of different cultivated maize hybrids and fertilizers on the chemical composition of leftover baby corn fodder, % DM basis

Para- meter		Varieties of baby corn tested (V)*						PSE	Type of fertilizers used (F)*			F)*	PSE
	V_1	V_2	V_3	V_4	V_5	V_6	V_7	_	F_1	F ₂	F ₃	F_4	
Ash	5.80	5.66	5.69	5.33	5.43	5.91	5.61	0.16	5.49	5.61	5.81	5.63	0.14
OM	94.20	94.34	94.31	94.67	94.57	94.09	94.39	0.61	94.51	94.39	94.19	94.37	0.14
CP	8.29^{b}	8.07^{ab}	7.73^{ab}	7.61 ^{ab}	6.83a	7.74^{ab}	8.50^{b}	0.29	7.32^{A}	7.17^{A}	8.18^{B}	8.63^{B}	0.25
NDF	69.30	68.28	66.83	67.06	67.85	68.05	70.20	1.45	69.60	67.52	66.41	69.36	1.24
ADF	37.30	37.01	38.51	38.78	39.58	40.89	37.50	1.07	38.09	39.76	37.28	38.91	0.91
HC	32.00	32.28	28.72	28.28	28.28	27.16	32.70	1.71	31.51	28.34	29.13	30.45	1.46
Cellulos	se 32.90	32.01	31.18	31.18	31.19	30.74	31.32	0.72	31.00	30.21	32.62	32.20	0.62
EE	1.78	1.50	1.52	1.52	1.36	1.42	1.51	0.09	1.51	1.64	1.47	1.45	0.08
ADL	3.51	3.73	3.63	3.51	3.82	3.31	3.63	0.27	3.98	3.27	3.30	3.81	0.23

*See footnote of Table 1. OM, Organic matter; CP, Crude protein; NDF, Neutral detergent fibre; ADF, Acid detergent fibre; HC, Hemicellulose; EE, Ether extract; ADL, Acid detergent lignin. Means with different superscripts^{a,b,c} for different varities of baby corn and superscripts^{A,B,C} for different fertilizers used within a row differ significantly; PSE, Pooled standard error.

Table 3. Effect of different cultivated maize hybrids and fertilizers on the *in-vitro* net gas production, digestibility of nutrients and ME of leftover fodder

Para-	Varieties of baby corn tested (V)*							PSE	Type of fertilizers used (F)*			PSE	
meter	V_1	V_2	V_3	V_4	V_5	V 6	V_7	-	F ₁	F ₂	F ₃	F ₄	
NGP	178.75°	192.60 ^d	180.68°	174.89 ^b	181.48 ^c	169.33a	189.88 ^d	1.23	195.09 ^D	183.41 ^C	178.27 ^B	167.59 ^A	0.93
NDFD	38.04^{d}	46.79^{f}	40.86^{e}	33.19a	36.35°	34.58^{b}	47.86^{f}	0.33	44.71^{D}	39.2^{B}	40.84°	33.82^{A}	0.25
TOMD	55.61°	60.82e	56.24 ^d	53.85^{b}	56.12 ^{cd}	53.00^{a}	60.60^{e}	0.24	59.12^{D}	56.17^{B}	57.33 ^C	53.8^{A}	0.175
PF	2.14 ^c	1.91a	2.06^{bc}	2.11 ^c	1.96 ^{ab}	2.18^{c}	1.96 ^{ab}	0.03	1.95^{A}	2.02^{A}	2.03^{A}	2.19^{B}	0.06
ME	6.83a	7.29^{b}	6.92a	6.78^{a}	6.94^{a}	6.73a	7.24^{b}	0.08	7.24^{B}	6.96^{A}	6.85^{A}	6.79^{A}	0.06

*See foot note of Table 1. NGP, Net gas production ml/g DM/24 h; NDFD, Neutral detergent fibre digestibility %; TOMD, True organic matter digestibility %; PF, Partitioning factor; ME, Metabolizable energy MJ/kg DM. Means with different superscripts^{a,b,c} for different varities of baby corn and superscripts^{A, B, C} for different fertilizers used within a row differ significantly; PSE, Pooled standard error.

composition of fodder irrespective of the fertilizer used revealed that there was no difference in the proximate and cell wall constituents of different varieties except the CP content (Table 2), which was the significantly (P<0.01) higher in V_7 as compared to V_5 , but statistically comparable with all other varieties. The effect of different fertilizers, irrespective of the varieties, had no significant effect on the proximate and cell wall constituents' composition of leftover fodder, except that on CP content (Table 2). The CP content was the highest (P<0.01) in groups cultivated by using F_4 fertilizer, comparable with that of F_3 cultivated varieties, but significantly higher (P<0.01) than those cultivated without fertilizer (F_1) or F_2 .

In vitro evaluation: The effect of different varieties on the in vitro nutritional evaluation of fodder, irrespective of the fertilizer used revealed that the net gas production was the highest in V₂ which was comparable with Egyptian variety G-5414 (V₇), but significantly higher (P<0.01) than V₅ and the rest of the tested varieties (Table 3). It was observed to be the lowest in V₆ variety. The digestibility of NDF and true OM was the highest in V₇, comparable with V₂ variety, but significantly higher (P<0.01) than V₃ and the rest of the tested varieties. The lowest digestibility of NDF was observed in V_4 , while that of true OM was in V_6 . The PF was the highest in V_6 , comparable with that of V_1 , V₃ and V₄, but significantly higher (P<0.01) than V₂, V₅ and V_7 varieties. The available ME was the highest in V_2 , statistically comparable with V₇, but significantly higher (P<0.01) than the rest of the tested varieties.

The effect of different fertilizers, on the *in vitro* nutritional evaluation of fodder, irrespective of the varieties revealed that net gas production, digestibility of NDF and true OM; and ME availability were depressed significantly (P<0.01) in the groups supplemented with different fertilizers as compared to control without any fertilizer group (Table 3). However, PF was significantly higher (P<0.01) in group in which F_4 was used as compared to all other tested fertilizers.

Experiment-2: In vitro and in vivo evaluation of TMRs: The chemical composition of two TMRs containing either conventional maize fodder or baby corn fodder revealed that proximate as well as cell wall constituents contents

were comparable except that ADF content was higher (P<0.05) in TMR containing BC fodder than maize fodder (Table 4). Both the TMRs were iso-nitrogenous and isocaloric. The in vitro evaluation revealed that the NGP, digestibility of nutrients, VFAs and ME availability were comparable in both the TMRs (Table 4). Chaudhary et al. (2016) tested five maize genotypes for their forage quality and in vitro DM digestibility. Forage maize (J-1006) and baby corn hybrid (HM-4) were at par with respect to forage quality parameters. Further, the correlation data showed that CP was positively related to IVDMD but negatively associated with fibre components (CF, NDF and ADF). Shanti et al. (2012) reported that the fodder of baby corn was found to be superior with respect to crude protein content, while other parameters, viz. crude fibre and in vitro DM digestibility were commendable. Though the fodder yields were lesser in baby corn, the revenue from baby cobs

Table 4. Chemical composition and *in vitro* evaluation of total mixed ration containing either maize fodder or baby corn fodder, % DM basis

Parameter	TMR-1	TMR-2	Pooled SE
Total ash	7.00	6.88	0.06
OM	93.00	93.12	0.06
EE	1.95	1.85	0.04
CP	13.29	13.50	0.09
NDF	67.2	66.4	0.26
ADF	41.45a	42.45 ^b	0.30
Hemicellulose	25.75	23.95	0.56
Cellulose	26.00	26.30	0.26
In vitro evaluation			
NGP*	165.77	165.33	1.94
NDFD	39.88	35.14	1.57
TOMD	57.66	54.93	1.92
PF	2.203	2.202	0.23
TVFAs	5.19	5.16	0.14
ME	7.00	6.99	0.14

TMR-1 contained conventional maize fodder; TMR-2 contained baby corn fodder; TVFAs, Total volatile fatty acids mM/dl; ME, Metabolizable energy MJ/kg DM. *See foot note of Table 3.

Table 5. Digestibility of nutrients and N-retention in buffalo calves fed total mixed ration containing either maize fodder or baby corn fodder

Parameter	TMR-1	TMR-2	Pooled SE
DM intake, kg/day	3.34	3.22	0.18
Digestibility of nutrients, %			
DM	50.14	59.17	4.11
OM	53.92	62.45	3.86
CP	55.43	55.08	2.41
NDF	45.64	55.36	4.72
ADF	30.95	43.08	5.66
Cellulose	39.96	43.77	4.86
Hemicellulose	57.41	63.75	4.21
N-balance, g/day			
N-intake	70.93	71.06	2.56
Faecal-N	15.5	15.98	1.69
Urinary-N	28.34	29.45	2.22
N-retained	27.09	25.63	3.58
N-retained as % of absorbed	47.16	46.4	5.06

TMR-1 contained conventional maize fodder; TMR-2 contained baby corn fodder.

especially in urban and peri-urban areas brought higher returns. The net returns were ₹ 39,750/ha from baby corn. The economics through net returns and B:C ratio indicated baby corn > fodder crop > seed crop > green cob. Besides baby corn provides an added advantage. Shekara *et al.* (2015) also reported that maize grown for either green cob or baby corn intercropped with cowpea (fodder) round the year is more remunerative than cultivation of perennial Napier bajra intercropping with cowpea/lucerne to meet the fodder requirement in peri-urban area of Karnataka.

The *in vivo* studies conducted on male buffalo calves revealed that the daily DM intake was comparable, digestibility of proximate and cell wall constituents was considerably higher in calves fed TMR containing baby corn fodder (Table 5). The N-intake, digestible-N, N-retained and efficiency of nitrogen utilization were statistically comparable in both the TMRs.

The results clearly indicated that baby corn fodder can be utilized efficiently by the ruminants. Further, besides getting handsome amount by selling baby corn cobs for human consumption, the dairy farmers can get additional income by feeding husk with silk and baby corn fodder to dairy cattle, thereby can bridge the gap between demand and supply of green fodder to certain extent.

REFERENCES

- Anonymous. 2010. Package of Practices for Crops of Punjab Kharif, 2010. pp 24.
- Anonymous. 2017. *Baby corn. Cornindia, everything about corn.* http://cornindia.com/babycorn [Retrieved on December 13, 2019].
- AOAC. 2007. Official Methods of Analysis. 7th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. Bakshi M P S and Wadhwa M. 2004. Evaluation of forest tree leaves of semi-hilly arid region as livestock feed. Asian

- Australasian Journal of Animal Science 17: 777–83.
- Bakshi M P S and Wadhwa M. 2012. Nutritional evaluation of baby corn husk—A new feed resource for livestock. *Indian Journal of Animal Sciences* **82**: 1548–50.
- Bakshi M P S and Wadhwa M and Makkar H P S. 2016. Wastes to worth: vegetable wastes and by-products as animal feed. *Commonwealth Agriculture Bureau Reviews* 11: No. 012.
- Chaudhary D P, Kumar A, Kumar R, Singode A, Mukri G, Sah R P, Tiwana U S and Balwinder Kumar. 2016. Evaluation of normal and specialty corn for fodder yield and quality traits. *Range Management and Agroforestry* 37: 79–83.
- Cottyn B G and Boucque C V. 1968. Rapid method for the gas chromatographic determination of volatile fatty acids in rumen fluid. *Journal of Agricultural and Food Chemistry* 16: 105–7.
- Crampton E W and Maynard L A. 1938. The release of cellulose and lignin content to the nutritive value of animal feeds. *Journal of Nutrition* **15**: 383–95.
- Hekmat A W and Abraham T. 2016. Yield and yield attributes of certified organic baby corn (*Zea mays* L.) as influenced by different sources of manures and intercropping with pulses. *International Journal of Multidisciplinary Research and Development* 3: 169–73.
- Kumar M, Brar S P S and Sukhchain. 2015. Evaluation of baby corn varieties for forage yield and various other traits in maize. *Forage Research* **41**: 53–55.
- Menke K H and Steingass H. 1988. Estimation of the energetic feed value obtained by chemical analysis and *in vitro* gas production using rumen fluid. *Animal Research and Development* 28: 7–55.
- Menke K H, Rabb L, Salewski A, Steingass H, Fritz D and Schneider W. 1979. The estimation of the digestibility and ME content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor *in vitro*. *Journal of Agricultural Science* Cambridge **93**: 217–22.
- NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th revised edn. National Research Council, National Academy of Sciences, Washington, DC, USA.
- Rathod P K and Dixit S. 2019. Green fodder production: A manual for field functionaries. Patancheru 502 324, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). 56 pp.
- Ravi K G, Suresh K P, Sampath K T, Giridhar K and Anandan S. 2012. *Modeling and forecasting livestock and fish feed resources: Requirements and availability in India*. National Institute of Animal Nutrition and Physiology, Bengaluru.
- Shanti M, Nagalakshmi D, Balaji naik R, Chandrika V and Chiranjeevi C H. 2012. Study on forage quality of various maize cultivars produced under different use patterns. *Forage Research* **37**: 234–37.
- Shekara B G, Lohithaswa H C, Chikkarugi N M and Manasa N. 2015. Fodder production potential of maize grown for baby corn and green cob in different cropping systems. *Forage Research* 41: 92–94.
- Singh G, Kumar S, Singh R and Singh S S. 2015. Growth and yield of baby corn (*Zea mays* L.) as influenced by varieties, spacings and dates of sowing. *Indian Journal of Agricultural Research* 49: 353–57.
- Singh G, Walia S S and Kumar B. 2017. Agronomic and genetic approaches to improve nutrient use efficiency and its availability in baby corn (*Zee mays* L.)—A Review. *Frontiers in Crop Improvement* 5: 81–88.
- Snedecor G W and Cochran W G. 1994. *Statistical Methods*. 7thEdn. Oxford and IBH Publications, New Delhi.

SPSS. 2009. *Statistical Packages for Social Sciences*. Version 16, SPSS Inc., Illinois, USA.

Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fibre, neutral detergent fibre, and non-starch polysaccharides in relation to animal nutrition. *Journal of*

Dairy Science 74: 3583–97.

Widiawati Y and Thalib A. 2009. Comparison of fermentation kinetics (*in vitro*) of grass and shrub legume leaves: The pattern of VFA concentration, estimated CH₄ and microbial biomass production. *Indonesian Journal of Agriculture* **2**: 21 27.