# Stem Cell Therapeutics in veterinary medicine in India

MUDASIR BASHIR GUGJOO $^{1\boxtimes}$ , FAJAR FAROOQ $^{1}$ , QUMAILA SAKEENA $^{1}$ , EJAZ RASOOL DAR $^{1}$ , SHARUN KHAN $^{2}$ , AMARPAL $^{2}$ , JALAL-UD DIN PARRAH $^{1}$ , DIL MOHAMMAD MAKHDOOMI $^{1}$ , KULDEEP DHAMA $^{2}$  and GUTULLA TARU SHARMA $^{2}$ 

Sher-e-Kashmir University of Agricultural Sciences and Technology, Shuhama, Srinagar, Jammu and Kashmir 190 025 India

Received: 18 September 2021; Accepted: 21 March 2022

#### ABSTRACT

Stem cell, a wonder cell, acts as a basic unit for an individual development in early prenatal life, and repairs and regenerates the tissue and/organ in post-natal life. The stem cell research although conducted extensively is still in its infancy for standardized therapeutics. Among various stem cells types, multi-potential mesenchymal stem cell (MSC) is mainly evaluated for therapeutic applications. These cells have been isolated from almost all the body organs/ tissues and fetal membranes and are culture expanded for higher concentrations. Like human, MSCs harvested from veterinary species are characterized on the basis of International Society for Cellular Therapy (ISCT). Extensive literature on their therapeutic applications in musculoskeletal and non-musculoskeletal systems evidences their potential utility under clinical settings. Currently, limited understanding in their physiological mechanisms and availability of limited non-uniform *in vivo* studies restrict their definitive therapeutic applications. Lack of regulatory set up in India makes MSCs research in veterinary medicine a more complicated field. This review details the current status and possible ways to improve MSCs therapeutic applications in veterinary medicine, in general and in Indian system, in particular.

Keywords: Clinical studies, Mesenchymal stem cell, Therapeutic applications, Veterinary Species

Since antiquity, humankind has always looked to improve human and animal health and their output and production. As such there is always a scope for improvement to effectuate improved healing and development. To ensure effective healing of ailed and ageing tissue in a shortest possible time, regenerative medicine has taken birth. The regenerative medicine essentially employs stem cells due to their special characteristics. Stem cell exhibits stemness property through self-renewal, multiplication, and differentiation. There are various stem cell types with variable differentiation potential. Stem cell (like Zygote) at the initial developmental stage show totipotency which decreases to the pluripotency (like embryonic stem cells (ESCs) of inner cell mass of trophoblast) followed by the multipotency (like adult stem cells including mesenchymal stem cells (MSCs) from adult tissues and fetal membranes) and finally the unipotency (like muscle stem cell) down the developmental ontogeny. As such, stem cell differentiation potential clearly becomes restricted after each developmental stage (Gugjoo et al. 2019a, Gugjoo et al. 2020a). Apart from the developmental ontogeny perspective of stem cells, these cells may also be developed

Present address: ¹Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-Kashmir, Shuhama, Srinagar, Jammu and Kashmir. ²Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh. ™Corresponding author email: mbgugjoo@gmail.com

through dedifferentiation (like induced pluripotent stem cells, iPSCs) or arise through environmental dysregulation (cancer stem cells) (Gugjoo et al. 2015a). iPSCs are developed through incorporation of pluripotency genes like Oct4, Sox2, Klf4 and cMYC in adult somatic cells. These cells have been developed from almost all the veterinary species including goat (Chen et al. 2017), sheep (German et al. 2015), cattle (Zhao et al. 2017), dog (Baird et al. 2015), cat (Dutton et al. 2019) and equine (Whitworth et al. 2014). Pluripotent stem cells like ESCs or iPSCs carry higher differentiation potential as compared to the adult stem cells. However, their teratogenic potential and associated ethical concerns especially of the ESCs currently restrict their therapeutic applications (Zuk et al. 2001, Gugjoo and Amarpal 2018, Aboul-Soud et al. 2021). In place, MSCs harvested from adult tissues or fetal membranes are mainly being evaluated for their therapeutic applications in regenerative medicine both in human and veterinary medicine (Amarpal et al. 2013, Gugjoo et al. 2019b, Gugjoo and Amarpal 2020a, Gugjoo et al. 2020a).

Why mesenchymal stem cell

MSCs have a maximum share in stem cell therapy in human medicine, in general and veterinary medicine, in particular. In veterinary medicine, MSCs required to maintain normal cell and tissue matrix turn-over in an individual are being harvested from almost all the body tissues besides, the fetal membranes (Gugjoo and Amarpal 2018b, Gugjoo et al. 2019b, 2020b). Further, these cells have also been harvested from pluripotent stem cells like iPSCs (Chow et al. 2017). However, currently MSCs from adipose tissue and bone marrow and more recently fetal membranes have taken lead in the stem cell research for therapeutics (Gugjoo et al. 2020a, Dar et al. 2021). MSCs isolation and culture techniques are well established. These cells are being characterized as per the criteria set by International Society for Cellular Therapy (ISCT) for human MSCs. The criteria set for characterization includes the plastic adherence property, expression of certain surface markers (CD44, CD73, CD90, CD105, CD166) and simultaneous lack of hematopoietic markers (CD34, CD45) and their ability to differentiate into at least three lineages of adipogenic, chondrogenic and osteogenic (trilineage differentiation) (Dominici et al. 2006, Gugioo et al. 2015b, Dar et al. 2021). However, across animal species and their tissue sources, variability in the characterization can be seen (Gugjoo et al. 2020a). MSCs generally meet the set criteria of plastic adherence and pluripotency differentiation across the species and tissue sources. A lack in consensus upon surface marker expression is usually reported (Gugjoo et al. 2019, Gugjoo et al. 2020a). Differences in tissue sources, harvesting methods and antibodies used may lead to the differential reporting of the expression of surface markers. Even cell detaching agent (like trypsin) may impair receptors on cell surface. MSCs dynamic immunophenotype may too impart alterations in their biological features (Colleoni et al. 2009, Ranera et al. 2011, De Schauwer et al. 2012, Iacono et al. 2012, Kang et al. 2013, Paebst et al. 2014, Tessier et al. 2015, Gugjoo et al. 2020c).

## Extended differentiation potential

MSCs though categorized as multipotent have differentiation potential that goes beyond. MSCs plasticity extends to the germinal cell-like cells (Ghasemzadeh-Hasankolaei *et al.* 2015), neurocyte-like cells (Lu *et al.* 2014, Xiong *et al.* 2014, Mediano *et al.* 2015), myocyte-like cells (Vieira *et al.* 2010, Oh *et al.* 2011), islet like cells (Xiong *et al.* 2014, Peng *et al.* 2017) and hepatocyte-like cells (Xiong *et al.* 2014, Ji *et al.* 2016, Ma *et al.* 2017), among others. These cells express lineage specific markers in specific differentiation media and also express pluripotency markers like Oct4, Sox-2 and Nanog (Gugjoo *et al.* 2020d). MSCs ability to 'migrate' and 'home' into the distant tissues makes them potential candidates for peripheral application.

Ex vivo system shows MSCs trans-differentiation ability into diverse cell lineages, determined by cues arising from the available microenvironment/ niche. However, in vivo therapeutic action is largely considered to occur through release of immuno-modulatory, anti-apoptotic factors and chemotactic agents. MSCs give rise to the microvesicles and secrete numerous pro-healing factors in their culture medium (conditioned medium). MSCs therapeutic actions

may therefore occur by the autocrine or paracrine effects. It involves: secretion of various proteins/peptides and hormones; transfer of mitochondria by way of tunnelling nanotubes or microvesicles and/ or transfer of exosomes or microvesicles (Spees *et al.* 2016, Gugjoo *et al.* 2018b). These cells secrete plethora of growth factors that aid in revascularization and matrix secretion. Their immunoevasive nature (lack of MHC-II and co-stimulatory molecules), 'anti-inflammatory and/ immuno-modulatory' actions make them suitable candidates as allogeneic agent for scar less regeneration (Fig. 1) (Gugjoo *et al.* 2020b).

## Factors affecting MSCs properties

MSCs are available in limited and variable concentration in a particular tissue and are therefore culture expanded for effective utilization. Among numerous sources, peripheral blood harbors minimal cell concentration while simultaneously adipose tissue harbors better cell concentration than that of the bone marrow (Koerner et al. 2006, Martinello et al. 2010, Carvalho et al. 2013). Their differentiation potential may also vary with respect to the source (Malagola et al. 2016, Sasaki et al. 2018). Particular cell source taken from different locations may or may not affect cell concentration and other characteristics (Lombana et al. 2015, Bahamondes et al. 2017). However, source based differences in MSCs therapeutic mechanisms is often reported. Even ageing affects the cell concentration and characteristics (Volk et al. 2012, Lee et al. 2017). Diseased conditions like equine metabolic syndrome (insulin resistance disease in equines) (Marycz et al. 2016a,b, Nawrocka et al. 2017), prion disease in sheep (Mediano et al. 2015) and feline foamy virus (Arzi et al. 2015) may have bearing upon cellular properties. Additionally, physiological phases like reproductive cyclicity may affect properties of the MSCs derived from reproductive organs like endometrium (Cabezas et al. 2014) and thus, should be

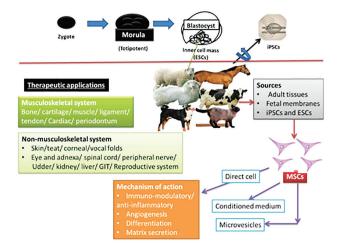



Fig. 1. Stem cells through different developmental stages of an individual. Mesenchymal stem cell sources, their products, mechanism of action and therapeutic applications. *Source:* Mesenchymal Stem Cell in Veterinary Sciences, Springer Nature (modified).

considered when utilized for therapeutic or other research purposes.

Transportation of tissue source and cells may impact MSCs isolation and their viability. MSCs for transit storage of 8-12 hrs may be carried out in biological fluids while for long term storage MSCs may be cryopreserved (Mitchell et al. 2015, Garvican et al. 2016). Storage of MSCs may be carried out in plastic or glass containers (Espina et al. 2016). MSCs viability may be affected by the aspiration and injection techniques as forceful aspiration and injection may lead to cell death. Needle bore size for injection or aspiration also affects MSCs viability and thus large bore needle complying with the in vivo transplantation may be used (Garvican et al. 2016). Some of the sedatives (detomidine and butorphanol) (Edmonds et al. 2016), antibiotics (aminoglycosides) (Bohannon et al. 2013, Edmonds et al. 2016) and steroids (methylprednisolone and triamcinolone) (Marycz et al. 2014) may deleteriously affect MSCs viability and thus, should be avoided.

# Therapeutic applications

The main aim behind isolation and culture expansion of MSCs remains to utilize them in research and as therapeutics. Although extensive research has been conducted on MSCs but their use in veterinary practice is still restricted to experiments and to some extent to initial phases of clinical trials (Dias et al. 2019, Gugjoo et al. 2019, Gugjoo and Pal 2020). Initially, MSCs were mainly evaluated for musculoskeletal applications especially in horses (Smith et al. 2003) but their applications have been extended to the non-musculoskeletal tissues as well (Fig. 1). MSCs have been implanted either locally or systemically. Transplantation through the latter route may lead to some reactions and may be required in large doses to achieve therapeutic concentrations. Besides, tissues (like cartilage) without direct blood supply may not be well covered (Spaas et al. 2013, Broeckx et al. 2019). Their local or peripheral application mostly remains safe with few reports of local or systemic reactions. The reactions including local inflammation and/ or pulmonary parenchymal edema and haemorrhage mostly self-limit (Park et al. 2012, Kang and Park 2014). Report of disseminated intravascular coagulation in goats has been controlled through aspirin therapy (Liao et al. 2017).

Species wise preferences in undertaking the MSCs therapeutics under *in vivo* conditions are visible in the available literature. In pet animals and horse, experimental and clinical applications have been evaluated while in small ruminants like sheep and goat and large ruminants like cattle and in buffalo mostly experimental studies have been conducted (Gugjoo *et al.* 2020a, Gugjoo *et al.* 2020c). Small ruminants have mostly been utilized as translational animal models. MSCs therapeutic effect in musculoskeletal ailments like dog, rabbit and horse osteoarthritis/ cartilage defects (Kriston-Pál *et al.* 2017, Broeckx *et al.* 2019, Gugjoo *et al.* 2019, Huňáková *et al.* 

2020), dog bone affections (Tsuzuki et al. 2014, Song et al. 2017), dog periodontal defects (Takewaki et al. 2017), dog and horse muscle/ tendon tears/ injuries (Beerts et al. 2017; Gibson et al. 2017, Taroni et al. 2017, Depuydt et al. 2021) and dog myocardial affections (Pogue et al. 2013, Yang et al. 2021) have been evaluated. Under nonmusculoskeletal tissue ailments, MSCs applications in dog, cattle and horse skin/teat/ corneal/vocal folds injuries/ ulcers (Madhu et al. 2014, Zubin et al. 2015, Iacono et al. 2016, Iravani et al. 2017, Khashjoori et al. 2019, Mund et al. 2020), dog keratoconjunctivitis sicca (KCS) (Villatoro et al. 2015, Bittencourt et al. 2016), dog spinal cord injuries (SCI) (Escalhão et al. 2017, Bhat et al. 2019, Sharun et al. 2021), dog sciatic nerve injuries (Ding et al. 2010), dog meningoencephalomyelitis of unknown origin (MUO) (Zeira et al. 2015), dog hepatocutaneous syndrome (Nam et al. 2017), dog and cat acute kidney injury (Lee et al. 2017b), dog intervertebral disc diseases (Lee et al. 2009, Sharun et al. 2020), horse reproductive ailments (endometriosis, anestrus, testis) (Grady et al. 2019, Navarrete et al. 2020, de Papa et al. 2020) and cattle mastitis (Lange-Consiglio et al. 2019, Ting et al. 2020) have been evaluated. Furthermore, MSCs therapeutic effects have been evaluated in some of the inflammatory/immune-mediated and/ ischaemic diseases like dog and inflammatory bowel disease (IBD) (Pérez-Merino et al. 2015, Webb and Webb 2015), feline eosinophilic keratitis (FEK) (Villatoro et al. 2018), dog atopic dermatitis (Famos et al. 2020), dog anal fistula (Ferrer et al. 2016) and equine laminitis (Marycz et al. 2021). Recently, extended evaluation to canine diabetes, liver affections, tumors, etc have also been started (Gugjoo et al. 2020b).

Overall, improved outcome has been reported in majority of the studies related to the MSCs therapeutic applications in these animal studies. Some of the studies although have reported no adverse effects but simultaneously without any positive outcome like canine atopic dermatitis (Famos et al. 2020) and dog cardiomyopathy (Pogue et al. 2013, Yang et al. 2021). There has been variability in design, cell type (source and passage number) and other biomaterials, their dosage and route, besides the frequency of implantation. Furthermore the long term effect remains to be seen in majority of the studies. MSCs engraftment, survival and mechanism of action remains to be evaluated extensively. There are very limited animal numbers and short duration studies that fail to provide evidence based medicine. The concerns with the cell based therapy are risk of immunological concerns, pulmonary embolism, inefficient homing of MSCs to the target site, risk of tumorigenesis, and the need for rigorous quality control limits their use (Phan et al. 2018, Watanabe et al. 2021). Recently, alternatives like MSCs conditioned medium (CM)/ extracellular vesicles (EVs) are being evaluated (Ragni et al. 2017, Vikartovska et al. 2020, Morente-López et al. 2021). MSCs CM/ EVs contain proteins, lipids, mRNA, and miRNA that may play a significant therapeutic role (Gomzikova et al. 2019).

Stem cell research in veterinary medicine in India

In India, stem cell research and therapy is in infancy and has mainly been conducted in research institutes and/ universities like Indian Veterinary Research Institute (IVRI), Izatnagar; Central Institute for Research on Buffaloes (CIRG), Hisar; Central Institute for Research on Goats, Makhdoom and National Research Centre for Equines, Hisar; and Tamil Nadu Veterinary and Animal Sciences University (TANUVAS), Chennai and Shere-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K). Other institutes and private companies are also interested in this field. Below are details of the MSCs relevant studies conducted in veterinary science in India.

In vitro MSCs studies in India: MSCs have been derived from almost all the body tissues and foetal membranes in all the animals worldwide. In India, the main animal sources evaluated for MSCs are bone marrow, adipose tissue and foetal membranes as detailed in the Tables 1 and 2. Additionally, feline adipose tissue derived MSCs and canine endometrial MSCs have also been isolated and characterized from TANUVAS, Chennai (Nissar et al. 2018) and College of Veterinary Science and Animal Husbandry, Odisha University of Agriculture and Technology, Bhubaneswar (Sahoo et al. 2017), respectively. MSCs from liquids like bone marrow have been isolated by density gradient method or whole bone marrow method while MSCs from solid tissues like umbilical cord have been isolated through the enzymatic or tissue explant techniques (Rathore et al. 2018, Dar et al. 2021).

MSCs from these sources have mainly been evaluated for their ability to adhere to plastic surface, express specific surface markers, lack hematopoietic markers and differentiate into three lineages (adipogenic, osteogenic and chondrogenic). The surface markers have been evaluated up to the transcription level (Akram *et al.* 2017, Dar *et al.* 2021) or to the translational levels (Gade *et al.* 

2013, Gulati et al. 2013, Pratheesh et al. 2014, Mohanty et al. 2016). Apart from the tri-lineage differentiation, equine Amniotic Fluid-MSCs have also been differentiated into the tenogenic lineage with the culture addition of the bone morphogenetic protein-12 (BMP-12) (Gulati et al. 2013). Comparing the bone marrow and adipose tissue, MSCs from the latter source may harbor higher cellular concentrations. The cellular proliferation may also be affected by the animal physiological status as the MSCs from term pregnant animal had higher proliferation potential than non-pregnant male animals (Dar et al. 2021).

In India, these studies are only preliminary without any details on the cultured MSCs phenotype, culture conditions and passage number, and their comparative differences with respect to the species, tissue source and age. There are questions on the self-renewal property of MSCs. Unlike ESCs/ iPSCs, there is limited expansion potential characterized by senescent morphology, surface marker attenuation, hampered differentiation and ultimately the proliferation arrest with extended passaging and thus, need to be studied. Apart from that MSCs' other stemness properties remain to be understood in India and abroad as MSCs stemness markers are being supported by handful of genes without any actual molecular basis (Kubo et al. 2009). Further, effect of the microenvironment/niche including effect of hypoxia, available extracellular matrices, growth/ humoral factors, among others is also lacking in India and thus, relevant studies are desired (Gugjoo and Pal 2020a).

In vivo MSCs studies in India: MSCs or their conditioned medium (CM) has been evaluated under various experimental models like rabbit sciatic nerve injury (Tiwary 2011), rabbit bone defect (Udehiya et al. 2013, Peer et al. 2022), rabbit osteochondral defect (Gugjoo et al. 2017, Gugjoo et al. 2020) and rat and guinea pig skin wound (Borena et al. 2009, Ansari et al. 2013, Joseph et al. 2020, Bhat et al. 2021). Most of these studies have been conducted as randomized placebo controlled studies. Besides, MSCs therapeutic effects have been evaluated in

Table 1. Small ruminants mesenchymal stem cell sources and their characterization in India

| Source                      | Markers                                                                        | Differentiation                         | References               |
|-----------------------------|--------------------------------------------------------------------------------|-----------------------------------------|--------------------------|
| gBM-MSCs                    | CD105+CD90+CD45-CD34-                                                          | -                                       | Akram et al. 2017        |
| gAF-MSCs                    | CD-73+, CD-90+, CD-105+, Oct-4+,<br>Nanog+, Sox-2+, SSEA-1+, SSEA-4+,<br>CD34- | Adipogenic, chondrogenic and osteogenic | Pratheesh et al. 2013    |
| gBM-MSCs/                   | CD73+, CD105+, Stro-1+, CD34-                                                  | Adipogenic, chondrogenic, osteogenic    | Pratheesh et al. 2017    |
| gBM-MSCs                    | CD73+, CD90+, CD34-, CD45-                                                     | Adipogenic, chondrogenic, osteogenic    | Dar et al. 2021          |
| gWj-MSCs                    | CD-73+, STRO-1+, CD-105+, CD34                                                 | Adipogenic, chondrogenic and osteogenic | Pratheesh et al. 2014    |
| gAF-MSCs/gAm-               | CD73+, CD90+ and CD105+, Oct4+, Sox2+,                                         | Adipogenic, chondrogenic, osteogenic    | Somal et al. 2016,       |
| MSCs/ gAS-MSCs/<br>gWj-MSCs | Nanog+, KLF+, cMyc+, FoxD3+, CD34-                                             |                                         | Somal <i>et al.</i> 2017 |
| gUC-MSCs                    | CD73+, Thy-1+, CD105+, CD34-                                                   | Adipogenic, osteogenic                  | Kumar et al. 2016        |
| sAD-MSCs                    | CD73+, CD90+, CD34-, CD45-                                                     | Adipogenic, chondrogenic, osteogenic    | Dar et al. 2021          |
| sBM-MSCs                    | CD73+, CD90+, CD34-, CD45-                                                     | Adipogenic, chondrogenic, osteogenic    | Dar et al. 2021          |

Note: g, Goat; s, Sheep; MSCs, Mesenchymal stem cells; AD, Adipose tissue; BM, Bone marrow derived; AF, Amniotic fluid derived; Wj, Wharton's jelly derived; Am, Amniotic membrane derived; AS, Amniotic sac derived; UC, Umbilical cord derived.

Table 2. Studies on large ruminant and equine mesenchymal stem cell sources and their characterization in India

| Source     | Markers                                                                                                                                | Differentiation                                     | References                                                 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------|
| cUC-MSCs   | CD105+, CD90+, CD73+,<br>CD45                                                                                                          | Adipogenic, chondrogenic, osteogenic                | Debberma et al. 2020                                       |
| bufAD-MSCs | CD105+, CD90+, CD73+,<br>Oct-4+, CD44+, CD34-,<br>CD45-, CD79A-                                                                        | Adipogenic, Chondrogenic,<br>Osteogenic             | Hepsibha <i>et al.</i> 2011,<br>Sampaio <i>et al.</i> 2015 |
| bufAF-MSCs | Oct-4+, Nanog+, Sox-2+                                                                                                                 | -                                                   | Yadav et al. 2011                                          |
| bufAM-MSCs | CD29+, CD44+, CD73+,<br>CD90+, CD105, CD166+,<br>TERT+, Oct-4+, Sox-2+,<br>Nanog+, REX-1+, SSEA-1+,<br>SSEA-4+ and TRA-1-81+,<br>CD34- | Adipogenic, Chondrogenic,<br>Osteogenic, Neurogenic | Dev et al. 2012, Ghosh et al. 2015                         |
| bufBM-MSCs | CD73+, CD90+, CD105+,<br>Nanog+, Oct-4+, STRO-1+,<br>Sox2+, CD31-, CD34-                                                               | Adipogenic, Chondrogenic,<br>Osteogenic             | Gade <i>et al.</i> 2013                                    |
| bufUC-MSCs | OCT4+, NANOG+, SOX2+                                                                                                                   | Adipogenic, osteogenic                              | Singh et al. 2013                                          |
| bufWj-MSCs | CD-73+, CD-105+, CD-90+,<br>Stro-1+, Oct-4+, Nanog+,<br>Sox-2+, CD34-                                                                  | Adipogenic, Chondrogenic,<br>Osteogenic             | Sreekumar et al. 2014                                      |
| eAF-MSCs   | CD29+, CD44+, CD73+,<br>CD90+, CD34-, CD45-,<br>CD14-                                                                                  | Adipogenic, Chondrogenic,<br>Osteogenic, Tenogenic  | Gulati et al. 2013                                         |
| eUC-MSCs   | CD29+, CD44+, CD73+,<br>CD90+, CD34-, CD45-                                                                                            | Adipogenic, Chondrogenic,<br>Osteogenic             | Mohanty et al. 2016                                        |

Note: c, Cattle; buf, Buffalo; e, Equine; MSCs, Mesenchymal stem cells; AD, Adipose tissue; BM, Bone marrow derived; Wj, Wharton's jelly derived; Am, Amniotic membrane derived; UC, Umbilical cord derived.

open trial clinical studies on dog wounds (Madhu *et al.* 2014, Rafee *et al.* 2017, Bhatt *et al.* 2018), and spinal cord injuries (Bhat *et al.* 2019, Sharun *et al.* 2020, Sharun *et al.* 2021), besides cattle teat injuries (Dar 2021).

## Experimental studies

In rabbit sciatic nerve injury model, bone marrow mononuclear cells (BM-MNCs) have been evaluated for their therapeutic effects. The healing had been evaluated through neurological examination, histopathology and scanning electron microscopy (SEM) at various time intervals (30th, 60th and 90th day). The study concluded with the positive remarks on nerve repair with the BM-MNCs application. However, complete regeneration was lacking (Tiwari 2011). In our own similar unpublished study, BM-MSCs and AD-MSCs too show positive impact on return of the clinical parameters however, complete regeneration to the extent of full clinical recovery was lacking.

In case of rabbit bone defect model, implantation of BM-MSCs and BM-MNCs were demonstrated to have ability to induce faster bone healing with or without the growth factors (TGF-\(\beta\)1 and IGF-1). BM-MSCs had led to the faster healing as compared to the BM-MNCs evaluated through the radiography, histopathology and SEM. Allogeneic implantation was comparable to that of the autologous therapy (Udehiya *et al.* 2013). BM-MNCs contain MSCs in some proportion with additional growth factors. Comparing the bone defect healing in guinea pig

model, MSCs and osteoinducted MSCs show improved and overall a comparable bone healing potential. Further, allogeneic MSCs improve bone healing better than the xenogeneic (Peer *et al.* 2022).

In case of the rabbit, osteochondral defect model, implantation of MSCs loaded on laminin (Gugjoo *et al.* 2017) and/collagen I (Gugjoo *et al.* 2020) with or without the growth factors (TGF-ß1 and IGF-1) had led to the improved healing, although the complete healing with hyaline like tissue was lacking. MSCs without the scaffold was found less effective and might have been due to the lack of *in situ* availability of the cells at the defect site. Implantation of the growth factors together with MSCs had led to the significantly better healing than that of the MSCs (Gugjoo *et al.* 2017, Gugjoo *et al.* 2020).

In case of skin defect models, Implantation of MSCs/MNCs had enhanced skin wound healing. The healing had been earlier with very less inflammatory response (Borena et al. 2009, Ansari et al. 2013, Joseph et al. 2020, Bhat et al. 2021). Comparing the single dose to the repeated dose of MSCs, the latter option was proven more effective than the former in skin wound healing (Bhat et al. 2021). All these experimental studies prove useful although the conclusive statement on cell passage number, dose, route, timing and repetition needs to be standardized.

# Clinical studies

MSCs clinical studies have been conducted on the skin

wounds and the spinal cord injury in India. In a single case report on large skin wound treated by caudal superficial epigastric axial pattern flap followed by implantation of MSCs (5 million BM-MSCs given twice at 12 days interval), the wound had healed completely by 50th day post operatively (Madhu et al. 2014). In case of other study (case series, n=6), MSCs (2.5 million injected twice at wound periphery) had enhanced wound healing in dogs without any complication (Rafee et al. 2017). In another study, implantation of 01 million allogeneic BM-MSCs in dogs in skin wounds too had improved wound healing. In the same study, infected wounds were implanted with same dose but thrice at weekly intervals for effective healing (Bhatt et al. 2018). In case controlled study on teat fistula (mucocutaneous wounds of varying in length and shape), MSCs appear to help in early clinical wound closure with less fibrous tissue formation based on clinical and sonographic findings (Dar 2021). Thus, MSCs improve skin or mucocutaneous wound healing, although dose titration and frequency remains to be standardized. Besides there is need to grade the wounds as per the location, area, infection and above all the species for conclusive results.

In case of spinal cord injuries, MSCs too have been demonstrated to show clinical recovery. In case of thoracic and lumbar vertebral fractures (n=6), intraspinal implantation of MSCs (1 million) has been correlated with the improvement in neurological signs (Sharun et al. 2020). In case of Hansen type I intervertebral disc disease (IVDD) at T12-T13, 4 doses of MSCs (1 million) implanted too had led to the clinical improvement with animal showing signs of weight bearing immediately after two doses (Sharun et al. 2021). In a more large animal case study (n=44), different body reflexes and recovery score were significantly improved upon intraspinal implantation of MSCs (Bhat et al. 2019). Thus, MSCs appear promising in spinal cord injuries as well but in animals with intact and stable spinal cord. However, an overall recovery may also be affected by the type of lesion, aetiology of spinal cord injury and surgical protocol followed for treatment of the spinal fractures or IVDDs.

As MSCs prove to be effective in various experimental and clinical studies in animals (especially the dog) in India, further studies in this regard are desired. Besides, various other clinical ailments in dog and other species as mentioned above may be undertaken. Currently, there is lack of appropriate controlled studies with variation in stem cell isolation procedures, inadvertent inclusion of other biological agents. The optimal posology involving cell treatment time, their dosage and route of administration as per the clinical condition remains to be standardized. The availability of limited sample size, clinical case non-uniformity, the lack of well scrutinized data and blind folded randomized control trials especially in veterinary medicine in India or abroad make standardization even more complicated.

Stem cell regulatory concerns in India

As mentioned above, the stem cell therapy is under investigation and is thus, not approved for any specific condition except some human blood disorders. It is therefore improper to advertise MSCs therapy for any specific condition for stem cell tourism. In India human stem cell research/ therapy is being regulated by ICMR and DBT (ICMR and DBT 2017). Stem cell or its product clinical trials (substantial manipulated stem cells) shall be regulated by Central Drug Standards Control Organization (CDSCO) with due approval required from Drug Control General of India (DCGI) (Times of India report Dated: 16 April, 2018). For Indian veterinary medicine, no such regulatory guidelines are available that could control and regulate stem cell therapy for veterinary species. Lack of such guidelines not only provides break to the determined clinical oriented research but also devoids animals of their possible beneficial applicability in the near future. Due to lack of rigorous supervision of the stem cell therapy in veterinary practice by regulatory bodies, applications are being made without any basis of pre-clinical studies. As various regulatory bodies worldwide like United States Food and Drug Administration (FDA), European Medicine Agency's (EMA) and Korea (EMA 2017, EMA 2018, USFDA 2018) have provided guidelines for cell-based products for veterinary purpose, the regulatory bodies in India may formulate regulatory guidelines on such basis with due consideration on local regulatory guidelines.

#### **CONCLUSION**

Stem cells are wonder cells characterized by the selfrenewal and differentiation properties. Their differentiation properties restrict with each developmental stage in an individual. Utilization of pluripotent stem cells like ESCs and iPSCs for therapeutics is currently restricted by their teratogenic and/ ethical tendencies. MSCs with an extended multi-lineage differentiation potential are devoid of such limitations. Their characteristics like self-renewal (although questioned), differentiation, migration, homing and immuno-modulatory/anti-inflammatory, besides other paracrine properties make them suitable candidates for therapeutics. Current lag in understanding of their basic properties and critical in vivo niche effect puts a break to their definitive therapeutic applications. These cells are affected by various factors including tissue source, age, donor health condition, processing and storage and thus, should be kept in consideration while instituting them for therapeutics. In veterinary sciences, these cells have been evaluated in musculoskeletal and non-musculoskeletal ailments, in addition to inflammatory/immune-mediated diseases. All these studies support MSCs therapeutic applications. There are several issues with respect to the cell viability post transplantation, their delivery mode, number and frequency that remain to be evaluated. Clinical trials need to be controlled with a sufficient animal size to make stem cell application, an evidence based medicine.

Under Indian environment, the studies are very limited both in relation to the cellular physiological features and their *in vivo* applications and thus, may be undertaken. In addition, regulations from concerned quarters in India need to be drafted and implemented in letter and spirit.

#### **ACKNOWLEDGEMENTS**

The authors acknowledge their respective University or Institute for providing necessary support for this manuscript compilation. Utmost gratitude goes to SERB-DST, GoI for funding research project on stem cells (EMR/2017/001484).

#### REFERENCES

- Aboul-Soud M A M, Alzahrani A J and Mahmoud A. 2021. Induced Pluripotent Stem Cells (iPSCs)—Roles in regenerative therapies, disease modelling and drug Screening. *Cells* 10(9): 2319.
- Akram T, Shah R A, Fazili M R, Mudasir H, Mir B A, Hussain S S, Ahmad S M, Dar P A, Ganai NA and Shabir N. 2017. Comparative efficiency of goat mesenchymal stem cell isolation from bone marrow and bone chip. *Small Ruminant Research* **153**: 87–94.
- Amarpal, Dhama K, Chakraborty S, Tiwari R and Natesan S. 2013. Stem cells and their clinical/therapeutic applications in biomedical and veterinary science The perspectives. *Research Opinions in Animal and Veterinary Sciences* **3**(9): 261–79.
- Ansari M M, Sreekumar T R, Chandra V, Dubey P, Sai Kumar K G, Amarpal and Sharma G T. 2013. Therapeutic potential of canine bone marrow derived Mesenchymal Stem Cells and its conditioned media in diabetic rat wound healing. *Journal of Stem Cell Research and Therapy* 3: 141.
- Arzi B, Kol A, Murphy B, Walker N J, Wood J A, Clark K, Verstraete F J M and Borjesson D L. 2015. Feline foamy virus adversely affects feline mesenchymal stem cell culture and expansion: Implications for animal model development. *Stem Cells and Development* **24**(7): 814–23.
- Bahamondes F, Flores E, Cattaneo G, Bruna F and Conget P. 2017. Omental adipose tissue is a more suitable source of canine Mesenchymal stem cells. *BioMed Central Veterinary Research* **13**: 166.
- Baird A E G, Barsby T and Guest D J. 2015. Derivation of canine induced pluripotent stem cells. *Reproduction in Domestic Animal* **50**(4): 669–76.
- Beerts C, Suls M, Broeckx S Y, Seys B, Vandenberghe A, Declercq J, Duchateau L, Vidal M A and Spaas J H. 2017. Tenogenically induced allogeneic peripheral blood mesenchymal stem cells in allogeneic platelet-rich plasma: 2-year follow-up after tendon or ligament treatment in Horses. Frontiers in Veterinary Sciences 4: 158.
- Benavides-Castellanos M P, Garzon-Orjuela N and Linero I. 2020. Effectiveness of mesenchymal stem cell-conditioned medium in bone regeneration in animal and human models: A systematic review and meta-analysis. *Cell Regeneration* 9(1): 5.
- Bhat I A, Sivanarayanan T B, Somal A, Pandey S, Bharti M K, Panda B S K, Indu B, Verma M, Anand J, Sonwane A, Sai Kumar G, Amarpal, Chandra V and G T. 2019. An allogenic therapeutic strategy for canine spinal cord injury using mesenchymal stem cells. *Journal of Cellular Physiology* **234**(3): 2705–18.
- Bhatt J, Amarpal, Bhat A R, Singh A P, Pawde A M, Bhat I A

- and Sharma G T. 2021. Studies on the efficacy of single and twice application of mesenchymal stem cells in full thickness cutaneous wound healing. *Indian Journal of Animal Research* 10.
- Bhatt J, Bhat A R, Singh A P, Indu B and Amarpal. 2018. Application of mesenchymal stem cells for surgical and chronic wound healing in dogs. *Indian Journal of Veterinary Surgery* **39**(1): 51–52.
- Bittencourt M K W, Barros M A, Martins J F P, Vasconcellos J P C, Morais B P, Pompeia C, Bittencourt M D, Evangelho K S, Kerkis I and Wenceslau C V. 2016. Allogeneic mesenchymal stem cell transplantation in dogs with Keratoconjunctivitis Sicca. *Cell Medicine* 8: 63–77.
- Bohannon L K, Owens S D, Walker N J, Carrade D D, Galuppo L D and Borjesson D L. 2013. The effects of therapeutic concentrations of gentamicin, amikacin and hyaluronic acid on cultured bone marrow-derived equine mesenchymal stem cells. *Equine Veterinary Journal* 45: 732–36.
- Borena B M, Pawde A M, Amarpal, Aithal H P, Kinjavdekar P, Singh R and Kumar D. 2009. Autologous bone marrow-derived cells for healing excisional dermal wounds of rabbits. *Veterinary Record* **165**(19): 563–68.
- Broeckx S Y, Seys B, Suls M, Vandenberghe A, Mariten T, Adriaensen E, Declercq J, Van Hecke L, Braun G, Hellmann K and Spaas J H. 2019. Equine allogeneic chondrogenic induced mesenchymal stem cells are an effective treatment for degenerative joint disease in horses. Stem Cells Development 28(6): 410–22.
- Cabezas J, Lara E, Pacha P, Rojas D, Veraguas D, Saravia F, Rodriguez-Alvarez L and Castro F O. 2014. The endometrium of cycling cows contains populations of putative mesenchymal progenitor cells. *Reproduction in Domestic Animals* **49**(4): 550–59.
- Carvalho A M, Yamada A L M, Martins J R B, Maia L, Golim M A, Deffune E, Hussni C A and Alves A L G. 2013. Isolation and characterization of equine peripheral blood-derived multipotent mesenchymal stromal cells. *Pesquisa Veterinaria Brasileira* 33(9): 1151–54.
- Chen H, Zuo Q, Wang Y, Song J, Yang H, Zhang Y and Li B. 2017. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. *BioMed Central Biotechnology* 17: 11.
- Chow L, Johnson V, Regan D, Wheat W, Webb S, Koch P and Dow S. 2017. Safety and immune regulatory properties of canine induced pluripotent stem cell derived mesenchymal stem cells. *Stem Cell Research* **25**: 221–32.
- Colleoni S, Bottani E, Tessaro I, Mari G, Merlo B, Romagnoli N, Spadari A, Galli C and Lazzari G. 2009. Isolation, growth and differentiation of equine mesenchymal stem cells: Effect of donor, source, amount of tissue and supplementation with basic fibroblast growth factor. *Veterinary Research Communications* 33: 811.
- Dar E J. 2021. 'Studies on healing potential of allogeneic mesenchymal stem cells in full thickness skin wound in rabbit model and bovine clinical teat injuries.' Thesis submitted to SKUAST-Kashmir, J&K, India-190006.
- Dar E R, Gugjoo M B, Javaid M, Hussain S, Fazili M R, Dhama K, Alqahtani T, Alqahtani A M, Shah R A and Emran T B. 2021. Adipose tissue- and bone marrow-derived mesenchymal stem cells from Sheep: Culture characteristics. *Animals* (*Basel*) 11(8): 2153.
- de Papa P M, Guasti P N, Vita B D, Nakazato N G, Maia L, da Aqua C P F, da Scheeren, V F C, Segabinazzi, L G T M, de

- Andrade Junior L R P, Silva L F M C, Araujo E A B, Oliveira S N, Papa F O, Landim-Alvarenga F C and Alvarenga M A. 2020. Clinical safety of intra-testicular transplantation of allogeneic bone marrow multipotent stromal cells in stallions. *Reproduction in Domestic Animals* **55**: 429–37.
- De Schauwer C D, Piepers S, de Walle G R V, Demeyere K, Hoogewijs M K, Govaere J L J, Braeckmans K, Soom A V and Meyer E. 2012. In search for crossreactivity to immunophenotype equine mesenchymal stromal cells by multicolour flow cytometry. *Cytometry Part A* 81: 312–23.
- Debbarma P, Mondal T, Manna C, Kumar K, Mukherjee J, Das B C, Bag S and Das K. 2020. Post-calving umbilical cord tissue offcut: A potential source for the isolation of bovine mesenchymal stem cells. *Veterinary World* **13**(12): 2772–79.
- Depuydt E, Broeckx SY, Van Hecke L, Chiers K, Van Brantegem L, van Schie H, Beerts C, Spaas J H, Pille F and Martens A. 2021. The evaluation of Equine Allogeneic Tenogenic Primed mesenchymal stem cells in a surgically induced superficial digital flexor tendon lesion model. *Frontiers in Veterinary Science* 8: 641441.
- Dev K, Giri S, Kumar A, Yadav A, Singh B and Gautam S. 2012. Derivation, characterization and differentiation of buffalo (*Bubalus bubalis*) amniotic fluid derived stem cells. *Reproduction in Domestic Animals* 47(5): 704–11.
- Dias I E, Pinto P O, Barros L C, Viegas C A, Dias I R and Carvalho P P. 2019. Mesenchymal stem cells therapy in companion animals: Useful for immune-mediated diseases? *BioMed Central Veterinary Research* 15: 358.
- Ding F, Wu J, Yang Y, Hu W, Zhu Q, Tang X, Liu J and Gu X. 2010. Use of tissue-engineered nerve grafts consisting of a chitosan/poly(lactic-co-glycolic acid)- based scaffold included with bone marrow mesenchymal cells for bridging 50-mm dog sciatic nerve gaps. *Tissue Engineering Part A* **16**: 3779–90.
- Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F C, Krause D S, Deans R J, Keating A, Prockop D J and Horwitz E M. 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherarpy* 8(4): 315–17
- Dutton L C, Dudhia J, Guest D J and Connolly D J. 2019. Inducing pluripotency in the domestic cat (*Felis catus*). Stem Cells and Development 28(19): 1299–1309.
- Edmonds R E, Garvican E R, Smith R K W and Dudhia J. 2016. Influence of commonly used pharmaceutical agents on equine bone marrow-derived mesenchymal stem cell viability. *Equine Veterinary Journal* **49**(3): 352–57.
- EMA. 2017. http://www.ema.europa.eu/docs/en\_GB/document\_library/Scientific\_guideline/2017/06/WC500229927.pdf. Updated 2017. Accessed 2018 Sep 12.
- EMA. 2018. http://www.ema.europa.eu/docs/en\_GB/document\_library/Scientific\_guideline/2016/07/WC500210915.pdf. Updated 2016. Accessed 2018 Sep 12.
- Escalhao C C M, Ramos I P, Hochman-Mendez C, Brunswick T H K, Souza S A L, Gutfilen B, Goldenberg R C S and Coelho-Sampaio T. 2017. Safety of allogeneic canine adipose tissue-derived mesenchymal stem Cell intra-spinal transplantation in dogs with chronic spinal cord injury. Stem Cells International.
- Espina M, Julke H, Brehm W, Ribitsch I, Winter K and Delling U. 2016. Evaluation of transport conditions for autologous bone marrow-derived mesenchymal stromal cells for therapeutic application in horses. *Peer Journal* 4: 1773.
- Ferrer L, Kimbrel E A, Lam A, Falk E B, Zewe C, Juopperi T, Lanza R and Hoffman A. 2016. Treatment of perianal fistulas

- with human embryonic stem cell-derived mesenchymal stem cells: A canine model of human fistulizing Crohn's disease. *Regenerative Medicine* **11**(1): 33–43.
- Gade N E, Pratheesh M D, Nath A, Dubey P K, Amarpal, Sharma B, Saikumar G and Sharma G T. 2013. Molecular and cellular characterization of buffalo bone marrow-derived mesenchymal stem cells. *Reproduction in Domestic Animals* **48**(3): 358–67.
- Garvican E R, Cree S, Bull L, Smith R K W and Dudhia J. 2016. Viability of equine mesenchymal stem cells during transport and implantation. Stem Cell Research Therapy 5: 1.
- German S D, Campbell K H, Thornton E, McLachlan G, Sweetman D and Alberio R. 2015. Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer. *Cellular Reprogramming* 17(1): 19–27.
- Ghasemzadeh-Hasankolaei M, Eslaminejad B M and Sedighi-Gilani M. 2015. Derivation of male germ cells from ram bone marrow mesenchymal stem cells by three different methods and evaluation of their fate after transplantation into the testis. *In Vitro Cellular and Development Biology-Animal* 52(1): 49–61.
- Ghosh K, Kumar R, Singh J, Gahlawat S K, Kumar D, Selokar N L, Yadav S P, Gulati B R and Yadav P S. 2015. Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro. In Vitro Cellular Developmental Biology-Animal 51(9): 915–21.
- Gibson M A, Brown S G and Brown N O. 2017. Semitendinosus myopathy and treatment with adipose-derived stem cells in working German shepherd police dogs. *Canadian Veterinary Journal* 58: 241–46.
- Gomzikova M O, James V and Rizvanov A A. 2019. Therapeutic application of mesenchymal stem cells derived extracellular vesicles for immunomodulation. *Frontiers in Immunology* 10: 2663.
- Grady S T, Watts A E, Thompson J A, Penedo M C T, Konganti K and Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. *Journal of Assisted Reproduction and Genetics* 36: 543–56.
- Gugjoo M B and Amarpal. 2018. Mesenchymal stem cell research in sheep: Current status and future prospects. *Small Ruminant Research* **169**: 46–56.
- Gugjoo M B and Amarpal. 2020a. *Mesenchymal Stem Cell Research in Veterinary Sciences*. Springer Nature. Pp.1-337.
- Gugjoo M B and Amarpal. 2020b. Mesenchymal stem cell differentiation properties and available microenvironment, pp. 67-87. *Mesenchymal Stem Cell in Veterinary Sciences*. (Eds) M B Gugjoo and Amarpal. Springer Nature.
- Gugjoo M B, Amarpal, Chandra V, Wani M Y, Dhama, K and Sharma G T. 2018a. Mesenchymal stem cell research in veterinary medicine. *Current Stem Cell Research and Therapy* 13(8): 645–57.
- Gugjoo M B, Amarpal, Fazili M R, Shah R A and Sharma G T. 2018b. Mesenchymal stem cell: Basic research and potential applications in cattle and buffalo. *Journal of Cellular Physiology* 234(6): 8618–35.
- Gugjoo M B, Amarpal, Fazili M R, Shah R A, Mir M S and Sharma G T. 2020c. Goat mesenchymal stem cell basic research and potential applications. *Small Ruminant Research* **183**: 106045.
- Gugjoo M B, Amarpal, Ismail A A, Aithal H P, Kinjavdekar P, Kumar G S and Sharma G T. 2020a. Allogeneic mesenchymal stem cells and growth factors in gel scaffold repair osteochondral defect in rabbit. *Regenerative Medicine* 15(2): 1261–75.
- Gugjoo M B, Amarpal, Kinjavdekar P, Aithal H P, Ansari M M,

- Pawde A M and Sharma G T. 2015b. Isolation, culturing and characterization of New Zealand White rabbit mesenchymal stem cells derived from bone marrow. *Asian Journal of Animal and Veterinary Advances* **10**(10): 537–48.
- Gugjoo M B, Amarpal, Kinjavdekar P, Aithal H P, Pawde A M, Bodh D and Sharma G T. 2015a. Cancer stem cells: Concepts and therapeutic applications. *Asian Journal of Animal and Veterinary Advances* **10**(9): 509–17.
- Gugjoo M B, Amarpal, Makhdoomi D M and Sharma G T. 2019a. Equine mesenchymal stem cells: Properties, sources, characterization and potential therapeutic applications. *Journal of Equine Veterinary Science* **72**: 16–27.
- Gugjoo M B, Fazili M R, Gayas M A, Ahmad R A and Dhama K. 2019b. Animal mesenchymal stem cell research in cartilage regenerative medicine: A review. *Veterinary Quarterly* 39(1): 95–120.
- Gugjoo M B, Amarpal, Abdelbaset-Ismail A, Aithal H P, Kinjavdekar P, Pawde A M, Kumar G S and Sharma G T. 2017. Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. *Biomedicine* and Pharmacotherapy 93: 1165–74.
- Gugjoo M B, Hussain S, Amarpal, Shah R A and Dhama K. 2020b. Mesenchymal stem cell-mediated immuno-modulatory and anti-inflammatory mechanisms in immune and allergic disorders. *Recent Patents Inflammation Allergy Drug Discovery* **14**(1): 3–14.
- Guideline on Safety Assessment of Cell-Based Products for Animal Use [Internet]. Gimcheon: Animal and Plant Quarantine Agency. Updated 2018. Accessed 2018 Sep 12.
- Gulati B R, Kumar R, Mohanty N, Kumar P, Somasundaram R K and Yadav P S. 2013. Bone morphogenetic protein-12 induces tenogenic differentiation of mesenchymal stem cells derived from equine amniotic fluid. *Cells Tissues Organs* **198**(5): 377–89
- Hepsibha P, Meenambigai T V, Mangalagowri A, Palanisamy A, Stalin A, Nithya S and Kumanan K. 2011. Multipotent differentiation potential of buffalo adipose tissue derived mesenchymal stem cells. Asian Journal of Animal Veterinary Advances 6: 772–88.
- Hunakova K, Hluchy M, Spakova T, Jana M, Mudronova D, Kuricova M, Rosocha J and Ledecky V. 2020. Study of bilateral elbow joint osteoarthritis treatment using conditioned medium from allogeneic adipose tissue-derived MSCs in Labrador retrievers. *Research in Veterinary Science* **132**: 513–20.
- Iacono E, Brunori L, Pirrone A, Pagliaro P P, Ricci F, Tazzari P L and Merlo B. 2012. Isolation, characterization and differentiation of mesenchymal stem cells from amniotic fluid, umbilical cord blood and Wharton's jelly in the horse. *Reproduction* 143(4): 455–68.
- Iacono E, Lanci A, Merlo B, Ricci F, Pirrone A, Antonelli C, Mariella J and Castagnetti C. 2016. Effects of amniotic fluid mesenchymal stem cells in carboxymethyl cellulose gel on healing of spontaneous pressure sores: Clinical outcome in seven hospitalized neonatal foals. *Turkish Journal of Biology* 40: 484–92.
- Iravani K, Sobhanmanesh A, Ashraf M J, Hashemi S B, Mehrabani D and Zare S. 2017. The healing effect of conditioned media and bone marrow-derived stem cells in laryngotracheal stenosis: A comparison in experimental dog model. *World Journal of Plastic Surgery* **6**(2): 190–97.
- Ji M, Bai C, Li L, Fan Y, Ma C, Li X and Guan W. 2016. Biological characterization of sheep kidneyderived mesenchymal stem cells. *Experimental and Therapeutic Medicine* **12**: 3963–71.

- Joseph A, Baiju I, Bhat I A, Pandey S, Bharti M, Verma M, Singh A P, Ansari M M, Chandra V, Saikumar G, Amarpal and Sharma G T. 2020. Mesenchymal stem cell-conditioned media: A novel alternative of stem cell therapy for quality wound healing. *Journal of Cellular Physiology* 1–15
- Kang J G, Park S B, Seo M S, Kim H S, Chae J S and Kang K S. Characterization and clinical application of mesenchymal stem cells from equine umbilical cord blood. *Journal of Veterinary Sciences* 14: 367–71.
- Kang M H and Park H M. 2014. Evaluation of adverse reactions in dogs following intravenous mesenchymal stem cell transplantation. Acta Veterinaria Scandinavica 56: 16.
- Khashjoori B K, Ghamsari S M, Dehghan M M, Mohajeri S F, Gholami H and Golshahi H. 2019. Evaluation of the effects of adipose derived mesenchymal stem cells cultured on decellularized amniotic membrane in wound healing of distal part of the limbs in horse. *Iranian Journal of Veterinary Medicine* 13(1): 11–25.
- Koerner J, Nesic D, Romero J D, Brehm W, Mainil-Varlet P and Grogan S P. 2006. Equine peripheral blood-derived progenitors in comparison to bone marrow-derived mesenchymal stem cells. Stem Cells 24(6): 1613–19.
- Kriston-Pal E, Czibula A, Gyuris Z, Balka G, Seregi A, Sukosd F, Suth M, Kiss-Toth, E, Haracska L, Uher F and Monostori E. 2017. Characterization and therapeutic application of canine adipose mesenchymal stem cells to treat elbow osteoarthritis. Canadian Journal of Veterinary Research 81: 73–78.
- Kumar K, Agarwal P, Das K, Milli B, Madhusoodan A P, Kumar A and Bag S. 2016. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix. *Tissue and Cell* 48(6): 653–58.
- Lange-Consiglio A, Gusmara C, Manfredi E, Idda A, Soggiu A and Greco V. 2019. Antimicrobial effects of conditioned medium from amniotic progenitor cells in vitro and in vivo:
   Toward tissue regenerative therapies for bovine mastitis. Frontiers in Veterinary Sciences 6: 443.
- Lee J H, Chang H S, Kang E H, Chung D J, Choi C B, Lee J H, Hwang S H, Han H and Kim H Y. 2009. Percutaneous transplantation of human umbilical cord blood-derived multipotent stem cells in a canine model of spinal cord injury. *Journal of Neurosurgery Spine* 11(6): 749–57.
- Lee J, Lee K S, Kim C L, Byeon, J S, Gu N Y, Cho I S and Cha S H. 2017a. Effect of donor age on the proliferation and multipotency of canine adipose-derived mesenchymal stem cells. *Journal of Veterinary Sciences* **18**(2): 141–48.
- Lee S J, Ryu M O, Seo M S, Park S B, Ahn J O, Han S M, Kang K S, Bhang D H and Youn H Y. 2017b. Mesenchymal stem cells contribute to improvement of renal function in a canine kidney injury model. *In Vivo* 31(6): 1115–24.
- Liao L, Shi B, Chang H, Su X, Zhang L, Bi C, Shuai Y, Du X, Deng Z and Jin Y. 2017. Heparin improves BMSC cell therapy: Anticoagulant treatment by heparin improves the safety and therapeutic effect of bone marrow-derived mesenchymal stem cell cytotherapy. *Theranostics* 7(1): 106–16.
- Lombana K G, Goodrich L R, Phillips J N, Kisiday J D, Ruple-Czerniak A and McIlwraith C W. An investigation of equine Mesenchymal stem cell characteristics from different harvest sites: More similar than not. *Frontiers in Veterinary Sciences* 2: 67.
- Lu T, Huang Y, Wang H, Ma Y and Guan W. 2014. Multilineage potential research of Bone Marrow-Derived Stromal Cells (BMSCs) from Cattle. Applied Biochemistry and Biotechnology 172: 21–35.

- Ma C, Liu C, Li X, Lu T, Bai C, Fan Y, Guan W and Guo Y. 2017. Cryopreservation and multipotential characteristics evaluation of a novel type of mesenchymal stem cells derived from Small Tailed Han Sheep fetal lung tissue. *Cryobiology* **75**: 7–14.
- Madhu D N, Ahmad R A, Amarpal, Gugjoo M B, Pawde A M, Kinjavedkar P, Aithal H P, Ansari M M, Chandra V and Sharma G T. 2014. Caudal superficial epigastric axial pattern flap and stem cell therapy for the management of large wound on medial aspect of thigh in a dog. *Advances in Animal and Veterinary Sciences* 2(3): 188–91.
- Malagola E, Teunissen M, Van der Laan L J, Verstegen M M, Schotanus B A, van Steenbeek F G, Penning L C, van Wolferen M E, Tryfonidou, M A and Spee B. 2016. Stem characterization and comparison of canine multipotent stromal cells derived from liver and bone marrow. Stem Cells Development 25(2): 139–50.
- Martinello T, Bronzini I, Maccatrozzo L, Iacopetti I, Sampaolesi M, Mascarello F and Patruno M. 2010. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. *Tissue Engineering Part C* 16: 771–81
- Marycz K, Pielok A and Kornicka-Garbowska K. 2021. Equine Hoof Stem Progenitor Cells (HPC) CD29 + /Nestin + /K15 + a novel dermal/epidermal stem cell population with a potential critical role for laminitis treatment. *Stem Cell Reviews and Reports* 17(4): 1478–85.
- Marycz K, Smieszek A, Grzesiak J and Nicpon J E. 2014. Effects of steroids on the morphology and proliferation of canine and equine mesenchymal stem cells of adipose origin *in vitro* research. *Acta Veterinaria Hungarica* **62**(3): 317–33.
- Marycz K, Kornicka K, Basinska K and Czyrek A. 2016a. Equine metabolic syndrome affects viability, senescence, and stress factors of equine adipose-derived mesenchymal stromal stem cells: New Insight into EqASCs Isolated from EMS Horses in the context of their aging. Oxidative Medicine and Cellular Longevity 4710326.
- Marycz K, Kornicka K, Marędziak M, Golonka P and Nicpon J E. 2016b. Equine metabolic syndrome impairs adipose stem cells osteogenic differentiation by predominance of autophagy over selective mitophagy. *Journal of Cellular and Molecular Medicine* 20(12): 2384–404.
- Mediano D R, Sanz-Rubio D, Bolea R, Marin B, Vazquez F J, Remacha A R, pez-Pe rez O, Fernandez-Borges N, Castilla J, Zaragoza P, Badiola J J, Rodellar C and Martin-Burriel I. 2015. Characterization of mesenchymal stem cells in sheep naturally infected with scrapie. *Journal of General Virology* 96: 3715–26.
- Mitchell A, Rivas K A, Smith III R and Watts A E. 2015. Cryopreservation of equine mesenchymal stem cells in 95% autologous serum and 5% DMSO does not alter post-thaw growth or morphology in vitro compared to fetal bovine serum or allogeneic serum at 20 or 95% and DMSO at 10 or 5%. *Stem Cell Research Therapy* 6: 231.
- Mohanty N, Gulati B R, Kumar R, Gera S, Kumar S, Kumar P and Yadav P S. 2016. Phenotypical and functional characteristics of mesenchymal stem cells derived from equine umbilical cord blood. *Cytotechnology* **68**: 795–807.
- Morente-Lopez M, Fafian-Labora J A, Carrera M, de Toro F J, Gil C, Mateos J and Arufe M C. 2021. Mesenchymal stem cell-derived extracellular vesicle isolation and their protein cargo characterization. *Methods of Molecular Biology* **2259**: 3–12.
- Mund S J K, Kawamura E, Awang-Junaidi A H, Campbell J, Wobeser B, MacPhee D J, Honaramooz A and Barber S.

- 2020. Homing and engraftment of intravenously administered equine cord blood-derived multipotent mesenchymal stromal cells to surgically created cutaneous wound in horses: A pilot project. *Cells* **9**: 1162.
- Nam A, Han S M, Go D M, Kim D Y, Seo K W and Youn H Y. 2017. Long-term management with adipose tissue-derived mesenchymal stem cells and conventional treatment in a dog with hepatocutaneous syndrome. *Journal of Veterinary Internal Medicine* 31: 1514–19.
- Navarrete F, Saravia F, Cisterna G, Rojas F, Silva P P, Rodriguez-Alvarez L, Rojas D, Cabezas J, Mancanares A C F and Castro F O. 2020. Assessment of the anti-inflammatory and engraftment potential of horse endometrial and adipose mesenchymal stem cells in an *in vivo* model of post breeding induced endometritis. *Theriogenology* **155**: 33–42.
- Nawrocka D, Kornicka K, Smieszek A and Marycz K. 2017. Spirulina platensis improves mitochondrial function impaired by elevated oxidative stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and enhances insulin sensitivity in Equine Metabolic Syndrome (EMS) Horses. Marine Drugs 15: 237.
- Nissar S, Ramesh G, Basha S H, Balachandran C and Leela V. 2018. Isolation of feline adipose tissue derived mesenchymal stem cells. *International Journal of Current Microbiology and Applied Sciences* **7**(3): 553–57.
- Oh H J, Park J E, Kim M J, Hong S G, Ra J C, Jo J Y, Kang S K, Jang G and Lee B C. 2011. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. *Theriogenology* **75**: 1221–31.
- Paebst F, Piehler D, Brehm W, Heller S, Schroeck C, Tarnok A and Burk J. 2014. Comparative immunophenotyping of equine multipotent mesenchymal stromal cells: An approach toward a standardized definition. *Cytometry A* **85**: 678–87.
- Park S S, Lee Y J, Lee S H, Lee D, Choi K, Kim W H, Kweon O K and Han H J. 2012. Functional recovery after spinal cord injury in dogs treated with a combination of Matrigel and neural-induced adipose-derived mesenchymal stem cells. Cytotherapy 14: 584–97.
- Peer B A, Bhat A R, Shabir U, Bharti M K, Bhat I A, Sharun K, Kumar Rohit, Mathesh K, Chandra V, Amarpal and Sharma G T. 2022. Comparative evaluation of fracture healing potential of differentiated and undifferentiated guinea pig and canine bone marrow-derived mesenchymal stem cells in a guinea pig model. *Tissue and Cell* 76(June): 101768.
- Peng S Y, Chou C W, Kuo Y H, Shen P C and Shaw S W S. 2017. Potential differentiation of Islet like cells from pregnant cow derived placental stem cells. *Taiwanese Journal of Obstetrics and Gynaecology* **56**: 306–11.
- Perez-Merino E M, Uson-Casaus J M, Zaragoza-Bayle C, Duque-Carrasco J, Marinas-Pardo L, Hermida-Prieto M, Barrera-Chacon R and Gualtieri M. 2015a. Safety and efficacy of allogeneic adipose tissue-derived mesenchymal stem cells for treatment of dogs with inflammatory bowel disease: Clinical and laboratory outcomes. *The Veterinary Journal* 206: 385–90.
- Phan J, Kumar P, Hao D, Gao K, Farmer D and Wang A. 2018. Engineering mesenchymal stem cells to improve their exosome efficacy and yield for cell-free therapy. *Journal of Extracellular Vesicles* **7**(1): 1522236.
- Pogue B, Estrada A H, Sosa-Samper I, Maisenbacher H W, Lamb K E, Mince B D, Erger K E and Conlon T J. 2013. Stem-cell therapy for dilated cardiomyopathy: A pilot study evaluating retrograde coronary venous delivery. *Journal of Small Animal Practice* **54**: 361–66.

- Pratheesh M D, Gade N E, Katiyar A N, Dubey P K, Sharma B, Saikumar G, Amarpal and Sharma G T. 2013. Isolation, culture and characterization of caprine mesenchymal stem cells derived from amniotic fluid. *Research in Veterinary Science* **94**(2): 313–19.
- Pratheesh M D, Gade N E, Nath A, Dubey P K, Sivanarayanan T B, Madhu D N, Sreekumar T R, Amarpal, Saikumar G and Sharma G T. 2017. Evaluation of persistence and distribution of intradermally administered PKH26 labelled goat bone marrow derived mesenchymal stem cells in cutaneous wound healing model. *Cytotechnology* **69**(6): 841–49.
- Pratheesh M D, Gade N E, Dubey P K, Nath A, Sivanarayanan T B, Madhu D N, Sharma B, Amarpal, Saikumar G and Sharma G T. 2014. Molecular characterization and xenogenic application of Wharton's jelly derived caprine mesenchymal stem cells. *Veterinary Research Communications* **38**(2): 139–48.
- Rafee M A, Amarpal, Chandra V, Sharma G T and Kinjavdekar P. 2017. Mesenchymal Stem Cell Therapy for Chronic Wound Healing in Dogs. *Intas Polivet* 18: 130–33.
- Ragni E, Banfi F, Barilani M, Cherubini A, Parazzi V, Larghi P, Dolo V, Bollati V and Lazzari L. 2017. Extracellular vesicleshuttled mRNA in mesenchymal stem cell communication. *Stem Cells* 35(4): 1093–1105.
- Ranera B, Lyahyai J, Romeroa A, Vázquez F J, Rosa Remacha A, Bernal M L, Zaragoza P, Rodellar C and Martin-Burriel I. 2011. Immunophenotype and gene expression profiles of cell surface markers of mesenchymal stem cells derived from equine bone marrow and adipose tissue. *Veterinary Immunology Immunopathology* 144: 147–54.
- Rathore N S, Kashyap S K, Deora A, Kumar P, Singh J, Tripathi B N and Talluri T R. 2018. Isolation and culture of putative mesenchymal stem cells from equine umbilical cord Wharton's jelly. *Indian Journal of Animal Sciences* **88**(9): 1025–29.
- Sahoo A K, Das J K and Nayak S. 2017. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell. *Veterinary World* 10(12): 1533–41.
- Sampaio R V, Chiaratti M R, Santos D C N, Bressan F F, Sangalli J R, Sa A L A, Silva T V G, Costa N N, Cordeiro M S, Santos S S D, Ambrosio C E, Adona P R, Meirelles F V, Miranda M S and Ohashi O M. 2015. Generation of bovine (*Bos indicus*) and buffalo (*Bubalus bubalis*) adipose tissue derived stem cells: isolation, characterization, and multipotentiality. *Genetics and Molecular Research* 14(1): 53–62.
- Sasaki A, Mizuno M, Ozeki N, Katano H, Otabe K, Tsuji K, Koga H, Mochizuki M and Sekiya I. 2018. Canine mesenchymal stem cells from synovium have a higher chondrogenic potential than those from infra patellar fat pad, adipose tissue, and bone marrow. Public Library of Science ONE 13(8): 0202922.
- Sharun K, Kumar R, Chandra V, Saxena A C, Pawde A M, Kinjavdekar P, Dhama K, Amarpal and Sharma G T. 2021. Percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells for the management of paraplegia secondary to Hansen type I intervertebral disc herniation in a Beagle dog. *Iranian Journal of Veterinary Research* 22(2): 161–66.
- Sharun K, Rawat T, Kumar R, Chandra V, Saxena A C, Pawde A M, Kinjavdekar P, Amarpal and Sharma G T. 2020. Clinical evaluation following the percutaneous transplantation of allogenic bone marrow-derived mesenchymal stem cells (aBM-MSC) in dogs affected by vertebral compression fracture. *Veterinary Animal Sciences* 16(10): 100152.
- Singh J, Mann A, Kumar D, Duhan J S and Yadav P S. 2013.

- Cultured buffalo umbilical cord matrix cells exhibit characteristics of multipotent mesenchymal stem cells. *In Vitro Cellular and Developmental Biology-Animal* **49**: 408–16.
- Smith R K W, Korda M, Blunn G W and Goodship A E. 2003. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into the superficial digital flexor tendon as a potential novel treatment. *Equine Veterinary Journal* 35: 99–102.
- Somal A, Bhat I A, Baiju I, Pandey S, Panda B S K, Thakur N, Sarkar M, Chandra V, Saikumar G and Sharma G T. 2016. A comparative study of growth kinetics, *in vitro* differentiation potential and molecular characterization of fetal adnexa derived caprine mesenchymal stem cells. *Public Library of Science One* 11(6): e0156821.
- Somal A, Bhat I A, Baiju I, Singh A P, Panda B S K, Desingu P A, Pandey S, Bharti, M K, Pal A, Saikumar G, Chandra V and Sharma G T. 2017. Impact of cryopreservation on caprine fetal adnexa derived stem cells and its evaluation for growth kinetics, phenotypic characterization and wound healing potential in xenogenic rat model. *Journal of Cellular Physiology* 232(8): 2186–2200.
- Song J, Kim Y, Kweon O K and Kang B J. 2017. Use of stemcell sheets expressing bone morphogenetic protein-7 in the management of a non-union radial fracture in a Toy Poodle. *Journal of Veterinary Science* **18**(4): 555–58.
- Spaas J H, Broeckx S, Van de Walle G R and Polettini M. 2013. The effects of equine peripheral blood stem cells on cutaneous wound healing: A clinical evaluation in four horses. *Clinical and Experimental Dermatology* **38**: 280–84.
- Spees J L, Lee R H and Gregory C A. 2016. Mechanisms of mesenchymal stem/stromal cell function. *Stem Cell Research and Therapy* 7: 125.
- Sreekumar T R, Ansari M M, Chandra V G and Sharma T. 2014.
  Isolation and Characterization of Buffalo Wharton's Jelly Derived Mesenchymal Stem Cells. *Journal of Stem Cell Research and Therapy* 4: 207.
- Stewart M C and Stewart A A. 2011. Mesenchymal stem cells: characteristics, sources, mechanisms of action. *Veterinary Clinics North America: Equine Practice* **27**: 243–61.
- Takewaki M, Kajiya M, Takeda K, Sasaki S, Motoike S, Komatsu N, Matsuda S, Ouhara K, Mizuno N, Fujita T and Kurihara H. 2017. MSC/ECM cellular complexes induce periodontal tissue regeneration. *Journal of Dental Research* 96(9): 984–91.
- Taroni M, Cabon Q, Febre M, Cachon T, Saulnier N, Carozzo C, Maddens S, Labadie F, Robert C and Viguier E. 2017. Evaluation of the effect of a single intra-articular injection of allogeneic neonatal mesenchymal stromal cells compared to oral non-steroidal anti-inflammatory treatment on the postoperative musculoskeletal status and gait of dogs over a 6-month period after tibial plateau leveling osteotomy: A pilot study. *Frontiers in Veterinary Science* 4: 83.
- Tessier L, Bienzle D, Williams L B and Koch T G. 2015. Phenotypic and immunomodulatory properties of equine cord blood-derived mesenchymal stromal cells. *Public Library of Science One* **10**(4): 0122954.
- Ting W J, Shaw S W, Hii L Y, Lin T Y, Chang S C, Liu K Y, Shen P C, Chen T J and Peng S Y. 2020. Therapeutic effects of conditioned e DPBS from amniotic stem cells on lactating cow mastitis. *Taiwan Journal of Obstetrics and Gynaecology* **59**: 520–26.
- Tiwary R. 2011. 'Evaluation of nucleated marrow cells along with tgf- $\beta 1$  / igf-1 for cartilage and nerve repair in rabbits.' Thesis submitted to IVRI, Izatnagar

- Tsuzuki N, Nakao S, Seo J P, Yamada K, Haneda S, Furuoka H, Tabata Y and Sasaki N. 2014. Effect of biodegradable gelatin β-tri calcium phosphate sponges containing mesenchymal stem cells and bone morphogenetic protein-2 on equine bone defect. *Journal of Equine Veterinary Sciences* **34**(7): 903–10.
- Udehiya R K, Amarpal, Aithal H P, Kinjavdekar P, Pawde A M, Singh R and Sharma G T. 2013. Comparison of autogenic and allogeneic bone marrow derived mesenchymal stem cells for repair of segmental bone defects in rabbits. *Research in Veterinary Sciences* 94(3): 743–52.
- USFDA. 2018. https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM405679.pdf. Updated 2015. Accessed 2018 Sep 12.
- Vieira N M, Brandalise V, Zucconi E, Secco M, Strauss B E and Zatz M. 2010. Isolation, characterization, and differentiation potential of canine adipose-derived stem cells. *Cell Transplantation* 19: 279–89.
- Vikartovska Z, Kuricova M, Farbakova J, Liptak T, Mudronova D, Humenik F, Madari A, Maloveska M, Sykova E and Cizkova D. 2020. Stem cell conditioned medium treatment for canine spinal cord injury: Pilot feasibility study. *International Journal of Molecular Science* 21(14): 5129.
- Villatoro A J, Claros S, Fernandez V, Alcoholado C, Farinas F, Moreno A, Becerra J and Andrades J A. 2018. Safety and efficacy of the mesenchymal stem cell in feline eosinophilic keratitis treatment. *BioMed Central Veterinary Research* 14: 116.
- Villatoro A J, Fernandez V, Claros S, Rico-Llanos G A, Becerra J and Andrades J A. 2015. Use of adipose-derived mesenchymal stem cells in Keratoconjunctivitis Sicca in a canine model. *BioMed Research International*.
- Volk S W, Wang Y and Hankenson K D. 2012. Effects of donor characteristics and ex vivo expansion on canine mesenchymal stem cell properties: Implications for MSC-based therapies. *Cell Transplantation* 21: 2189–2200.
- Watanabe Y, Tsuchiya A and Terai S. 2020. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. *Clinical Molecular Hepatology* 27(1): 70–80.

- Webb T L and Webb C B. 2015. Stem cell therapy in cats with chronic enteropathy: A proof-of-concept study. *Journal of Feline Medicine and Surgery* **17**(10): 901–08.
- Whitworth D J, Ovchinnikov D A, Sun J, Fortuna P R and Wolvetang E J. 2014. Generation and characterization of LIF-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. *Stem Cells Development* 23: 1515–23.
- Xiong H, Bai C, Wu S, Gao Y, Lu T, Hu Q, Guan W and Ma Y. 2014. Biological characterization of Mesenchymal stem cells from bovine umbilical cord. *Animal Cells Systems* 1(1): 59–67
- Yadav P S, Mann A, Singh V, Yashveer S, Sharma R K and Singh I. 2011. Expression of pluripotency genes in buffalo (*Bubalus bubalis*) amniotic fluid cells. *Reproduction in Domestic Animals* 46(4): 705–11.
- Yang V K, Meola D M, Davis A, Barton B and Hoffman A M. Intravenous administration of allogeneic Wharton jelly–derived mesenchymal stem cells for treatment of dogs with congestive heart failure secondary to myxomatous mitral valve disease. *American Journal of Veterinary Research* 82(6): 487–93.
- Zeira O, Asiag N, Aralla M, Ghezzi E, Pettinari L, Martinelli L, Zahirpour D, Dumas M P, Lupi D, Scaccia S, Konar M and Cantile C. 2015. Adult autologous mesenchymal stem cells for the treatment of suspected non-infectious inflammatory diseases of the canine central nervous system: safety, feasibility and preliminary clinical findings. *Journal of Neuroinflammation* 12: 181.
- Zhao L, Wang Z, Zhang J, Yang J, Gao X F, Wu B, Zhao G, Bao S, Hu S, Liu P and Li X. 2017. Characterization of the single-cell derived bovine induced pluripotent stem cells. *Tissue and Cell* 49(5): 521–27.
- Zubin E, Conti V, Leonardi F, Zanichelli S, Ramoni R and Grolli S. 2015. Regenerative therapy for the management of a large skin wound in a dog. *Clinical Case Reports* 3(7): 598–603.
- Zuk P, Zhu M, Mizuno H, Huang J, Futrell J W, Katz A J, Benhaim P, Lorenz H P and Hedrick M H. 2001. Multilineage cells from human adipose tissue: Implications for cell-based therapies. *Tissue Engineering* 7: 211–28.