# Alien fish species in open waters of India: Appearance, establishment and impacts

KRIPAL DATT JOSHI $^{1 \boxtimes}$ , V S BASHEER $^2$ , ADITYA KUMAR $^1$ , SATYENDRA MOHAN SRIVASTAVA $^1$ , VIKASH SAHU $^1$  and KULDEEP K LAL $^1$ 

ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, Lucknow, Uttar Pradesh 226 002 India

Received: 13 July 2021; Accepted: 31 July 2021

#### ABSTRACT

The diverse germplasms pool already available in the vast and varied water resources of India has potential to cater to the need of the fisheries and aquaculture sector, but introduction of fish species for different purposes is still continuing. The exotic fishes introduced into India for different purposes covers nearly 13.6% of total fish diversity. Due to wider tolerance limit and generalist nature, some alien fish species have acclimatised to diverse eco-climatic conditions. Some of these introduced fishes are now established in the open water bodies including rivers, wetlands and reservoirs and some others are in the process of establishment. Degraded open waters and wanton destruction of fishery resources in the rivers have resulted in depletion of the sensitive fish species and appearance of exotic fishes. The potential risk areas for appearance of the alien species are mushrooming fish culture units in different parts of the country, porous boundaries, farming of alien fishes in flood prone areas, rapid expansion of aquaculture and ornamental fish trade. Eradication of an introduced species is usually difficult or impossible once it is established in open water bodies. Therefore, there is an urgent need to regulate the import of alien fish species, based on their merit and likely impacts on open waters.

Keywords: Alien fish species, Establishment, History, Implications, Risks

Trans-boundary movement of goods is an age old practice, which intensified during few decades ago with the advent of globalisation. There has been regular addition of new import items over the period, including live plants, animals and fish. Owing to multiple utilities, transportation of live fish and its juveniles started in the country since long time. The globalization and increase in free trade and tourism, render more chances for fish species to spread either intentionally or non-intentionally (Welcomme 1984, Jenkins 1996, Cohen and Carlton 1998, Casal 2006, Sampson et al. 2009). The movement of living organisms across the globe by humans has led to intense change in the ecology of relocated species and the communities to which they have been introduced (Callaway and Maron 2006). Though the introductions are aimed to ease the human life, but in many instances, the introduced organism cause severe impacts on recipient ecosystems and biodiversity. Moreover, due to broad environmental tolerance capacity and generalist nature, some alien fish species gets acclimatised to diverse eco-climatic conditions and out of which few turned into invasive. The invasive species have some specific traits which allow them to establish and outcompete native species such as fast growth rate; ability to reproduce

Present address: ¹ICAR-National Bureau of Fish Genetic Resources, Canal Ring Road, Lucknow, Uttar Pradesh. ²Peninsular and Marine Fish Genetic Resources Centre, ICAR-National Bureau of Fish Genetic Resources, Kochi, Kerala. ⊠Corresponding author e-mail: kdjoshi.cifri@gmail.com

in the broad range of environmental conditions; fast reproduction rate; high dispersal rate; phenotypic plasticity; tolerance to a broad range of environmental conditions; survive on wide range of food items; and association with human beings.

Once alien species are introduced accidentally or intentionally may become invasive and can cause considerable harm to natural ecosystems, biodiversity, human health and economy (Pimentel *et al.* 2005, Oreska and Aldridge 2011). Nyman (1991) also highlighted that alien fish introduction may lead to irreversible changes in the aquatic ecosystems, habitat loss which could result in extinction of indigenous species. Decline in water volume and increased water temperature due to massive river modifications in the Himalayan rivers are resulting in range extension of brown trout in some upstream rivers and tributaries. In general, the altered river habitats are suitable for the invasion by some of the resilient fish species.

Aichi Target 9 of the Convention on Biological Diversity's Strategic Plan for Biodiversity 2011–2020, seeks to identify, prioritise, and manage invasive alien species and their invasive pathways (UNEP 2011). As a signatory to the Convention, India is obliged to act on this target, however, managing introduced species in freshwater ecosystems while balancing public perceptions and economic imperatives is a complex issue (Woodford *et al.* 2016). This calls for focused research on different facets of introduced species in order to facilitate species management

and aid in the development of effective legislation. Hence, there is a stringent need to record appearance, establishment and invasion of alien fish species with the objective to control on import and likely expansion of indiscriminate and unregulated introduction of fish species from across the borders. The present review highlights the need to assess the likely impacts of all such introductions to minimise consequences of introductions on ecology and native fish diversity.

### Native and alien fish species in India

The enormous geographical area with varied topographical features of India, supports diverse aquatic resources, which offer immense opportunities for livelihood support, besides maintaining its ecological integrity and valuable gene pool. A vast network of criss-crossing rivers, rivulets and streams of different orders; connected floodplain wetlands and estuaries are the valuable aquatic resources existing in the country. Among the available aquatic resources the rivers, floodplain wetlands and reservoirs are highly prone to anthropogenic stressors because of diverse drainages traversing through varied catchments, highly populated banks and area of maximum developmental activities. India possesses rich aquatic diversity spread across different ecosystems, owing to its vast and varied geographical features. The updated list of fin fishes comprise of total 3,157 species, including 1,545 marine, 892 freshwater, 391 brackish water-marine, 115 freshwater-brackish water, 197 freshwater-brackish watermarine and 17 brackish water species. While approximately 35,797 fish species have been recorded throughout the globe.

During the last few decades, the exotic fishes have been brought into India for different purposes which form about 13.6% additional diversity. Besides this, there are reports of clandestine introduction of some risk bearing fishes. Several of these introduced fishes are now established in the natural water bodies including rivers, wetlands and reservoirs and some others are in the process of establishment. Though the diverse germplasms pool already available in the vast and varied water resources of the country has potential to cater to the need of the fisheries and aquaculture sector, but the introductions are still continuing mostly without proper assessment of merits and demerits of the introduced species.

### Pathways for appearance and range extension

Though a number of precautionary measures are already in vogue to control and check the spread of alien fish species in Indian open waters, still, there has been some instances indicating abrupt appearance and extension of aliens in open waters. The potential risk areas for appearance of the alien species in inland open waters are mushrooming fish culture units in different parts of the country, porous boundaries, farming of alien fishes in flood prone areas, rapid expansion of aquaculture and ornamental fish trade. The invasion pressure to open water bodies intensified under depleted

habitat conditions. The reasons attributed for establishment of alien species into our open water resources could be attributed to their hardy, resilient, eurythermal, omnivorous nature; amenable for breeding in all aquatic conditions, strong adaptability to new environments, diverse habitat, altered ecological conditions.

#### History of introduction

Introduction of any desired species in diversity poor countries seems justifiable, but indiscriminate introduction in a country like India having rich biotic wealth, is highly debatable. Despite the abundant fish diversity available in India, sizeable number of alien fish species have also been introduced intentionally or un-intentionally to fulfil the need of diversification of species for aquaculture; stocking in lakes and reservoirs; diversification of sport fishery base; augmentation of varieties in aquarium trade and larval control.

Introduction of alien fish species started during 1863 in India, when Sir Francis Day made an unsuccessful attempt to import brown trout eggs to Nilgiri hills. Later Mr F J Mitchel successfully introduced brown trout eggs from Scotland to Harwan (Jammu & Kashmir) in 1900 (Mitchell 1918). Tinca tinca was imported in India in 1870 for aquaculture. Thereafter number of carps, tilapia, trout and ornamental fishes were introduced in the country (Sehgal 1999). A total of 9 fish species had been introduced in India during pre-independence (1870-1947) period. The introduced species were temperate food fishes such as T. tinca, Carassius carassius, Cyprinus carpio; the salmonid game fishes, Salmo trutta fario, Salmo gairdneri; larvicidal Gambusia affinis, Lebistes reticulatus and the tropical osphronemid, Osphronemus goramy (Natarajan and Menon 1988). The post-Independence India witnessed introduction of number of food and ornamental fishes including carps (Chinese strain of C. carpio, Ctenopharyngodon idella, Hypophthalmichthys molitrix, Puntius javanicus), cichlid (Oreochromis mossambicus and O. niloticus), salmonids (Salvelinus fontinalis, Salmo salar, Oncorhynchus mykiss, O. nerka). In general, the present list of introduced fish species in India comprised about 500 species including food fishes (29), sport (2), mosquito control (3) and the rest are ornamental fishes. However, many of these fish were introduced without assessment of their likely impacts on ecology and fish diversity (Table 1). Moreover, several exotic species are now established in the natural waters of India.

Besides the existing proper import regulatory channel, there has been number of un-authorised introductions in the country without study of its risk assessment. Moreover, some of the introductions are posing serious threat to indigenous fish species and its ecosystems. Introduction of African catfish (*Clarias gariepinus*), tilapia (*Oreochromis niloticus*), pangasius (*Pangasionodon hypophthalmus*), big head (*Hypophthalmichthys nobilis*), pacu (*Piaractus brachypomus*), suckermouth catfish (*Pterygoplichthys* spp.), and mosquito fish (*G. affinis*) are introduced in the

Table 1. Introduction of major fish species in Indian waters

| Species                     | Common name             | Vear                | ar Source Dlace of introv                | Place of introduction                 | Aim                                      | Remarks                    |
|-----------------------------|-------------------------|---------------------|------------------------------------------|---------------------------------------|------------------------------------------|----------------------------|
| aperies                     | Common name             | ıcaı                | Source                                   | riace of introduction                 | Willi                                    | Nellidi Na                 |
| Salmo trutta fario          | Brown trout             | 1863–1908           | England                                  | Nilgiri, Harwan                       | Stocking in lakes,                       | Established                |
| Salmo lavensis              | Loach leven trout       | 1863                | Japan<br>England                         | Nilgiri                               | reservoirs<br>Stocking in lakes,         | Almost disappeared         |
| Onchorhynchus mykiss        | Rainbow trout           | 1909 onwards        | Sri Lanka                                | Nilgiri                               | reservoirs<br>Stocking in lakes,         | Exist                      |
|                             |                         |                     | Germany<br>New Zealand                   |                                       | reservoirs                               |                            |
| Salmo gairdneri irideus     | Steelhead trout         | 1867, 1940          | Europe,<br>England,<br>Sri Lanka         | Nilgiri                               | Stocking in lakes, reservoirs in Kashmir | Almost disappeared         |
| Salmo gairdneri shasta      | Steelhead trout         | 1941                | England                                  | Kerala                                | Stocking in lakes, reservoirs            | Almost disappeared         |
| Salvelinus fontinalsis      | Book trout              | 1959                | Canada                                   | Kerala                                | Stocking in lakes, reservoirs            | Almost disappeared         |
| Salvelinus namaykush        | Splake trout            | 1968                | Japan                                    | Nilgiri                               | Stocking in lakes, reservoirs            | Almost disappeared         |
| Oncorhynchus nerka          | Sockey salmon           | 1968, 1970          | Canada                                   | Nilgiri                               | Stocking in lakes, reservoirs            | Almost disappeared         |
| Salmo salar                 | Atlantic salmon         | 1968                | North America                            | Kashmir                               | Stocking in lakes, reservoirs            | Almost disappeared         |
| Carassius carassius         | Gold fish               | 1974                | England                                  | Nilgiri                               | Culture                                  | Exist                      |
| Tinca tinca                 | Tench                   | 1873                | England                                  | Nilgiri                               | Culture                                  | I                          |
| Osphronemus gourami         | Gourami                 | 1856                | Java                                     | Kolkata                               | Culture                                  | Exist                      |
| Barbonymus gonionotus       | Silver barb             | 1972                | Indonesia                                | West Bengal                           | Culture                                  | Exist                      |
| Oreochromis mossambicus     | Mozambique tilapia      | 1952, 1962,<br>1985 | Indonesia, Bangladesh,<br>Bangkok, Nepal | West Bengal,<br>Tamil Nadu, Rajasthan | Culture                                  | Established                |
| Oreochromis niloticus       | Nile tilapia            | ı                   | Thailand, Israel                         | Rajasthan                             | Culture                                  | Established                |
| Oreochromis zilli           | Tilapia                 | 1986                | Thailand                                 | Rajasthan                             | Weed control                             | I                          |
| Oreochromis urolepis        | Tilapia                 | 1                   | I                                        | Coastal Andaman Nicobar               | Culture                                  | I                          |
| Hybrid O. niloticus         | Red tilapia             | 1980                | Philippines, Israel                      | Chennai, Kolkata                      | Culture                                  | I                          |
| Cyprinus carpio communis    | Common carp, Scale carp | 1939, 1957          | Sri Lanka, Bangkok                       | Cuttak                                | Culture                                  | Established                |
| Cyprinus carpio specularis  | Mirror carp             | 1939, 1957          | Sri Lanka, Bangkok                       | Cuttak                                | Culture                                  | Established                |
| Cyprinus carpio nudus       | Leather carp            | 1939, 1957          | Sri Lanka, Bangkok                       | Cuttak                                | Culture                                  | Established                |
| Ctenopharyngodon idella     | Grass carp              | 1959                | Japan, Hong Kong                         | Cuttak                                | Culture                                  | Established                |
| Hypophthalmichthys molitrix | Silver carp             | 1959                | Japan, Hong Kong                         | Cuttak                                | Culture                                  | Established                |
| Hypophthalmichthys nobilis  | Bighead                 | 1980                | Probably Hong Kong,<br>Bangladesh, Nepal | West Bengal                           | Culture                                  | Established                |
| Ictalurus punctatus         | Channel catfish         | 1990                | I                                        | Tamil Nadu, West Bengal               | Culture                                  | I                          |
| Clarias gariepinus          | Thai magur              | I                   | I                                        | West Bengal                           | Culture                                  | Exist in different regions |
|                             |                         |                     |                                          |                                       |                                          |                            |

able 1. contd...

| Species                        | Common name         | Year      | Source        | Place of introduction         | Aim                     | Remarks     |
|--------------------------------|---------------------|-----------|---------------|-------------------------------|-------------------------|-------------|
| Pangasianodon hypophthalmus    | Payasi              | I         | I             | Tamil Nadu,<br>Andhra Pradesh | Culture                 | Exist       |
| Puntius javanicus              | Tawes               | 1972      | Indonesia     | I                             | Culture                 | Exist       |
| Poecilia reticulata            | Guppy               | 1908      | South America | I                             | Mosquito larval control | Exist       |
| Gambusia affinis               | Top minnows         | 1928      | Italy         | I                             | Mosquito larval control | Exist       |
| Gambusia holbrooki             | Top minnows         | I         | I             | I                             | Mosquito larval control | ı           |
| Piaractus brachypoma           | Pacu                | 2003–2004 | I             | West Bengal                   | Ornamental              | Exist       |
| Pterygoplichthys anisitsi      | Suckermouth catfish | I         | I             | Bihar                         | Ornamental but          | 1           |
|                                |                     |           |               |                               | accessed in open waters |             |
| Pterygoplichthys multiradiatus | Suckermouth catfish | I         | I             | Kerala, Tamil Nadu            | Ornamental but          | Established |
|                                |                     |           |               |                               | accessed in open waters |             |
| Pterygoplichthys disjuctivus   | Suckermouth catfish | I         | I             | Andhra Pradesh,               | Ornamental but          | Established |
|                                |                     |           |               | West Bengal, Bihar,           | accessed in open waters |             |
|                                |                     |           |               | Uttar Pradesh, Tamil Nadu     |                         |             |
| Pterygoplichthys pardalis      | I                   | I         | I             | Andhra Pradesh,               | Ornamental but          | Established |
|                                |                     |           |               |                               | accessed in open waters |             |
|                                |                     |           |               | Uttar Pradesh, Tamil Nadu     |                         |             |
| Litopenaeus vannamei           | White leg shrimp    | 2001      | 1             | Andhra Pradesh,               | Culture                 | 1           |
|                                |                     |           |               | Tamil Nadu                    |                         |             |

Source: (Modified after Ajithkumar et al. 1998, Acosta and Gupta 2001; Daniels 2006; Krishnakumar et al. 2009; Knight 2010, Murlidharan et al. 2015, Biju Kumar 2000; Biju Kumar al. 2015; Singh 2014; Sinha et al. 2010, Hussan et al. 2019 and Suresh et al. 2019). country for immediate gains and without evaluating their ecological consequences.

Impacts of alien fish species

The introduction of alien fishes has been observed to brought about a huge problems including destruction of native species (Kumar 2000). These alien species compete with the indigenous species for food, habitat and may even prey upon them. They facilitate in the introduction of new parasites or diseases and moreover can result in the production of hybrids which could cause genetic 'erosion' of indigenous species. The potential risks which not only affect the aquatic biodiversity, but also the socio-economic conditions of the rural communities that depend on aquatic ecosystem for their livelihood. The introduction of the Nile perch, Lates niloctica, to Lake Victoria may have caused, or contributed to, the extinction of nearly 200 species (Barel et al. 1985, Gophen et al. 1995). Epizootic ulcerative syndrome has expanded its range through Southeast Asia with fish movements and poor quarantine controls, and may be introduced elsewhere with further aquaculture species movements or aquarium fishes and caused serious loss of cultured fish production through most of Asia (Roberts et al. 1994). Eradication of an introduced species once it is established is usually difficult or impossible (Carlton and Mann 1981). FAO (1980) identified following four possible implications of introduction of exotic species:

- Extinction of ecological homologues
- Hybridization with concomitant profound effects on the genetics of the original fish populations
- Failure of introduction, in part, because of competition from established resident species,
- Co-existence, which means that the introduced species has found vacant niche in the community with an interactive niche segregation as an obvious result.

The impacts of indiscriminate introductions of alien species resulted in the disappearance of native species which has been recorded in many countries. It is very interesting to know that out of 160 species of freshwater fishes introduced in 120 countries, only 10% were reported to found satisfactory indicating futility of indiscriminate introductions (Courtenay and Stauffer 1984). Due to extreme change in the habitat of the river from lotic to lentic, obstruction of the continuous flow and meagre downstream discharge, the composition and structure of fish assemblages, ecology and fish diversity of the river has been affected. Further, it has been reported that fish diversity and fishery of the systems shifted enormous in the potamon zone due to severe change in physicochemical parameters (Joshi et al. 2014a and b). The deteriorated riverine habitats and depleted waters are reportedly invaded by alien fish species (Joshi et al. 2014a and b, Laxmappa et al. 2015, Joshi et al. 2016

Table 2. Impacts of alien fish species in open waters of India

| Introduced species          | Environmental impacts                                                                                                                                     | References                                                                                                    |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Oreochromis mossambicus     | Displaced Gangetic carps, <i>Puntius dubius</i> , <i>Labeo kontius</i> and posing threat to <i>Etroplus suratensis</i> from reservoirs of Southern states | Sreenivasan 1967, Murthy <i>et al.</i> 1986,<br>Natrajan and Menon 1988                                       |
| Oreochromis niloticus       | Occupied riverine habitats of Indian major carps (IMC)                                                                                                    | Joshi et al. 2014a, 2014b, 2017                                                                               |
| Osphronemus goramy          | Established with least impacts to ecology                                                                                                                 | Shetty et al. 1989                                                                                            |
| Hypophthalmichthys nobilis  | Compete for food with Catla and silver carp                                                                                                               | Singh and Ponniah 2001                                                                                        |
| Cyprinus carpio             | Displacement of IMC from riverine habitats, Schizothorax richardsonii, Osteobrama belangeri, Tor putitora etc.                                            | Joshi et al. 2014a, 2014b, 2017; Shetty et al. 1989                                                           |
| Clarias gariepinus          | Risk of establishment                                                                                                                                     | Singh and Ponniah 2001, Krishna Kumar et al. 2011                                                             |
| Carassius auratus           | Hybridization with common carp                                                                                                                            | Shetty et al. 1989                                                                                            |
| Hypophthalmichthys molitrix | Established in certain reservoirs and displaced Catla                                                                                                     | Kaushal 1991, Pandey 1997                                                                                     |
| Salmo truttafario           | Feeds on local species                                                                                                                                    | Sehgal 1989                                                                                                   |
| Pterygoplichthys spp.       | Occupy habitats of native species and compete for food with native species                                                                                | Murlidharan <i>et al.</i> 2015, Biju <i>et al.</i> 2015, Hussan <i>et al.</i> 2019, Suresh <i>et al.</i> 2019 |

and 2017) (Table 2). If the deterioration of riverine resources persist as per present momentum, the Indian rivers will probably lose their valuable fish germplasm, which is required for sustenance of ecological balance; and commercial importance as protein rich food, cater the need of ornamental and fish based sport sectors.

Degraded open waters owing to large scale river modifications, abstraction, excessive drawl of riparian groundwater; over-exploitation and wanton destruction of fishery resources in the rivers are resulting in depletion of the sensitive fish species and appearance of exotic fishes (Kolar and Lodge 2002, Arts and Nienhuis 2003, Joshi *et al.* 2014a, 2014b, 2017). The invasion of alien fish species in various inland open water resources of India has been

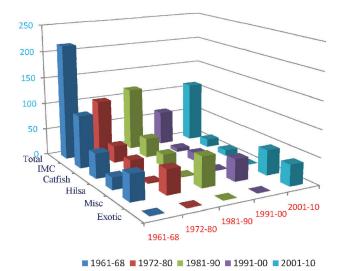



Fig. 1. Emergence of alien fishes in the rivers at Allahabad during 1961–2010 (Joshi 2017).

adequately reported (*Singh et al.* 2010, Joshi *et al.* 2014a and b, 2017; Joshi 2017). The reasons for establishment could be attributed to decreasing water volume, velocity and higher pollution load, which proved uncongenial for sensitive native species but amiable for the highly resilient alien species like common carp (*C. carpio*), tilapia (*O. mossambicus* and *O. niloticus*), and suckermouth catfish (*Pterygoplichthys* spp.).

The Ganga River system is a glaring example of the above situation (Joshi 2017) where cumulative effect of hydrological degradations has resulted in severe decline of fisheries in the river Ganges and its tributaries (Vass *et al.* 2010, Sinha *et al.* 1999). Further, the resultant vacant habitat/niche has been occupied by hardy, resilient exotic fishes like common carp and Nile tilapia, which probably made access in the river from the prevailing culture systems on the basins (Joshi *et al.* 2014b).

## Conclusion

The reasons attributed for establishment of alien species into open water resources could be attributed to their hardy, resilient, eurythermal, omnivorous nature; amenable for breeding in all aquatic conditions, strong adaptability to new environments and above all our diverse aquatic habitats and altered ecological conditions. Keeping the risk of escape from the culture system and possibilities of spread in open waters, there is earnest need to control the import of alien fish species, based on their merit and likely impacts on open waters.

### REFERENCES

Aarts B G W and Nienhuis P H. 2003. Fish zonation and guilds as the basis for the assessment of ecological integrity of large rivers. *Hydrobiologia* 500: 157–78.

- Acosta B O and Gupta M V. 2001. The status of carp species in Asia. World Fish Centre Contribution No. 1731. Pp 121–37.
- Ajithkumar, C R, Biju, C R and Thomas R. 1998. *Plecostomus multiradiatus* an armoured catfish from freshwater ponds near Kunnamkulam, Kerala and its possible impact on indigenous fishes. LAK News, Limnological Association of Kerala, pp. 1–2.
- Anonymous, 2017. Annual Report, ICAR- National Bureau of Fish Genetic Resources 2015–16. ICAR-NBFGR, Lucknow, India, p.132.
- Barel C D N, Dorit R, Greenwood P H, Fryer G, Hughes N, Jackson P B N, Kawanabe H, Lowe-McConnell R H, Nagoshi M, Ribbink A J, Trewavas E, Witte F and Yamaoka K. 1985. Destruction of fisheries in Africa's Lakes. *Nature* 315: 19–20.
- Biju Kumar A. 2000. Exotic fishes and fresh water fish diversity. *Zoo's Print Journal* **15**(11): 363–67.
- Biju Kumar A, Smrithy R, Sureshkumar U and George S. 2015. Invasion of South American suckermouth armoured catfishes *Pterygoplichthys* spp. (Loricariidae) in Kerala, India a case study. *Journal of Threatened Taxa* **7**(3): 6987–95.
- Callaway R M and Maron J L. 2006. What have exotic plant invasions taught us over the past 20 years? *Trends in Ecology and Evolution* **21**: 369–74.
- Carlton J T and Mann R. 1981. Population maintenance, manageability and utilisation of introduced species: pathways, patterns and case histories. *Journal of Shellfish Research* 1: 109–10.
- Casal C M V. 2006. Global documentations of fish introduction: the growing crisis and recommendations for action. *Biological Invasions* 8: 3–11.
- Cohen A N and Carlton J T. 1998. Accelerating invasion rate in a highly invaded estuary. *Science* **279**: 555–58.
- Courtenay W R and Stauffer J R. 1984. *Distribution, biology, and management of exotic fishes*. Johns Hopkins University Press, Baltimore and London.
- Daniels R J R. 2006. Introduced fishes: A potential threat to the native freshwater fishes of Peninsular India. *Journal of the Bombay Natural History Society* **103**(2and3): 346–48.
- FAO. 1980. Conservation of genetic resources of fish: Problems and Recommendations. Report of the Expert Consultation on the genetic resources of fish. Rome 9–13, June 1986, pp 33.
- Gophen M, Ochumba P B and Kaufman L S. 1995. Some aspects of perturbation in the structure and biodiversity of the ecosystem of Lake Victoria (East Africa). *Aquatic Living Resources* 8(1): 27–41.
- Hussan A, Sundaray J K, Mandal R N, Hoque F, Das A, Chakrabarti P P and Adhikari S. 2019. Invasion of nonindigenous suckermouth armoured catfish of the genus Pterygoplichthys (Loricariidae) in the East Kolkata Wetlands: stakeholders' perception. Indian Journal of Fisheries 66(2): 29–42.
- Jenkins P T. 1996. Free trade and exotic species introductions. *Conservation Biology* **10**: 300–02.
- Joshi K D. 2017. How to protect our valuable riverine fish species from multiple stressors? *Current Science* **113**(2): 206–07.
- Joshi K D, Alam A, Jha D N, Srivastava S K and Kumar V. 2016.
  Fish diversity, composition and invasion of exotic fishes in river Yamuna under altered water quality conditions. *Indian Journal of Animal Sciences* 86(8): 957–63.
- Joshi K D, Jha D N, Alam A, Srivastava K, Srivastava S K, Kumar V and Sharma A P. 2017. Studies on ecology, fish diversity and fisheries of Ken–Betwa rivers (India): Impact assessment

- of proposed inter-linking. Aquatic Ecosystem Health and Management 20(1-2): 71-85.
- Joshi K D, Jha D N, Alam M A, Das S C S, Srivastava S K and Kumar V. 2014. Massive invasion of resilient exotic fishes in the river Ganga: A case study at Allahabad Stretch. *Journal of Inland Fisheries Society* 46(1): 92–95.
- Joshi K D, Jha D N, Alam A, Srivastava S K, Kumar V and Sharma A P. 2014. Environmental flow requirements of river Sone: impacts of low discharge on fisheries. *Current Science* 107(3): 478–88.
- Kaushal D K. 1991 Dwindling *Catla catla* population of Govind sagar reservoir. *Indian Journal of Fisheries* **38**(4): 245–48.
- Knight J D M. 2010. Invasive ornamental fish: a potential threat to aquatic biodiversity in peninsular India. *JoTT Review* 2: 700–04.
- Kolar C S and Lodge D M. 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–36
- Krishnakumar K, Ali A, Pereira B and Raghavan R. 2011. Unregulated aquaculture and invasive alien species: a case study of the African Catfish *Clarias gariepinus* in Vembanad Lake (Ramsar Wetland), Kerala, India. *Journal of Threatened Taxa* 3(5): 1737–44.
- Krishnakumar K, Raghavan R, Prasad G, Bijukumar A, Sekharan M, Pereira B and Ali A. 2009. When pets become pests Exotic aquarium fishes and biological invasions in Kerala, India. *Current Science* 97: 4–25.
- Laxmappa B, Bakshi R R and Siva Narayana D V. 2015. Studies on Ichthyofaunal diversity of Krishna River in Mahbubnagar district, Telangana, India. *International Journal of Fisheries* and Aquatic Studies 2(5): 99–104.
- Mitchell F J. 1918. How trout were introduced in Kashmir? *Journal of Bombay Natural History Society* **26**(1): 295–99.
- Muralidharan M, Manikandan K and Gobi M. 2015. Extended distribution of the invasive Sucker catfish, *Pterygoplichthys pardalis* (Pisces: Loricariidae) to Cauvery river system of Peninsular India. *International Journal of Aquatic Biology* **3**(1): 14–18.
- Murthy N S, Gonda S S and Ayyar Murthy V. 1986. Fishes of Kabini reservoir in Karnataka. *Fishing Chimes* **8**(7): 36–38.
- Natrajan A V and Ramchandra M. 1988. Exotic Aquatic Species in India. Proceedings of the workshop on exotic species in India. (Ed) Joseph M M. 25–26 April 1988. Special Publication, Asian Fisheries society, Indian Branch. Pp 63– 65.
- Nyman L. 1991. Conservation of fresh water fish. Protection of Biodiversity and genetic variability in aquatic ecosystems. Fisheries Development Series, 56, Sweden & WWF Sweden 38
- Oreska M P J and Aldridge, D C. 2011. Estimating the financial costs of freshwater invasive species in Great Britain: a standardized approach to invasive species costing. *Biological Invasions* **13**: 305–19.
- Pandey A C. 1997. Incidence and impact of capture of exotic carps in the river Gomti near Gohania village (Distt. Sultanpur). *Indian Journal of Animal Sciences* **67**(7): 637–38.
- Pimentel D, Zuniga R and Morrison D. 2005. Update on the environmental and economic costs associated with alien invasive in the United States. *Ecological Economics* **52**: 273–88.
- Rangaswami. 1988. Golden fish Culture in India. NAGA, the ICLARM Quarterly Journal 11(1): 24–26.

- Roberts R J, Frerichs G N, Thonguthai K and Chinabut S. 1994. Epizootic Ulcerative Syndrome (EUS) in wild and farmed fishes. *Recent Advances in Aquaculture* **5**: 207–36.
- Sampson S J, Chick J H and Pegg M A. 2009. Diet overlap among two Asian carp and three native fishes in backwater lakes on the Illinois and Mississippi rivers. *Biological Invasions* 11: 483–96.
- Sehgal K L. 1989. *Proceedings of workshop on exotic aquatic species in India*. (Ed) Joseph M M. Asian Fisheries Society. Indian Branch, Mangalore Spl. Publ. No. 1. pp 41–47.
- Sehgal K L. 1999. Coldwater fish and fisheries in the Indian Himalayas: Rivers and streams. Fish and fisheries at higher altitudes - Asia. FAO Fisheries Technical Paper 385: 41–63. Rome, FAO
- Shetty H P C, Nandeesha M C and Jhingran A G. 1989.
  Proceedings of the Workshop on Exotic Aquatic Organisms in Asia. (Ed) DeSilva. Asian Fisheries Society. pp 45–55.
- Singh A K and Ponniah A G. 2001. Proceedings of the National symposium on fish health management and sustainable aquaculture. (Eds) Singh U P, Chauhan R S and Sharma A P. College of Fisheries, G.B. Pant University of Agriculture and Technology, 1–2 Nov. 2000, Pantnagar. pp. 93–96.
- Singh A K, Pathak A K and Lakra W S. 2010. Invasion of an exotic fish—common carp, *Cyprinus carpio* L. (Actinopterygii: Cypriniformes: Cyprinidae) in the Ganga River, India and its impacts. *Acta Ichthyologica et Piscatoria* **40**(1): 11–19.
- Singh A K. 2014. Emerging alien species in Indian aquaculture: prospects and threats. *Journal of Aquatic Biology and Fisheries* 2: 32–41

- Sinha R K, Sarkar U K and Lakra W S. 2010. First record of the southern sailfin catfish, *Pterygoplichthys anisistsi* Eigenmann and Kennedy, 1903 (Teleostei: Loricariidae), in India. *Journal of Applied Ichthyology* **26**: 606–08.
- Sinha M, Khan M A and Jha B C. 1999. *Ecology, Fisheries and Fish Stock Assessment of Indian Rivers*, p. 325. Central Inland Fisheries Research Institute Publication, Barrackpore.
- Sreenivasan A. 1967. *Tilapia mossambica:* Its ecology and status in Madras state. *Madras Journal of Fisheries* **3**: 33–39.
- Suresh V R, Ekka A, Biswas D K, Sahu S K, Yousuf A and Das S. 2019. Vermiculated sailfin catfish, *Pterygoplichthys disjunctivus* Actinopterygii: Siluriformes: Loricaridae): Invasion, Biology and initial impacts in East Kolkata Wetlands, India. *Acta Ichthyologica et Piscatoria* **49**(3): 221–33.
- UNEP. 2011. The strategic plan for biodiversity 2011–2020 and the Aichi biodiversity targets, in COP CBD Tenth Meeting, October 29, 2010, Nagoya, Japan. http://www.cbd.int/decisions/cop/m=cop-10
- Vass, K K, Tyagi R K, Singh H P and Pathak V. 2010. Ecology, changes in fisheries, and energy estimates in the middle stretch of the River Ganges. Aquatic Ecosystem Health and Management 13(4): 374–84.
- Welcome R L. 1984. International transfers of inland fish species, pp. 22–40. Distribution Biology and Management of Exotic Fishes. (Eds) Courtenay Jr. W R and Stauffer Jr. J R. Johns Hopkins University Press, Baltimore.
- Woodford D J, Richardson D M, MacIsaac H J, Mandrak N E, van Wilgen B W and Wilson J R U. 2016. Confronting the wicked problem of managing biological invasions. *Neo Biota* 31: 63–86.