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Spinal cord injury is a concern for both humans and
domestic animals. Therapeutic approach has been tried with
direct delivery of neurotrophic factors, stem cells as well
as a combination of both to treat such conditions (Jung et
al. 2009). Despite progress in the treatment of spinal cord
injury, recovery from the spinal cord with normal motors
and sensory activities remain a challenge (Wright et al.
2012). The cell based therapy had been attempted with
embryonic spinal cord stem cells, schwann cells, olfactory
unsheathing glia, and bone marrow stromal cells (Willam
et al. 2011, Bhat et al. 2018). Among the cell types,
mesenchymal stem cells (MSCs) are showing great
promises in therapeutic application owing to their
multipotency, immunomodulatory properties, migratory
behavior and minimum ethical concern. MSCs have plastic
adherence properties and can be expanded ex vivo;
differentiated into mesoderm origin including chondrocytes,
adipocytes, and osteocytes as well as ectoderm origin cell-
like neurons (Woodbury et al. 2000, Sanchez-Ramos et al.
2000, Yang et al. 2008). The neuron-like cells derived from
bone marrow-derived MSCs might be an efficient source
of cells for transplantation for the treatment of neurological
diseases (Edamura et al. 2012).

Transdifferentiation of MSCs into neurons was initially
demonstrated by Woodberry et al (2000) using chemical
agent B-mercaptoethanol (BME), followed by several
modifications such as supplementation of neurotrophins
(Sanchez-Ramos 2000, Hayase et al. 2009, Kim et al. 2014),
and only with neurotrophin factor in the absence of
specialized pre-induction chemicals (Mili et al. 2018).
However, neurotrophin mediated directed differentiation
of stem cells into neuron or neuron-like cells in vitro would
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take a longer duration. In this context, BME based method
is less laborious and can pre-differentiate MSCs into
neurons like cells in a reasonably short time. We hypothesize
that supplementation of B-mercaptoethanol in the culture
medium could induce the transdifferentiation of canine
MSCs towards neuron-like cells. Hence, the present study
was aimed to transdifferentiate canine bone marrow-derived
MSC:s into neurons/ neuronal like-cells in vitro.

The study was conducted with the approval of the
Institutional Animal Ethics committee of the ICAR-Indian
Veterinary Research Institute, Izatnagar, India. The bone
marrow was aspirated aseptically with an 18 G bone marrow
biopsy needle from the iliac crest of healthy dogs below
one year of age. The dogs were anaesthetized with a
combination of xylazine (1 mg/kg) to ketamine (10 mg/kg)
at the ratio of 1 : 2. The canine MSCs were isolated from
the bone marrow and characterized in our previous studies
(Das et al. 2017, Mili et al. 2018). The canine MSCs of the
third passage were induced to transdifferentiate in vitro
towards neuronal-like cells as per the method described by
Woodbury et al. (2000) with minor modification. The MSCs
were maintained in the MSC culture medium to become
confluent. Thereafter, the MSC medium was replaced with
a pre-induction medium consisting of DMEM-LG (Gibco)
supplemented with 20% fetal bovine serum (FBS) and
1 mM BME (Sigma Aldrich, USA). The pre-induction
medium was removed after 24 hours and the culture plates
were washed with PBS. Cells were then incubated for
another 6 days with a serum-free neuronal induction
medium composed of DMEM-LG and 4 mM BME. After
this incubation period, the cells were characterized by
immunocytochemistry and Real Time-PCR (RT-PCR). The
cells were fixed with 4% paraformaldehyde followed by
permeabilization with 0.1% Triton-X-100 for 20 min and
immunocytochemistry was carried out as per the procedure
described earlier (Das et al. 2017). Primary antibodies 3-
tubulin III, MAP-2, and Nestin of Santa Cruz
Biotechnology, USA were used at 1 : 100 dilutions and the
Alexa Fluor 594 conjugated secondary antibody at 1 : 800
dilutions.

The total RNA was extracted by Trizol reagent
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Fig. 1. Morphological changes in the canine bone marrow derived MSCs during the transdifferentiation process. (A) Confluent
MSCs of 3" passage (10x); (B) After 24 h pre-induction with 1 mM BME (10x); (C) After 6 day induction with 4 mM BME (20x).
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Fig. 2. Characterization of the neuron-like cells. (A) Immunolocalization neuronal specific markers (Scale bar 20 uM); (B, C and D)
Relative mRNA expressions of the neuron specific genes; (E) Size fractionized RT-PCR amplicons.

(Invitrogen, USA) from the induced cells and
undifferentiated MSCs (control). The ¢c-DNA was
synthesized from total RNA using c-DNA synthesis kit (Bio-
Rad, USA) and the comparative threshold cycles (Ct) was
measured using Eva Green SuperMix (Bio-Rad, USA) as
per the manufacturer’s instructions. The primer sequences
were (3-tubulin III-F: AGCCAAGTTCTGGGAAGTCA/R:
CCCACTCTGACCAAAGATGAA (Wilcox et al. 2011),
MAP-2-F:GAAGTTCAGGCCCACTCTCC/R:
CCTGTTGCTGTGGTTTTCCG (XM_005640598.1),
Nestin-F: GCCACCGAGAAGTTCCA/R: GGACATCTT-

GAGGTGTGCTA (XM_547531.4), and GAPDH- F:
CCATCTTCCAGGAGCGAGAT/R:TTCTCCATGG-
TGGTGAAGAC (Vieira et al. 2010). RT-PCR thermal
conditions included an initial period of enzyme activation
at 95°C for 30 sec, denaturation at 95°C for 5 sec, annealing
at 60°C (GAPDH), 57°C (B-tubulin III), and 58°C (Nestin
and MAP-2) for 10 sec. The transcript levels of all genes
were quantified using the relative quantification method
based on comparative threshold cycles values (Ct). The Ct
values were analyzed by the method as proposed by Pfaff]
et al. (2001) with the abundance of the housekeeping gene
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GAPDH. The RT-PCR amplicon was size fractionated on
2% Agarose TBE gel containing 0.5 ug/ml LabSafe™
nucleic acid stain (G-Bioscience, USA) in gel
electrophoresis. The experimental results were expressed as
mean+SD. The simple “t” test was performed to compare
the relative expression between transdifferentiated cells and
undifferentiated cells using a prism Graphpad version 5.0.
P<0.05 implies statistically significance.

The isolated cells exhibited morphologically
homogeneous fibroblastic populations, formed a confluent
monolayer over the culture plates (Fig. 1A). Sequential
changes were observed in the appearance of MSCs from
typical fibroblastic like morphology to round shaped cells
after 24 h of pre-induction with | mM BME (Fig. 1B). After
another six days of induction with 4 mM BME, neuronal
cell-like branching was noticed from the edges of the
incubated cells (Fig. 1C). These cells were characterized
by immunocytochemistry. The transdifferentiated cells were
positive for neuronal markers MAP-2, Nestin, and a-
Tubulin III (Fig. 2A). The expressions of these markers
were further confirmed by RT-PCR. The relative mRNA
expression of MAP-2, Nestin, and B-Tubulin III were
significantly higher (P<0.05) in comparison to
undifferentiated cells (Fig. 2 B, C, and D). The gel
electrophoresis of the PCR products confirmed the
expression of those genes in the transdifferentiated cells
(Fig. 2E). Our results revealed that the BME induction
resulted in significant changes in the morphology of canine
MSCs. It was observed that after 7 days of neuronal
induction, around 40-60% of cells showed the neuron like
phenotype. Previously, it was noticed that after 7 days of
induction of rat MSCs, neuronal-like phenotypes accounted
for above 80% of the total population which also expressed
the neuronal cells markers (Jiang et al. 2010). Induction of
BME in mesenchymal stem cells causes changes in their
morphology from fibroblastic to the cells with neuronal
phenotypes as evident by the previously reported literature
on bone marrow MSCs of other species (Woodbury et al.
2000, Sanchez-Ramos et al. 2000, Yang et al. 2008).
Neuronal differentiation potentiality of the MSCs of
humans, rats, and mice has been reported (Woodbury et al.
2000, Sanchez-Ramos et al. 2000, Deng et al. 2006). The
B-tubulin III has been reported as a potential
transdifferentiation inducer of canine MSCs, and Nestin
and MAP-2 are expressed in neurons (Chung et al. 2013;
Heo et al. 2013). From the experiment, it can be inferred
that induction with BME resulted in the transdifferentiation
of canine MSCs into neuron-like cells

SUMMARY

The objective of this study was to check whether f3-
mercaptoethanol in a culture medium can induce the
neuronal differentiation of canine MSCs. The canine bone-
marrow derived MSCs were first pre-inducted with 1 mM
BME for 24 hrs followed by induction in a serum-free
medium supplemented with 4 mM BME without FBS for
another 6 days. Morphological changes in MSCs from

spindle-shaped to neuron-like branching from the edges of
the cells were noticed at the end of induction. These neuron-
like cells were found positive for the immunophenotypic
expression of different neural cell markers B-tubulin III,
MAP-2 and Nestin. In RT-PCR analysis, it was also evident
that the relative expressions of these representative genes
were significantly higher in the differentiated cells. On the
basis of our observations, it can be summarized that the
BME induction of canine MSCs resulted in morphological
changes that resembled neuron-like cells which were found
to express the representative neuronal markers. Therefore,
inducing canine MSCs with BME resulted in the generation
of neuron-like cells that might be utilized for the prospective
therapeutic applications in veterinary medicine.
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