Enrichment of motile spermatozoa from cattle semen samples by microfluidics method

VINOD KUMAR YATA¹, NEERAJ YADAV², VIBHAV KATOCH², DHARMENDRA KUMAR GANGWAR¹, SUDARSHAN KUMAR¹, TUSHAR KUMAR MOHANTY¹, BHANU PRAKASH² and ASHOK KUMAR MOHANTY³ \bowtie

ICAR-National Dairy Research Institute, Karnal, Haryana 132 001 India

Received: 29 August 2021; Accepted: 4 April 2022

ABSTRACT

Motile sperm cell separation is important in sample preparation for both artificial insemination and cryopreservation of semen. A novel microfluidic device consisting of an inlet microchannel, a separating reservoir and two outlet microchannels was developed to enrich the motile sperm cells of cattle semen samples. Sperm separation was performed in this microfluidic device using a continuous flow process based on the swim up behaviour of motile cells. Separating reservoir allows the high motile sperm cells to swim up and pass through the top outlet of the reservoir. Low and non-motile sperm cells pass through the bottom outlet of the reservoir in the direction of fluid flow. The microfluidic device was fabricated using polydimethylsiloxane (PDMS) and semen samples were infused into the microfluidic device through a syringe pump. Sperm motility was analyzed by Computer-assisted sperm analysis (CASA). More than 80% enrichment of motile spermatozoa in the cattle semen samples was observed after their separation in the fabricated microfluidic device.

Keywords: CASA, Cattle, Microfluidics, Motile sperm, Sperm separation

Artificial insemination (AI) is one of the most important assisted reproductive technologies practiced in livestock industry to improve the productivity of animals (Foote 2010). The success rate of AI technology greatly depends upon the quality of semen. One of the major reasons for the failure of AI is the decrease in the viability of the sperm cells on storage and improper maintenance during storage (Rodriguez and Martinez 2012). Sorting out dead and nonmotile sperms from live and motile cells of fertile male animals before the insemination could help in achieving the high pregnancy rates. Sperm preparation for assisted reproductive technology (ART) is an important step and involves separation of viable and highly motile spermatozoa from other constituents of ejaculate (Rodriguez and Martinez 2012). Sperm separation techniques such as conventional swim-up separation technique (Mustafa et al. 1998), centrifuge assisted washing procedure (Goyal et al. 1996), glass wool column filtration (Piperelis et al. 2008, Scholkamy et al. 2009, Arzondo et al. 2012) can improve sperm motility and viability but require multiple interventions and additional sophisticated preparatory stages in standard protocols (Rao et al. 2013). Mechanical damage to the spermatozoa and fertility efficiency of sorted

Present address: ¹ICAR-National Dairy Research Institute, Karnal, Haryana. ²Institute of Nano Science and Technology, Mohali, Punjab. ³ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh. [™]Corresponding author email: Ashok. Mohanty@icar.gov.in

spermatozoa are the major limitations of the conventional sperm sorting methods (Henkel 2012), and there is an urgent need to develop a more rapid, efficient, portable and cost-effective technique for semen upgradation.

Live dynamic microfluidics emerged as a promising alternative to sperm preparation for ART as this technique facilitates the fabrication of microfluidics chips to improve efficiency of sperm separation with minimum mechanical damage (Swain *et al.* 2013). However, microfluidics is one such approach that results in the manipulation of biological fluids within the microchannels and has gained attention of semen biologists due to label free separation of the bacterial and mammalian cells as well as underlying ease of handling small quantity of samples (Knowlton *et al.* 2015).

During the past few years, microfluidics technology has opened up doors for applications in the field of biology (Holmes and Gawad 2010, Velve-Casquillas *et al.* 2010) including handling of the particles for imaging, tracking applications and single cell analysis (Ohno *et al.* 2008, Lecault *et al.* 2012). Sorting in microfluidic is broadly classified into two categories namely active and passive cell sorting (Shields *et al.* 2015). Active sorting relies majorly on fluorescent labels or beads. These label or tagging techniques have a cumbersome process that involves attachment of these labels and later on removal as well. Active cell sorting technique requires advanced tools, which are not only expensive but have high maintenance

cost as well. Moreover, the unavailability of fluorescent labels limits the utilization of these techniques. The passive or label-free sorting in microfluidics relies on the difference in physical properties of analyte such as size and shape, mass, elasticity, density, magnetic susceptibility, and polarizability. Of all the sorting techniques, label-free separation involves least amount of sample preparation thus rendering this process as an attractive option for sorting (Bhagat *et al.* 2010). Microfluidic chip designs, based on sperm motility (passively driven), fluid flow, chemoattractant and thermos-toxic properties, have been tested for sorting the functional spermatozoa for ART (Knowlton *et al.* 2015).

Herein, we report a passive sorting method for separation of motile cells of cattle. By using a relatively inexpensive wire assisted technique for the fabrication of polydimethylsiloxane (PDMS) based microfluidic platform, we were able to demonstrate a separation technique that completely relies on swim up behaviour of live cells. In this method, syringe pump was used to infuse the samples into the microfluidic device which consists of an inlet, reservoir and two outlets (Fig. 1). A Patent application has been filed for this microfluidic method (Indian Patent Application Number: 202011008229).

MATERIALS AND METHODS

Ethics statement: All experimental procedures involving animals were approved by the Institute Animal Ethics Committee (IAEC), National Dairy Research Institute, India (No. 42-IAEC-18-30, Dated: 30 June 2018).

Fabrication of microfluidic device: Microfluidic device was fabricated via wire assisted technique. A smooth finished copper wire with the diameter of 450 μm was used. The wire was cut into three pieces with the length of 26.06 mm each. A straw was diced precisely for the reservoir with the dimensions of 3000 μm (in depth) and 1000 μm (in width). Parafilm and double-sided tape were used to seal the reservoir. The three cut pieces of wire were pricked through the reservoir for inlet and outlets and the setup was placed in a plastic mold. The PDMS (Sylgard - 184 silicone

elastomer kit was purchased from Kevin Electrochem, India) and curing agent (10:1) were vigorously stirred to form a well-blended mixture. The mixture was poured into the mold and degassed by keeping it in a desiccator. Once all the air bubbles were released, the mold was kept in the oven at 70°C for 4 h to facilitate cross linking of PDMS and curing agent. After the system cools, the wires were pulled out carefully avoiding damage to the chip leaving behind smooth microchannels connected to the reservoir.

Semen collection and experimental procedure: Fresh ejaculates of Karan Fries bulls were collected from Animal Breeding Research Centre, National Dairy Research Institute, Karnal, Haryana, India. We validated the device efficiency with the repetition of 15 samples. Semen samples collected from bulls were washed with PBS by centrifugation at 275 × g for 5 min. Sperm concentration was adjusted to 40×10^6 sperm/mL with HEPES buffer and it was considered as control sample. The inlet microchannel of microfluidic device was connected to the syringe pump using standard silicone tubing with an internal diameter of 800 µm. Flow rate of the semen sample was maintained at 0.5 ml/min using a syringe pump. The semen samples collected from top outlet and bottom outlet were analyzed for semen quality variables and compared with control sample.

Analysis of semen samples: Total motility, progressive motility, rapid motility, straight linear velocity (VSL), average path velocity (VAP), curvilinear velocity (VCL), average lateral head displacement (ALH), beat cross frequency (BCF) were analyzed by using Hamilton Thorne Sperm Analyser (Hamilton Thorne Research, Beverly, MA, USA). Two microliter (2 μl) each of control semen sample, collected form top outlet and bottom outlet were loaded in a pre-warmed disposable Leja slides and sperm kinetic parameters were measured at 37°C.

Statistical analysis: In order to ensure that the data was normally distributed for statistical treatment, normality tests like Kolmogorov-Smirnov test and Shapiro-Wilk test were performed. Further, homogeneity of error variances was deduced based on Levene's test of equality of error

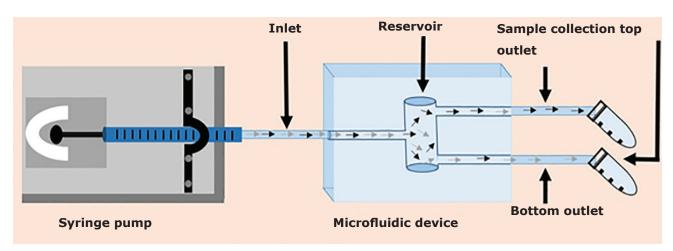


Fig. 1. Microfluidic device setup for sperm seperation.

variances. The descriptive statistics were estimated for all the semen parameters. Pearson's correlation test was used to assess the extent of correlation between different parameters. Variance between samples with respect to different semen characteristics was assessed using Analysis of Variance (ANOVA) test followed by post-hoc comparison using Tukey's test. All the statistical analysis was performed using SPSS v22.

RESULTS AND DISCUSSION

In this study, we report fabrication of a highly costeffective microfluidic device by using polydimethylsiloxane (PDMS) for enrichment of live spermatozoa. The reservoirbased sorting technique allows continuous flow sorting enabling the device to process large volumes compared to the microfluidic sperm sorter (MSS) device reported by Asghar et al. (2014) that uses a polycarbonate membrane filter to selectively separate motile sperm from non-motile sperm. It is well known that these membranes eventually end up clogged. Absence of an outlet channel in MSS limits the amount of sample processed in a single run. Another microfluidic device, reported by Matsuura et al. (2013) had similar limitations. The device was fabricated by laminating a cyclic olefin polymer-based sorting chip with polyvinylidene chloride films. The device works on a principle similar to the swim up technique. To obtain enriched spermatozoa, the top layer of the device needs to be punctured which leaves the device useless after only a single sorting run.

Process of wire assisted technique utilized to fabricate our device is highly simplified and costs-effective as compared to the microfluidic sperm selection device reported by Nosrati et al. (2014) fabricated by using soft lithography technique. Though, the soft lithography technique provides great accuracy and repeatability, but it is time consuming, requires cleanroom environment that adds up to the cost of the devices. Another unique microfluidic sperm sorter (MFSS) reported by Shirota et al. (2016) uses a single microfluidic sorting channel and requires sample and media to be injected from separate input ports. The sorting technique does not fully utilize the swim-up potential of the motile spermatozoa, also the device has been reported to work only with human sperm cells, not with samples from livestock. The capability of our device to perform real time enrichment in a continuous flow sample makes it a unique

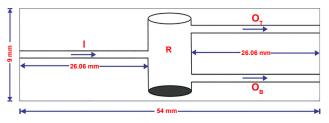


Fig. 2. Dimensions of the fabricated microfluidic device having a reservoir (R), an inlet microchannel (I) positioned at the middle of the reservoir, and two outlet microchannels positioned at the top (O_T) and bottom (O_R) of the reservoir.

device. The device demonstrated in this work does not cause sperm damage at any stage, thus making the technique completely non-invasive and novel. The microchannel walls fabricated using wire assisted technique are smooth and do not cause any turbulence in the flow compared to the poly(methyl methacrylate) (PMMA) based devices fabricated using laser micromachining fabrication process (Dorranian et al. 2009). The optimization of semen flow rate, reservoir height, internal diameter of the reservoir and the positions of the inlet and outlets have played a key role in achieving the reported enrichment efficiency. Multi-level reservoirs could be added in future to further improve efficiency. We have developed a reservoir based microfluidic approach for sperm separation as depicted in Fig. 1. The microreactor consists of one inlet and two outlets. The inlet, abbreviated as (I), is placed exactly at the middle of the cylindrical reservoir (R). Two outlets, top outlet (O_{T)} and bottom outlet (O_B) are designed in order to achieve maximum separation efficiency. The dimensions of microfluidic device comprising of inlet, reservoir and outlets are given in Fig. 2.

Fig. 3A, represents live (black) and dead (white) cells infused through inlet (I). Because of the swim up property of live cells, motile cells were collected from the top outlet (O_T) and low and non-motile sperm cells were discarded from the bottom outlet (O_B). Experimental set up is shown in Fig. 3B. Fig. 4A and 4B represents the side and top views of the microfluidic device and depicts the inlet, reservoir and the two outlets. The capability of device to perform real time enrichment in a continuous flow sample makes it a unique device. The optimization of semen flow rate, reservoir height, internal diameter of the reservoir and the positions of the inlet and outlets have played a key role in achieving the reported enrichment efficiency. Control and sorted semen samples were evaluated for kinetic parameters by CASA respectively. The results are summarized in Table 1.

Motility is contemplated as an important parameter for the evaluation of frozen-thawed semen quality in livestock breeding industry. Motility estimation is a crucial step in evaluating male fertility, and can be considered a functional test because of its relationship with the energy status of mammalian sperm (Lauria et al. 1998, Quintero-Moreno et al. 2004). Although motility and kinetic parameters alone cannot be considered as reliable markers for the fertilizing ability of a given ejaculate (Holt et al. 1985, Marshburn et al. 1992, Barratt et al. 1993, Krause 1995, Macleod and Irvine 1995, Holt et al. 1997), spermatozoa with low movement are unlikely to reach the oviduct, studies have proved that more is the progressive motility of spermatozoa, higher is the chance of pregnancy (Muiño et al. 2008). Over the last few decades, computer assisted semen analysis (CASA) has emerged to make an objective and repeatable analysis of sperm motion as a measure of fertility assessment and quality assurance of semen for artificial insemination (Mortimer 1997). In this study, we

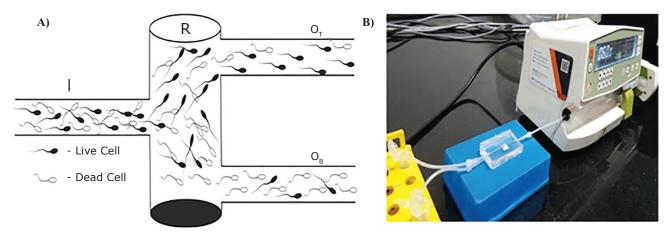


Fig. 3. (A) Microfluidic device consisting an inlet (I), reservoir (R), top outlet (O_T) and bottom outlet (O_B), illustrating live and dead cells separation in a reservoir, and (B) Digital image of the experimental setup.

aimed to separate highly motile and live cells from low motile and dead cells in cattle semen by using simple and inexpensive microfluidic device followed by assessment of various quality parameters using CASA. Sorting motile spermatozoa from semen samples using microfluidics offers several advantages over other isolation techniques. Sperm processing techniques, like density gradient separation and semen washing require centrifugation, which has been reported to cause sub-lethal damage to the spermatozoa (Alvarez et al. 1993, Smith et al. 1995). Using microfluidics for motile sperm isolation eliminates the need for centrifugation. Unfortunately, with swim-up or density gradient separation, the ability to recover motile spermatozoa lost with processing is limited. However, with microfluidic sperm sorting, if there are insufficient motile spermatozoa after sorting, more motile spermatozoa could be recovered from fluid in the unsorted outlet by placing it back into the inlet well and reprocessing the sample. The efficiency of isolating motile spermatozoa from a semen sample using microfluidics is dependent on several variables such as the rate of flow of the fluid streams, the duration of contact between parallel streams, sperm motility parameters. Also, the width of the fluid streams can impact efficiency, since the chance of swimming into the parallel stream prior to stream divergence is random. Ideally, semen samples would flow through the thinner stream, allowing a greater likelihood that motile spermatozoa could swim into the wider stream and be sorted. Total motility refers to the percentage of sperm making any sort of movement. This can include non-progressive movement also. The average total motility of semen samples collected from top outlet was enriched up to 82% from 53% of average total motility of control samples. Progressive motility refers to sperm that are swimming in almost straight line or in very large circles. Progressive motility is needed in order for the sperm to swim their way up the female reproductive tract. The average progressive motility and rapid motility were improved up to 42% and 61% whereas control sample values are 24% and 31% respectively. The values for VSL and VAP of semen samples collected form outer outlet were improved to 121.7 μ m/s and 145 μ m/s form 73 μ m/s and 102 µm/s, respectively. We observed more than 100% improvement in VCL of semen samples collected form outer outlet. We observed a small difference in the ALH of the semen samples collected from the top and bottom outlets. We observed significant improvement of the semen

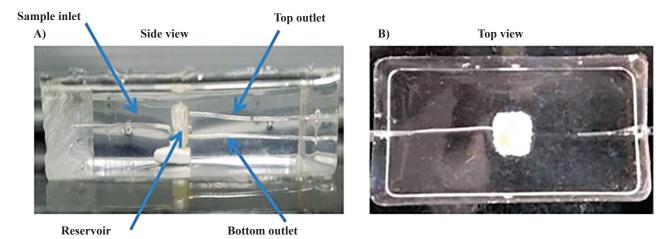


Fig. 4. (A) Side view, and (B) top view of the microfluidic device with inlet positioned between top and bottom outlet channels.

Table 1. Values (mean±standard error) of semen sample variables (n=15)

Variable	Control	Top outlet	Bottom outlet
Total motility	53.7°±5.8%	82.1b±7.1%	32.5°±6.9%
Progressive	24.9a±11.3%	$42.7^{b}\pm15.8\%$	13.6°±6.6%
motility			
Rapid motility	31.1°±15.4%	61.4b±17.6%	12.1°±6.13%
Straight linear	79.3°±16.2	121.7 ^b ±21.3	46.3°±19.5
velocity (VSL)	μm/s	μm/s	μm/s
Average path	$102.5^{a}\pm20.5$	145.6 ^b ±30.1	$76.7^{c}\pm25.8$
velocity (VAP)	μm/s	μm/s	μm/s
Curvilinear	$162.6^{a}\pm23.4$	$281.8^{b}\pm28.6$	97.4°±21.57
velocity (VCL)	μm/s	$\mu m/s$	μm/s
Average lateral	9.1°±1.2 μm	11.4 ^b ±1.9 μm	8.4a±2.1 μm
head displacement	·	•	·
(ALH)			
Beat cross	24.1a±1.97 Hz	37.7 ^b ±2.8 Hz	21.5a±3.1 Hz
frequency (BCF)			

Means bearing different lowercase superscript letters in the same column differ significantly (P<0.05).

samples collected form top outlet and it was found to be 37.7 Hz whereas control samples exhibited BCF of 24 Hz.

In our study, we found that microfluidic technology is a simple and cost-effective method to separate motile sperm cells from low and non-motile sperm cells. The microfluidic test, motility was compared for sperm swimming in buffer for both top and bottom outlet. The fabricated microfluidic device was used to create a highly controlled platform with which these tests were performed. The functionality of the device was achieved by self-propelled sperm swimming through the low viscosity medium in the main channel. The data suggests that motile and non-motile sperms can be differentiated through microfluidic chamber (Table 1). Sperms with higher progressive motility rate travel far longer distance and can be collected through the top outlet while the non-motile sperm cells can be collected through bottom outlet. These findings clearly indicate a strong correlation between rapid progressive sperm motility and vitality since sperm with highly progressive motility are able to swim in a shorter amount of time and subsequently exhibits a higher vitality than sperm with less rapid progressive motility. The trend also indicates that the act of swimming further through the device did not have a negative impact on sperm vitality, or, at minimum, any potential negative effect was more than compensated by the higher vitality of the faster swimming population.

The motility of sperms is critical for a successful fertilization. In this study, we demonstrated a microfluidic device that can separate motile and immotile sperms from the cattle semen samples. The design of this microfluidic system for sperm separation relies upon the swim up behaviour of motile spermatozoa in the fluid flow direction. We experimentally measured the sperm cell kinematics for the evaluation of microfluidics device and achieved 82% enrichment of motility of sperm cells in cattle semen samples. Our device provides a portable, inexpensive, and

reusable platform for the separation of motile cells which can further be used for field applications. This is a simple and inexpensive method which could be helpful for dairy industry to improve the fertility rate of the livestock.

REFERENCES

Abgrall P and Gue A M. 2007. Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem—a review. *Journal of Micromechanics and Microengineering* 17: R15.

Alvarez J G, Lasso J L, Blasco L, Nunez R C, Heyner S, Caballero P P and Storey B T. 1993. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile lifetime. *Human Reproduction* 8: 1087&92.

Arzondo M M, Caballero J N, Marin-Briggiler C L, Davit G, Cetica PD and Vezquez-Levin M H. 2012. Glass wool filtration of bull cryopreserved semen: a rapid and effective method to obtain a high percentage of functional sperm. *Theriogenology* 78: 579&85.

Asghar W, Velasco V, Kingsley J L, Shoukat M S, Shafiee H, Anchan R M, Mutter G L, Tüzel E and Demirci U. 2014. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. *Advanced Healthcare Materials* 3: 1671&79.

Barratt C L R, Tomlinson M J and Cooke I D. 1993. Prognostic significance of computerized motility analysis for *in vivo* fertility. *Fertility and Sterility* **60**: 520&25.

Baruah A, Jindal A, Acharya C, Prakash B, Basu S and Ganguli A K. 2017. Microfluidic reactors for the morphology controlled synthesis and photocatalytic study of ZnO nanostructures. *Journal of Micromechanics and Microengineering* 27: 035013.

Bhagat A A S, Bow H, Hou H W, Tan S J, Han J and Lim C T. 2010. Microfluidics for cell separation. *Medical and Biological Engineering and Computing* **48**: 999&1014.

Bonner W A, Hulett H R, Sweet R G and Herzenberg L A. 1972. Fluorescence activated cell sorting. *Review of Scientific Instruments* **43**: 404–09.

Chebel R C, Santos J E, Reynolds J P, Cerri R L, Juchem S O and Overton M. 2004. Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. *Animal Reproduction Science* 84: 239&55.

Cushing K W, Piyasena M E, Carroll N J, Maestas G C, Lopez B A, Edwards B S, Graves S W and Lopez G P. 2013. Elastomeric negative acoustic contrast particles for affinity capture assays. *Analytical Chemistry* 85: 2208–15.

Dorranian D, Abedini Z, Hojabri A and Ghoranneviss M. 2009. Structural and optical characterization of PMMA surface treated in low power nitrogen and oxygen RF plasmas. *Journal of Non-Oxide Glasses* 1: 217&29.

Foote R H. 2010. The history of artificial insemination: Selected notes and notables. *Journal of Animal Science* **80**: 1&10.

Gossett D R, Weaver W M, Mach A J, Hur S C, Tse H T K, Lee W, Amini H and Di Carlo D. 2010. Label-free cell separation and sorting in microfluidic systems. *Analytical and Bioanalytical Chemistry* **397**: 3249&67.

Goyal R L, Tuli R K, Georgie G C and Chand D. 1996. Comparison of quality and freezability of water buffalo semen after washing or sephadex filtration. *Theriogenology* **46**: 679&86.

Henkel R. 2012. Sperm preparation: state-of-the-art—

- physiological aspects and application of advanced sperm preparation methods. *Asian Journal of Andrology* **14**: 260.
- Holmes D and Gawad S. 2010. The application of microfluidics in biology. *Microengineering in Biotechnology*, pp. 55&80. Humana Press, Totowa, NJ.
- Holt C, Holt W V, Moore H D, Reed H C and Curnock R M. 1997. Objectively measured boar sperm motility parameters correlate with the outcomes of on ☐ farm inseminations: results of two fertility trials. *Journal of Andrology* 18: 312&23.
- Holt W V, Moore H D and Hillier S G. 1985. Computer-assisted measurement of sperm swimming speed in human semen: correlation of results with *in vitro* fertilization assays. *Fertility and Sterility* 44: 112&19.
- Hoshino K, Huang Y Y, Lane N, Huebschman M, Uhr J W, Frenkel E P and Zhang X. 2011. Microchip-based immunomagnetic detection of circulating tumor cells. *Lab on a Chip* 11: 3449–57.
- Jeyendran R S, Perez-Pelaez M and Crabo B G. 1986. Concentration of viable spermatozoa for artificial insemination. *Fertility and Sterility* **45**: 132&34.
- Knowlton S M, Sadasivam M and Tasoglu S. 2015. Microfluidics for sperm research. *Trends in Biotechnology* **33**: 221&29.
- Krause W. 1995. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. *Human Reproduction* 10: 60&66.
- Lauria A, Gandolfi F, Enne G and Gianaroli L. 1998. Gametes: development and function. *Serono Symposia*. p. 219–228.
- Lecault V, White AK, Singhal A and Hansen CL. 2012. Microfluidic single cell analysis: from promise to practice. *Current Opinion* in Chemical Biology 16: 381&90.
- Liu Y and Jiang X. 2017. Why microfluidics? Merits and trends in chemical synthesis. *Lab on a Chip* **17**: 3960&78.
- Macleod I C and Irvine D S. 1995. Andrology: The predictive value of computer-assisted semen analysis in the context of a donor insemination programme. *Human Reproduction* **10**: 580&86.
- Marshburn P B, McIntire D, Carr B R and Byrd W. 1992. Spermatozoal characteristics from fresh and frozen donor semen and their correlation with fertility outcome after intrauterine insemination. *Fertility and Sterility* **58**: 179&86.
- Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M and Funahashi H. 2013. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. *Fertility and Sterility* **99**: 400&07.
- Miltenyi S W, Muller, Weichel W and Radbruch A. 1990. High gradient magnetic cell separation with MACS. *Cytometry* 11: 231–38.
- Morrell J M. 2006. Update on semen technologies for animal breeding. *Reproduction in Domestic Animals* **41**: 63&67.
- Mortimer S T. 1997. A critical review of the physiological importance and analysis of sperm movement in mammals. *Human Reproduction Update* **3**: 403&39.

- Muiño R, Rivera M M, Rigau T, Rodriguez-Gil J E and Peña A I. 2008. Effect of different thawing rates on post-thaw sperm viability, kinematic parameters and motile sperm subpopulations structure of bull semen. *Animal Reproduction Science* 109: 50&64.
- Mustafa G, Anzar M and Arslan M. 1998. Separation of motile spermatozoa from frozen-thawed buffalo semen swim-up vs filtration procedure. *Theriogenology* **50**: 205&11.
- Nosrati R, Vollmer M, Eamer L, San Gabriel M C, Zeidan K, Zini A and Sinton D. 2014. Rapid selection of sperm with high DNA integrity. *Lab on a Chip* 14: 1142&50.
- Ohno K I, Tachikawa K and Manz A. 2008. Microfluidics: applications for analytical purposes in chemistry and biochemistry. *Electrophoresis* **29**: 4443&53.
- Piperelis S G, Vafiadis D, Boscos C M, Brozos C, Kiossis E and Alexopoulos C. 2008. Efficiency assessment of swift method to enhance substandard viability ram ejaculates. *Reproduction in Domestic Animals* **43**: 111&16.
- Quintero-Moreno A, Rigau T and Rodriguez-Gil J E. 2004. Regression analyses and motile sperm subpopulation structure study as improving tools in boar semen quality analysis. *Theriogenology* **61**: 673&90.
- Rao T K S, Kumar N, Patel N B, Chauhan I and Chaurasia S. 2013. Sperm selection techniques and antioxidant fortification in low grade semen of bulls: Review. *Veterinary World* 6: 579&85.
- Rodriguez Martinez H. 2012. Assisted reproductive techniques for cattle breeding in developing countries: a critical appraisal of their value and limitations. *Reproduction in Domestic Animals* 47: 21&26.
- Scholkamy T H, Mahmoud, Karima-Gh. M, El Zohery F A and Ziada M S. 2009. Evaluation of sephadex filtration for freezability and *in vitro* fertilizing ability of buffalo semen. *Global Veterinaria* 3: 144&50.
- Shields C W, 4 Reyes C D and López G P. 2015. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. *Lab on a Chip* **15**: 1230–49.
- Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K and Miyamoto S. 2016. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertility and Sterility 105: 315&21.
- Smith S, Hosid S and Scott L. 1995. Use of post separation sperm parameters to determine the method of choice for sperm preparation for assisted reproductive technology. *Fertility and Sterility* **63**: 591&97.
- Swain J E, Lai D, Takayama S and Smith G D. 2013. Thinking big by thinking small: application of microfluidic technology to improve ART. *Lab on a Chip* **13**: 1213&24.
- Velve-Casquillas G, Le Berre M, Piel M and Tran P T. 2010. Microfluidic tools for cell biological research. *Nano Today* 5: 28&47.
- Whitesides G M. 2006. The origins and the future of microfluidics. *Nature* **442**: 368&73.