

Indian Journal of Animal Sciences **92** (12): 1440–1444, December 2022/Article https://doi.org/10.56093/ijans.v92i12.114280

Role of organic selenium in resisting oxidative stress during tropical summer in broiler chicken

JAYASRI K $^{1\boxtimes}$, PADMAJA K 1 , ESWARA PRASAD P 1 , RAVI A 1 , ADILAXMAMMA K 1 , PUNYA KUMARI B 2 and KAVITHA P 3

College of Veterinary Science, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh 517 502 India

Received: 23 August 2021; Accepted: 9 October 2022

Supplementary Table 1. Oxidative stress in hepatic tissues of broilers during heat stress

	21d		42d	
	Control (Autumn)	HS	Control (Autumn)	HS
MDA (nM/g tissue)	594.16±13.61	1087.01**±21.90	443.04±10.37	1178.78**±57.57
Lipid Hydroperoxides (mM/g tissue)	53.8±2.16	82.76**±4.94	35.54 ± 0.73	223.72**±6.21
Protein Carbonyl content (nM /mg protein)	4.42 ± 0.11	9.16**±0.22	2.29 ± 0.06	$10.05^{**}\pm0.34$

^{**}Mean±SE, differ significantly from respective controls at P<0.01 and * at P<0.05.

Supplementary Table 2. Antioxidant status in hepatic tissues of broilers during heat stress

	21	21d		42d	
	Control (Autumn)	HS	Control (Autumn)	HS	
SOD (U/mg protein)	2.18±0.088	8.31*±0.075	3.03±0.23	8.19*±0.26	
Catalase (U/mg protein)	8.24 ± 0.073	$8.59^{NS} \pm 0.20$	6.68 ± 0.37	$7.84^* \pm 0.13$	
GPX (U/mg protein)	150.36 ± 5.92	534.25*±17.43	305.20±5.65	$768.97^* \pm 69.3$	
GST (U/mg protein)	2.37 ± 0.89	18.27*±0.16	6.46 ± 0.16	$8.34*\pm0.07$	
TAC (×10 ⁻⁵ mM GSH eq/mg protein)	0.39 ± 0.004	$0.54^{**}\pm0.013$	0.48 ± 0.005	$0.12^*\pm0.004$	
Glutathione (µg/mg protein)	37.19 ± 0.32	47.94**±1.30	39.42 ± 1.06	35.29*±0.48	
Glucose-6- phosphate dehydrogenase (×10 ⁻³ U/mg protein)	1.32±0.04	3.71*±0.11	1.32±0.05	1.76*±0.04	

^{**}Mean \pm SE, differ significantly from respective controls at P<0.01 and * at P<0.05.