Studies on reproduction and genetic parameters of Black Bengal goat (*Capra hircus bengalensis*) at farmers' field under different agro-climatic zones of West Bengal

HEIMONMI NIANG 1 , MANORANJAN ROY 2 , SANJOY DATTA $^{2 \boxtimes}$, UTTAM SARKAR 2 , PRANAB KUMAR SENAPATI 2 and SANTANU BERA 2

West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata, West Bengal 700 037 India

Received: 17 March 2020; Accepted: 21 July 2021

ABSTRACT

The present investigation was conducted on Black Bengal goat maintained in different agro-climatic clusters of West Bengal. Information from 10,348 kids born from 3,138 Black Bengal does during the period April 2010 to March 2019 reared at farmers' fields, was used to study the effect of non-genetic and genetic factors on reproduction traits. Age at first service (AFS) and age at first kidding (AFK) from 1,175 does; service period (SP) and kidding interval (KI) and litter size (LI) were considered for this study. Agro-climatic clusters, year of kidding and season of kidding were included as non-genetic factors whereas; parity of doe was taken as a genetic factor. The mean AFS and AFK were recorded to be 239.86±0.72 and 400.60±2.33 days respectively. The average SP was reported as 88.32±0.93 days, the average KI was 235.48±0.91 days and overall litter size/kidding were 1.84±0.01 kids. Effect of cluster, season, parity and year of kidding had a significant effect on the reproduction traits. The heritability figures were 0.177±0.125, 0.147±0.118, 0.043±0.106, 0.176±0.091 and 0.182±0.138 for AFS, AFK, KI, SP and LS respectively. Low genetic and phenotypic correlations between KI and LS were observed. The does reared under the Murshidabad and Jhargram clusters showed better reproductive efficiencies than that of other clusters. Low heritability estimates obtained for all reproductive traits in the current study suggested that emphasis should be geared towards improving management practices to combat kid mortality and reduce the kidding intervals.

Keywords: Agro-climatic zones, Black Bengal goat, Genetic parameter, Reproduction

With 34 indigenous registered goat breeds, India is blessed with the world's largest genetic capital for livestock (NBAGR 2018). Domestic demand for goat meat products is growing rapidly for a large human population with economically strong potential customers, and is expected to increase dramatically over the next decades. The state of West Bengal is the breeding ground of the Black Bengal goat, a dwarf breed renowned for its adaptability, fertility, prolificacy, meat delicacy and superior skin quality (Akhtar et al. 2006). It is well suited to the hot and humid environment and usually produces twins and triplets. One of the key determinants of goats' productivity is reproductive success. Better production potential could be achieved from goats with high reproductive efficiency and increased litter size (LS) capacity, with a high fertility rate compared to other farm animals (Haque et al. 2013) age at sexual maturity, age at first service (AFS), age at first kidding (AFK) and kidding interval (KI) (Maroof et al. 2007). The efficiency can be measured by the kidding rate, weaning rate and live weight of kids born or weaned and the length of the reproductive cycle (Okere et al. 2011). Reproductive efficiency is often considered to be the most

Present address: ¹Mynthong, Jowai, Meghalaya; ²West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal.

□ Corresponding author e-mail: drsanjoydatta@gmail.com

important factor for rising productivity under any given environmental conditions. The extent of reproductive success depends on the relationship between genetic and environmental factors (Greyling 2000). Studies show that many genetic and non-genetic factors also influence the reproductive fitness of various breeds of Indian goats under field conditions (Pathodiya et al. 2008, Kumar et al. 2011) and organized farms (Singh et al. 2002) in Black Bengal and its crosses with Beetal goats. Thus, fixation of performance records for classifiable non-genetic sources of variation is highly recommended to assess precise figures of genetic parameters and breeding values, so that breeding animals with potential genetic merit can be identified and selected for the further genetic improvement program (Thiruvenkadan and Karunanithi 2007). Keeping the above aspects in mind, the study was designed to investigate the influence of non-genetic and genetic factors that affect reproductive performances concerning different agroclimatic clusters of West Bengal, India.

MATERIALS AND METHODS

The present research work was conducted on 10,348 numbers of kids born from 3,138 Black Bengal does during the period April 2010 to March 2019 maintained at farmers' herd under the project All India Coordinated Research Project

on Goat Improvement. Four agro-climatic clusters namely Nadia (Gangetic Alluvial Zone), Sundarban (Coastal Saline Zone), Murshidabad (Old Alluvial Zone) and Jhargram (Undulating Red and Lateritic Zone) of West Bengal were considered for this study with the records for age at first service (AFS) and age at first kidding (AFK) from 1175 does, service period (SP) and kidding interval (KI) from 2,119 does and Litter Size (LI) from 5,665 kiddings. General information (Agro-climatic clusters, the year of kidding, identification number of goats), systematic records of breeding (date of birth of doe, date of service, date of kidding, service period, kidding interval), pedigree information (dam and sire number), date of birth of kids, type of birth, sex of kids, parity of doe (up to first ten parities of doe), the season of birth of doe and kids and survivability of kids during the study period were collected. The records for abortion and stillbirth were excluded from the purview of this study. The generated data were analyzed statistically in IBM SPSS version 21.0 Software. The effect of various non-genetic and genetic factors on reproductive performance was analyzed by one way ANOVA, compared by modified Duncan's Multiple Range Test. Heritability, genetic and phenotypic correlations were estimated by LSMLMW, PC-1 Version, mixed model least squares and maximum likelihood computer program (Harvey 1990). The following statistical model was used for the analysis of traits under study.

$$Y_{ij} = \mu + B_i + e_{ijk}$$

where, Y_{ij} , observation of j^{th} kid born in i^{th} cluster/year/season/sex/parity; μ , the overall mean; B_i , the fixed effect of i^{th} cluster/year/season/sex/parity and e_{ijk} , the residual random error, assumed to be NID $(0, \sigma^2 e)$.

Heritability estimates were obtained by the paternal halfsib correlation method (Becker 1975). The following statistical model was used:

$$Y_{ij} = m + S_i + e_{ijk}$$

where, Y_{ij} , record of the j^{th} daughter of the i^{th} sire; m, overall mean; S_i , effect of the i^{th} sire; and e_{ijk} , residual random error, assumed to be NID $(0, \sigma^2 e)$.

RESULTS AND DISCUSSION

The average AFS was found to be 239.86±0.72 days, which is in close agreement with the earlier report of a study on Black Bengal goat in three adopted villages of West Bengal (Dhara *et al.* 2008). However, lower estimates of AFS (190±1.89 and 209±32.25 days) were reported in different studies of Bangladesh (Zeshmarani *et al.* 2007, Hossain *et al.* 2004). Comparatively higher figures were also recorded in the cross of Beetal and Black Bengal goats (Singh *et al.* 2002). The AFK was estimated as 400.60±2.33 days, which is almost similar to 401.50±32.08 and 405 days recorded in previous studies (Chowdhury *et al.* 2002, Hossain *et al.* 2004). Lower estimates of 360.5±10 days (Hassan *et al.* 2007) and 368.12±16.96 days (Bhowmik *et al.* 2010) were also reported. In contrast, significantly higher estimates of AFK (503.72±40.70 and 448.26±25.48 days)

were also reported by Haque et al. (2013) and Hasan et al. (2015) respectively. SP has been recorded as 88.32±0.93 days, which is very close to the report of Black Bengal and Jamnapari goats (Miah et al. 2016) being 86±7.9 and 83.25±24.32 days respectively under semi-intensive condition. Lower estimates (61.8, 37 ± 2.6 and 61 ± 0.14 days) were also reported (Chowdhury et al. 2002, Dhara et al. 2008) in some studies. Contrary to that, a significantly higher figure (123.84 days) was reported (Haque et al. 2013) in Bangladesh. The average kidding interval (KI) recorded in this study was 235.48±0.91 days. Similar findings of KI as 233.47±15.46, 274.60±14.48 day in two groups of Black Bengal goat were also reported earlier (Akhtar et al. 2006). Comparatively lower estimates were figured out as 193.10 days and 179±20 days respectively (Hossain et al. 2004, Hassan et al. 2007) and as 178.23±50 days (semi-intensive system) and 190.20±20 days (extensive system) respectively in a separate study (Hasan et al. 2015). However, comparatively higher estimates were also reported (Singh and Mukherjee 1998) as 271.2±2.4 days and 245.06±30.16, 250.13±41.35, 248.72±38.25 days respectively under three different locations (Chowdhury et al. 2002). The overall litter size/kidding were estimated as 1.84±0.01. Different estimates were reported (Faruque et al. 2002) with 1.18 ± 0.04 kids and 1.08 ± 0.11 , 1.76 ± 0.12 , 1.96±0.12 kids for first, second and third parity respectively (Hossain et al. 2004).

Effect of agro-climatic clusters on reproductive traits: Reproductive performance during 2010-11 to 2018-19 (Table 1) revealed a significant (P<0.05) effect of agro-climatic clusters over different traits under consideration.

Similar results have been reported on AFS and LS in Black Bengal does (Paul *et al.* 2014) and the effect of the cluster on KI and LS was also recorded in Black Bengal goat reared at Gangatia, Borachala and Pachpai villages of Mymensingh, Bangladesh (Choudhury *et al.* 2013).

Effect of season on reproductive performance: The effect of the season of birth of doe on reproductive performance during 2010-11 to 2018-19 has been presented in Table 2. The same incidence was reported on the effect of season of kidding on KI of Black Bengal does (Ray *et al.* 2016). For this reason, the does kid during the monsoon and winter season, had significantly (P<0.05) longer KI than those kidded during the summer season.

Effect of the year of kidding on reproductive performance: The effect of the year of kidding on reproductive performance during 2010-11 to 2018-19 has been presented in Table 3.

The observations were similar as reported (Faruque *et al.* 2010, Malik *et al.* 2010) during earlier studies. The year of kidding had a significant effect on AFK in Assam Local goat and their crosses with Beetal goat (Sarma *et al.* 1981).

Effect of parity of doe on reproductive performance: The effect of parity of doe on reproductive performance during 2010-11 to 2018-19 has been presented in Table 4. Similar results on the effect of parity on KI were informed (Hossain *et al.* 2004, Islam *et al.* 2009) and a significant effect of

Table 1. Agro-climatic cluster wise variation of reproductive traits

Agro-climatic cluster	AFS (days)	AFK (days)	SP (days)	KI (days)	LS (No.)
Overall	239.86±0.72	400.60±2.33	88.32±0.93	235.48±0.91	1.84±0.01
	(1175)	(1175)	(2119)	(2119)	(5665)
Nadia	246.28a ±0.90	$392.50^{b} \pm 0.88$	91.95°a±1.27	237.99a±0.26	$1.90^{b} \pm 0.01$
	(671)	(671)	(1041)	(1041)	(3206)
Sundarban	235.78 ^b ±1.69	445.14 ^a ±9.38	87.34 ^a ±1.61	236.64 ^a ±1.61	$1.84^{b} \pm 0.02$
	(269)	(269)	(732)	(732)	(1503)
Murshidabad	227.94°±1.56	376.50 ^{bc} ±1.58	$67.70^{\circ} \pm 4.23$	217.19°±4.28	2.01a±0.04
	(79)	(79)	(91)	(91)	(362)
Jhargram	225.31°±1.51	$370.84^{\circ}\pm1.53$	$83.70^{b} \pm 2.98$	$228.47^{b} \pm 2.58$	$1.44^{c}\pm0.02$
	(156)	(156)	(255)	(255)	(594)

Values in parenthesis are the number of observations. Column-wise similar superscripts do not differ significantly (P<0.05).

Table 2. Effect of season on reproductive performance

Season	AFS (days)	AFK (days)	SP (days)	KI (days)	LS (No.)
Overall	239.86±0.72	400.60±2.33	88.32±0.93	235.48±0.91	1.84±0.01
	(1175)	(1175)	(2119)	(2119)	(5665)
Summer	$234.62^{b} \pm 0.86$	400.45±4.77	90.21±1.49	237.48±1.49	$1.83^{b} \pm 0.02$
	(396)	(396)	(825)	(825)	(2051)
Monsoon	241.98a±1.40	402.49±4.14	85.89±1.65	232.68±1.59	1.88a±0.02
	(386)	(386)	(683)	(683)	(1898)
Winter	243.05a±1.37	398.90±3.03	88.49±1.74	235.92±1.59	$1.82^{b} \pm 0.02$
	(393)	(393)	(611)	(611)	(1716)

Values in parenthesis are the number of observations. Column-wise similar superscripts do not differ significantly (P<0.05).

Table 3. Effect of the year of kidding on reproductive performance

Year	AFS (days)	AFK (days)	SP (days)	KI (days)	LS (No.)
Overall	239.86±0.72	400.60±2.33	88.32±0.93	235.48±0.91	1.84±0.01
	(1175)	(1175)	(2119)	(2119)	(5665)
2010-2011	239.82bc±1.15	417.50±9.29	84.08±2.84	232.20±2.84	1.84ab±0.03
	(195)	(195)	(161)	(161)	(677)
2011-2012	239.40bc±1.85	404.79±10.17	90.44±2.58	237.78±2.58	1.88a±0.03
	(74)	(74)	(251)	(251)	(512)
2012-2013	237.97 ^{bc} ±1.30	410.20±10.13	91.31±2.98	238.12±2.97	$1.83^{ab} \pm 0.03$
	(74)	(74)	(194)	(194)	(487)
2013-2014	235.70bc±1.20	404.10±7.43	90.14±3.01	237.03±3.00	1.88a±0.03
	(94)	(94)	(195)	(195)	(482)
2014-2015	241.93 ^b ±1.13	398.15±3.80	91.14±3.20	238.00±3.16	1.81ab±0.03
	(115)	(115)	(169)	(169)	(486)
2015-2016	233.49°±1.48	391.14±7.09	94.74±3.41	241.57±3.37	1.77 ^b ±0.03
	(154)	(154)	(188)	(188)	(715)
2016–2017	236.64 ^{bc} ±1.91	386.92±2.09	83.08±2.41	230.46±2.27	1.82ab±0.02
	(158)	(158)	(349)	(349)	(813)
2017–2018	238.85 ^{bc} ±2.89	389.90±3.57	88.78±2.68	234.97±2.52	1.90a±0.03
	(137)	(137)	(289)	(289)	(718)
2018-2019	251.13a±3.04	404.75±5.22	85.96±2.39	233.84±2.39	1.85 ^{ab} ±0.02
	(174)	(174)	(323)	(323)	(775)

 $Values\ in\ parenthesis\ are\ the\ number\ of\ observations.\ Column-wise\ similar\ superscripts\ do\ not\ differ\ significantly\ (P<0.05).$

Table 4. Effect of parity of doe on reproductive performance

Parity	SP (days)	KI (days)	LS (No.)	
Overall	88.32±0.93	235.48±0.91	1.84±0.01	
	(2119)	(2119)	(5665)	
First	_	_	$1.38^{\circ} \pm 0.02$	
			(1184)	
Second	$92.30^{ab} \pm 2.11$	239.84±2.12	$1.75^{d} \pm 0.02$	
	(405)	(405)	(1138)	
Third	95.49a±2.36	241.34±2.14	1.94c±0.02	
	(392)	(392)	(1013)	
Fourth	87.59ab±2.07	234.80±2.05	$2.02^{bc} \pm 0.02$	
	(396)	(396)	(798)	
Fifth	83.40ab±2.30	230.62±2.31	2.06bc±0.03	
	(340)	(340)	(593)	
Sixth	85.50ab±2.65	232.62±2.64	$2.12^{b}\pm0.04$	
	(230)	(230)	(406)	
Seventh	81.72 ^b ±3.25	229.21±3.24	2.15 ^b ±0.05	
	(168)	(168)	(251)	
Eighth	84.44 ^{ab} ±4.24	232.40±4.18	2.09 ^b ±0.06	
C	(105)	(105)	(152)	
Ninth	86.48ab±5.42	236.31±5.62	2.15 ^b ±0.08	
	(58)	(58)	(85)	
Tenth	81.28 ^b ±9.51	229.68±9.55	2.33a±0.11	
	(25)	(25)	(45)	

Note: Values in parenthesis are the number of observations. Column-wise similar superscripts do not differ significantly (P<0.05).

1985) in Ganjam goat. Almost the same heritability of LS at birth (0.15±0.18) in Black Bengal goat in Bangladesh was reported in an earlier study (Faruque *et al.* 2010).

Genetic and phenotypic correlations of KI with SP as 0.993 and 0.997±0.001 respectively have been reported in Sirohi goat (Gautam *et al.* 2010). The genetic and phenotypic correlations of KI with LS as 0.14±0.6 and 0.11±0.1 respectively were also reported in Tunisian local goats (Atoui *et al.* 2018). Low estimates of heritability obtained in the present study for all reproductive traits indicated that attention should be directed towards the improvement of management practices. Both genetic and phenotypic correlations between KI and LS observed here were low and positive.

The disparities in the reproductive potential of the different agro-climatic clusters can indeed be due to the variation in the genetic make-up of the animals, the variation in the agro-climatic environments of the clusters (temperature, precipitation and humidity, etc.), the accessibility of pastureland and the management techniques followed by the farmers in the various clusters. The agro-climatic conditions of the Murshidabad and Jhargram clusters were proved to be beneficial for the reproductive performance of Black Bengal does. The low and positive genetic and phenotypic association can be an indication that in the subsequent pregnancy, animals with greater kidding interval from the previous kidding are expected to bear more foetuses. The research indicates that,

Table 5. Heritability (diagonals), Genetic (below diagonals) and Phenotypic correlation (above diagonal) for reproductive traits

Trait	AFS	AFK	KI	SP	LS
AFS	0.177±0.125	0.323±0.123	_	_	_
AFK	0.286±0.123	0.147±0.118	_	_	_
KI	_	_	0.043 ± 0.106	0.135±0.135	0.064 ± 0.145
SP	_	_	0.138 ± 0.135	0.176±0.091	0.132 ± 0.164
LS	_	_	0.108 ± 0.145	0.032 ± 0.164	0.182 ± 0.138

parity on LS was also reported (Haque *et al.* 2013), whereas, reported a significant effect of parity on postpartum heat period was also revealed in an earlier study (Miah *et al.* 2016).

Genetic parameters of reproductive traits: The heritability and the correlations (genetic and phenotypic) of reproductive traits have been estimated and presented in Table 5.

Similar report on heritability of AFS as 0.153±0.016 in Osmanabadi goat was reported at Maharashtra under scarcity zone (Patil *et al.* 2008). The heritability of AFK and KI was 0.501±0.178, 0.235±0.124 in Sirohi goat in Rajasthan (Shashank 2015) whereas the same as 0.26±0.19, 0.36±0.12 respectively in the indigenous goat of northern Odisha were also recorded (Ray *et al.* 2016). Similar estimates of heritability for SP (0.174±0.027) were reported (Gautam *et al.* 2010) in Sirohi goat. Contrary to that, higher estimates (0.386±0.328) were also reported (Mohanty *et al.*

as shown by low heritability and modest associations, there are a wide variety of changes in the kidding interval and service period. To reduce mortality rates, enhanced management efforts and supervision are most desired, which can increase litter size at birth and weaning, and minimize intervals between two successive kidding. More elaborate research work may be carried out encompassing a larger number of goats covering all agro-climatic zones of West Bengal which was beyond the purview of this study. The reproductive performance can be studied in farm conditions along with farmers' fields for a better comparison of results to make a more justified conclusion.

ACKNOWLEDGEMENTS

The authors are highly thankful to AICRP on Goat Improvement, Black Bengal Field Unit, Kolkata and West Bengal University of Animal and Fishery Sciences, West Bengal, India for help and support.

REFERENCES

- Akhtar F, Islam A B M M and Amin M R. 2006. Effect of selection for growth on production performance in Black Bengal goats. *Pakistan Journal of Biological Sciences* **9**(2): 182–85.
- Atoui A, Carabaño M J and Najari S. 2018. Evaluation of a local goat population for fertility traits aiming at the improvement of its economic sustainability through genetic selection. *Spanish Journal of Agricultural Research* **16**(2).
- Becker W A. 1975. *Manual of Quantitative Genetics*, 3rd edition. Washington State University, Pullaman, Washington, USA.
- Bhowmik N, Mia M M, Rahman M M, Islam S. 2010. Preliminary study on productive and reproductive performances of Jamunapari, Black Bengal and Crossbred goats at Chittagong region of Bangladesh. *Iranian Journal of Applied Animal Science* **4**(1): 89–93.
- Choudhury M, Sarker S, Islam F, Ali A, Bhuiyan A, Ibrahim M and Okeyo A. 2013. Morphometry and performance of Black Bengal goats at the rural community level in Bangladesh. *Bangladesh Journal of Animal Science* **41**(2): 83–89.
- Chowdhury S A, Bhuiyan M S A and Faruk S. 2002. Rearing black bengal goat under semi-intensive management 1. Physiological and reproductive performances. *Asian-Australasian Journal of Animal Sciences* **15**(4): 477–84.
- Dhara K C, Ray N, Roy S, Samanta A K and Samanta P K. 2008. Improvement of reproductive performances of Black Bengal goat through selection under field condition. *Journal of Animal and Veterinary Advances* **7**(5): 599–603.
- Faruque S, Chowdhury S A, Siddiquee N U, Afroz M A. 2010. Performance and genetic parameters of economically important traits of Black Bengal goat. *Journal of the Bangladesh Agricultural University* 8(1): 67–68.
- Faruque S, Husain S S, Rahman M M, Roy B K, Islam M N, Islam M S. 2002. A study on the reproductive performance of does in different genetic groups under village condition. *Journal of Biological Sciences* **2**(5): 325–28.
- Gautam L, Kumar N R A and Ashraf W H. 2010. Growth modeling and genetic analysis on growth traits of sirohi goat under field conditions. *Iranian Journal of Applied Animal Science* 9(1): 115–24.
- Greyling J P C. 2000. Reproduction traits in the Boer goat doe. *Small Ruminant Research* **36**(2): 171–77.
- Haque M N, Husain S S, Khandoker M A M Y, Mia M M and Apu A S. 2013. Selection of Black Bengal buck based on some reproductive performance of their progeny at semi-intensive rearing system. *Journal of Agricultural Science* 5(8): 142–52.
- Harvey W R. 1990. *User's guide for LSMLMW, mixed model least squares and maximum likelihood computer programme*. Ohio State University (Mimeograph).
- Hasan M J, Ahmed J U, Alam M M, Mojumder M L O and Ali M S. 2015. Reproductive performance of Black Bengal goat under semi-intensive and extensive condition in Rajshahi district of Bangladesh. Asian Journal of Medical and Biological Research 1(1): 22–30.
- Hassan M M, Mahmud S N, Islam S A and Miazi O F. 2007. A comparative study on reproductive performance and productivity of the Black Bengal and Crossbred goat at Atrai, Bangladesh. *University Journal of Zoology, Rajshahi University* 26: 55–57.
- Hossain S M J, Sultana N, Alam M R, Amin M R, Rashid M M. 2004. Reproductive and productive performance of Black Bengal goat under semi-intensive management. *Journal of Biological Sciences* 4(4): 537–41.
- Islam M, Amin M, Kabir A and Ahmed M. 2009. Comparative study between semi-intensive and scavenging production

- system on the performances of Black Bengal goat. *Journal of the Bangladesh Agricultural University* **7**(1): 79–86.
- Kumar A, Ahmad M, Singh L B, Singh D K and Singh S K. 2011. Growth pattern of Black Bengal goats. *Indian Veterinary Journal* 88(11): 41–42.
- Malik C P, Kanaujia A S and Pander B L. 1986. A note on the factors affecting pre-weaning growth in Beetal and Black Bengal kids and their crosses. *Animal Production* **43**(1): 178–82.
- Maroof A, Singh P K, Sadana D K, Alam S and Chahal D. 2007.Reproductive performance of Beetal goats in its breeding tract.*Indian Journal of Small Ruminants* 13(2): 182–85.
- Miah G, Das A, Bilkis T, Momin M M, Arif Uddin M, Alim A M, Mahmud S M and Miazi O F. 2016. Comparative study on productive and reproductive traits of Black Bengal and Jamnapari goats under semi-intensive condition. Scientific Research Journal (SCIRJ) IV(II): 1–7.
- Mohanty K C, Patra B U and Misra P K. 1985. Inheritance of some reproductive traits in Gunjam goats. *Indian Journal of Animal Sciences* 55: 1104–06.
- NBAGR. 2018. Registered Goat ICAR- National Bureau of Animal Genetic Resources. https://nbagr.icar.gov.in/en/registered-goat/
- Okere C, Streeter J, Solaiman S and Gurung N. 2011. Critical analysis of reproductive performance in Boer and Kiko Meat goat herd under semi-intensive management system. *International Journal of Applied Agricultural Research* 6(2): 145–51.
- Pathodiya O P, Gurjar M L and Singh S K. 2008. Reproductive performance of Sirohi goats in field conditions. *Indian Journal of Small Ruminants* **14**(1): 124–26.
- Patil S J, Mandakmale S D, Walkunde T R, Kamble D K. 2008. Heritability estimate of different traits in Osmanabadi goat under scarcity zone of Maharashtra. *The Asian Journal of Animal Science* 3(2): 142–44.
- Paul R, Rahman A, Debnath S and Khandoker M. 2014. Evaluation of productive and reproductive performance of Black Bengal goat. *Bangladesh Journal of Animal Science* 43(2): 104–11.
- Ray S, Dash S K, Dhal S K, Nayak G D and Parida A K. 2016. Genetic studies on reproductive performance of indigenous goats in northern Odisha. *Exploratory Animal and Medical Research* **6**(2): 192–98.
- Sarma H K, Thakuria K, Sarmah P C, Borah H P, Mohan M and Pant K P. 1981. Note on growth of Assam local goats. *Indian Journal of Animal Sciences* 51: 669–72.
- Shashank D. 2015. 'Studies on growth, productive and reproductive performance of Sirohi goats around Udaipur district of Rajasthan under field condition'. PhD thesis, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan.
- Singh D K and Mukherjee D. 1998. Studies on milk production and reproduction traits of goats under field condition. *Indian Journal of Dairy Science* **51**(5): 338–41.
- Singh S., Rana Z S and Dalal D S. 2002. Genetic and non-genetic factors affecting reproductive performance of Beetal, Black Bengal and their reciprocal crosses. *Indian Journal of Animal Research* 36(1): 64–66.
- Thiruvenkadan A K and Karunanithi K. 2007. Mortality and replacement rate of Tellicherry and its crossbred goats in Tamil Nadu. *Indian Journal of Animal Sciences* 77(7): 590–94.
- Zeshmarani S, Dhara K C, Samanta A K, Samanta R and Majumder S C. 2007. Reproductive performance of goats in Eastern and North-eastern India. *Livestock Research for Rural Development* **19**(8): 114.