# Livestock services delivery during COVID-19 lockdown: An appraisal of accessibility and constraints

BRAJ PAL SINGH<sup>1⊠</sup>, MAHESH CHANDER<sup>1</sup>, SANTOSH S. PATHADE<sup>1</sup> and KISHORE PORDHIYA<sup>1</sup>

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 4 July 2020; Accepted: 29 July 2021

#### ABSTRACT

COVID-19 has devasted many sectors of Indian economy including livestock sector which got more turmoil during the lockdown period. With an intuition to find out the appraisal of livestock management and health services accessed by the farmers and delivered by the private veterinary practitioners, the present study was conducted in Uttar Pradesh. The production parameters, viz. milk production, sell, consumption and utility pattern of milk similarly the pattern of milk supply chain was studied and compared before and during lockdown period. The results revealed that except milk consumption remaining parameters showed negative trend as compared to before lockdown, and dairy co-operative has played a major role in maintaining the milk supply chain during lockdown. The major constraints perceived by the farmers during lockdown were accessed and it was observed that increase in price of feed and fodder followed by fear of corona were major problems. The delivery of livestock services viz. AI, treatment, livestock extension and vaccination by the private veterinary practitioners was accessed and compared before lockdown and during lockdown period. The results revealed that less number of cases attended during lockdown due to low response from farmers for availing the service from them, and fear of corona virus.

Keywords: Livestock, COVID-19, Lockdown, Constraints, Vaccination

COVID-19 has created an unforeseen crisis and grave societal threat to each and every citizen. Globally, the COVID-19 severely affected more than 5 billion people's life and livelihoods, and in India it has affected the income of 80% of the population (OECD 2020). As per IMF (2020), the world economy will lose \$9 trillion due to COVID-19 and further the pandemic will also etch a very deep psychological impact on the minds of the people of all ages. According to Care Ratings (2020), among all the sectors, agriculture will be affected by 17% due to lack of labourers during lockdown. Further, the rate of unemployment had gone up to 23.5% in April and May 2020, whereas 27 million youth lost their jobs in April 2020 following a nationwide lockdown in India (CMIE 2020). The effects of COVID-19 on the livestock sector are still largely unquantified and yet to be fully felt. Formal assessments have not yet been possible, but current observations revealed disruptions to livestock value chains (FAO 2020). Lockdown ignores livestock farmers' time-sensitive needs, such as artificial insemination, pregnancy checks, vaccinations, de-worming, and more importantly, feed and fodder. To keep the livestock alive, productive, healthy and protection from any infection, it is also pertinent to give

Present address: ¹ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh. <sup>™</sup>Corresponding author email: bpsinghextivri@gmail.com.

equal importance to community-level ethno-veterinary practitioners, private para-veterinary workers/AI inseminator and other livestock service providers to permit them to provide livestock service to the farmers since they have usually a better rapport with them and even are more accessible. Like human healthcare staff, AI Inseminator/paravets also need to be allowed smooth movement for administering inseminations when the animals are in heat as well as to deliver the other veterinary services that they might require (Rawat 2020). In given context, present study was carried out with the objective of appraisal of livestock services (AI, health, vaccination etc.) provided through government institution, Paravets, AI Inseminator and the livestock management practices followed by the farmers during lockdown due to COVID-19.

#### MATERIALS AND METHODS

Secondary and primary data were used for conducting the study, which were collected through email and telephonic survey from the farmers and veterinary institutions providing first-aid veterinary and AI services. Secondary data, were collected from BAIF and Department of Animal Husbandry of Uttar Pradesh (12 districts). Primary data were collected, telephonically, from randomly selected 60 private AI Inseminator/ Para-vets, trained as rural educated unemployed youth by Department of Animal Husbandry, Uttar Pradesh. Further, 100 dairy farmers who

Table 1. Artificial inseminations (AI) carried out by BAIF and District Animal Husbandry Department, Uttar Pradesh during Feb to April 2020

| Particulars                                              | 20 Feb      | 20 Mar    | 20 Apr    |
|----------------------------------------------------------|-------------|-----------|-----------|
| AI at B                                                  | AIF centre  |           |           |
| No. of AI centres                                        | 4,769       | 4,763     | 4,088     |
| No. of artificial inseminations performed with semen of: |             |           |           |
| Cattle                                                   | 252,487     | 213,972   | 105,249   |
| Buffalo                                                  | 192,819     | 114,771   | 35,619    |
| Total                                                    | 445,306     | 328,743   | 140,868   |
| AI cases (April 2020) in comparison to February 202      | 0           |           | 31.63%    |
| AI cases (April 2020) in comparison to March 2020        |             |           | 42.85%    |
| AI by Animal Husbandry I                                 | Department, | UP (12 di | istricts) |
| Amroha                                                   | 39,041      | 42,855    | 7,695     |
| Chitrakoot                                               | 60,120      | 81,040    | 1,053     |
| Bareilly                                                 | 117,601     | 190,541   | 5,027     |
| Hardoi                                                   | 58,618      | 77,232    | 6,793     |
| Lakhimpur                                                | 21,603      | 28,883    | 5,762     |
| Auraiya                                                  | 11,754      | 25,057    | 1,925     |
| Kousambi                                                 | 12,370      | 14,822    | 3,851     |
| Moradabad                                                | 135,186     | 158,006   | 5,405     |
| Sant Kabir Nagar                                         | 8,948       | 8,220     | 2,548     |
| Shamli                                                   | 15,364      | 12,421    | 7,600     |
| Sonbhadra                                                | 14,825      | 24,950    | 3,327     |
| Agra                                                     | 67,156      | 89,139    | 3,865     |
| Total                                                    | 562,586     | 753,166   | 54,851    |
| AI done (April 2020) in comparison to February 202       | 0           |           | 9.70%     |
| AI done (April 2020) in comparison to March 2020         |             |           | 7.20%     |

got training, two years back, from Indian Veterinary Research Institute, Izatnagar under Kamdhenu scheme were also contacted telephonically for the data collection. The data were modified using adequate statistical treatment viz, frequency, percentage, mean and standard error using SPSS 20 Package.

#### RESULTS AND DISCUSSION

Delivery of Artificial Insemination Services (AI)

Number of AI done at AI centres of BAIF reduced in April 2020 in comparison to February and March 2020 because the lockdown was imposed on 22<sup>nd</sup> April 2020 (Table 1). In comparison to the month of February and March 2020, the AI cases at BAIF centres were reduced in month of April 2020. The drastically reduced number of AI in livestock during lockdown were not due to lack of availability of AI services but the fear and fatigue of COVID spread among the farmers due to the rumour and lack of knowledge that livestock may also get infected by COVID. The missing of timely breeding services in livestock may cause huge loss to the farmers and nation. Madkar *et al.* 

Table 2. Socio-economic profile of farmers, milk production, consumption and sale at farmers level during COVID-19 (N=100)

| Variables                          | Frequency | Percentage | Mean<br>(standard<br>error) |
|------------------------------------|-----------|------------|-----------------------------|
| Age                                |           |            | 48.32 (1.83)                |
| Sex                                |           |            | 1.05 (0.034)                |
| (a) Male                           | 96        | 96         |                             |
| (b) Female                         | 4         | 4          |                             |
| Education                          |           |            | 4.00 (0.18)                 |
| (a) Primary                        | 10        | 10         |                             |
| (b) Upper primary                  | 15        | 15         |                             |
| (c) Secondary                      | 20        | 20         |                             |
| (d) High school                    | 25        | 25         |                             |
| (e) Graduate and above             | 30        | 30         |                             |
| Land size (acres)<br>Herd size     |           |            | 7.37 (1.26)<br>42.35 (6.47) |
| Buffalo milking                    | 58        | 58         |                             |
| Male                               | 31        | 31         |                             |
| Heifer                             | 45        | 45         |                             |
| Young one                          | 36        | 36         |                             |
| Crossbreed milking                 | 48        | 48         |                             |
| Male                               | 21        | 21         |                             |
| Heifer                             | 33        | 33         |                             |
| Young one                          | 48        | 48         |                             |
| Milk production (litres)           |           |            |                             |
| (a) Before lockdown                | Nil       | Nil        | 129.17 (24.17)              |
| (b) After lockdown                 | Nil       | Nil        | 87.95 (19.14)               |
| Milk sell (litres)                 |           |            |                             |
| (a) Before lockdown                | Nil       | Nil        | 120.26 (25.11)              |
| (b) After lockdown                 | Nil       | Nil        | 76 (19.64)                  |
| Milk consumption                   |           |            |                             |
| (a) Before lockdown                | Nil       | Nil        | 7.72 (1.08)                 |
| (b) After lockdown                 | Nil       | Nil        | 8.17 (1.10)                 |
| Utility of milk                    |           |            | 1.17 (0.17)                 |
| Distributing to others             | 60        | 60         |                             |
| Consuming at home                  | 80        | 80         |                             |
| Converted into value added product | 20        | 25         |                             |

(2018) reported the loss of  $\raiseta5,000-7,000$  if one oestrous is missed without insemination and conception in livestock. Further, Adnan (2019) estimated the loss of Rs 425.85 crore due to delayed conception in his study conducted in Jammu and Kashmir.

Socio-economic characteristics of dairy farmers

Results revealed (Table 2) that the average age of the farmer was 48.32 years, and 96% of the farmers were male which is in consonance with the findings of Pathade *et al.* (2020) in Maharashtra. Further, 30% of the farmers were graduate followed by high school level education (25%), average landholding and herd size were 7.37 acres, 42.35 animal units, respectively, herd size comprises 58 and 48% milking buffalo and crossbred animals, respectively. Similar findings were reported by Chandrasekar *et al.* (2017). The milk production, sale and consumption pattern before and

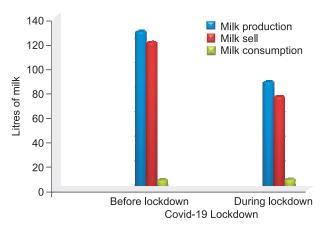



Fig 1. Milk production, sell and consumption pattern.

during lockdown (Fig.1) revealed that average milk production and milk sell reduced after lockdown, while consumption of milk enhanced during lockdown.

The marketing pattern of the milk before and during lockdown (Table 3) depicted the change in supply chain pattern of milk after lockdown. Agrawal and Raju (2021) in Madhya Pradesh found that major milk supply chain was Producer–Village co-operative societies–District Milk union–Retailer-Consumer.

The marketing supply chain pattern of milk:

- (a) Before lockdown : Daily consumers ⇒ Private dairy ⇒ Hostels, Hotels and Restaurants ⇒ Dairy cooperative ⇒ Village distribution
- (b) During lockdown: Daily consumers ⇒ Dairy cooperatives ⇒ Private dairy ⇒ Village distribution.

The feeding management of livestock during lockdown revealed that only 35 and 60% farmers got access to concentrate and green fodder, respectively, during lockdown period (Table 4). The unavailability of green pasture and closing of feed shops during lockdown aggravated the crisis situation of feed and fodder management. The study conducted by Bala (2019) in Odisha stated that livestock productivity was constrained by shortage of feed and fodder. As far as livestock health services of State Department of Animal Husbandry (SDAH) is concerned, it was found that most of the farmers (52%) received treatment services followed by artificial insemination (48%) and vaccination

Table 3. Marketing of milk (N=100)

| Milk selling               | Before lockdown |            | During lockdown |            |
|----------------------------|-----------------|------------|-----------------|------------|
| agency                     | Frequency       | Percentage | Frequency       | Percentage |
| (a) Daily                  | 40              | 40         | 45              | 45         |
| (b) Hotels, Restaurants    | 25              | 25         | 0               | 0          |
| (c) Dairy co-operativ      | 24              | 24         | 40              | 40         |
| (d) Private dair           |                 | 30         | 35              | 35         |
| (e) Distributed in village | 20              | 20         | 30              | 30         |

Table 4. Feed and fodder management, accessibility of livestock services and reasons for not getting livestock services during lockdown period (N=100)

| Type of feed F                                          | Feed availability<br>(N=100)<br>Frequency | percentage | Mean<br>(Standard<br>error) |
|---------------------------------------------------------|-------------------------------------------|------------|-----------------------------|
| Dry                                                     | 75                                        | 75         | 0.75<br>(0.069)             |
| Green                                                   | 60                                        | 60         | 0.60 (0.078)                |
| Concentrate                                             | 35                                        | 35         | 0.35<br>(0.079)             |
| Type of services Se                                     | N=100<br>frequency                        | Percentage | Mean<br>(standard<br>error) |
| Artificial insemination                                 | n 48                                      | 48         | 0.48<br>(0.079)             |
| Treatment                                               | 52                                        | 52         | 0.52 (0.082)                |
| Vaccination                                             | 32                                        | 32         | 0.32 (0.070)                |
| Extension advisory services                             | 5                                         | 5          | 0.05<br>(0.025)             |
| Reasons for not getting livestock services              | Frequency                                 | Percentage | Standard<br>error           |
| Fear of corona                                          | 95                                        | 95         | 0.034                       |
| Unavailability of veterinary personne (doctor/paravets) | 50<br>el                                  | 50         | 0.080                       |
| Shut down of veterinary polyclin                        | 57                                        | 57         | 0.070                       |
| Difficulty in transportation to polyclinic              | 67                                        | 67         | 0.075                       |
| Lack of response from<br>veterinary personne            |                                           | 32         | 0.075                       |

<sup>\*</sup>The figures in parenthesis indicate standard error.

services (32%) during lockdown (Table 4). The study conducted by Verma *et al.* (2020) in Haryana reported that farmers demanded livestock extension services in case of artificial insemination, fodder production etc.

The reasons for not availing the livestock services by the farmers are presented in Table 4, which revealed that most of the farmers (95%) did not prefer to avail it due to fear of corona infection and 67% farmers reported that even if in emergency it was difficult to visit polyclinic due to unavailability of transportation services during lockdown. The study conducted by Neeraji and Kumar (2018) in Jammu and Kashmir reported that distant location of veterinary hospital was the major problem perceived by the farmers in utilization of livestock extension services of State Department of Animal Husbandry.

The major constraints faced by the livestock farmers during lockdown are presented in Table 5, which envisaged

Table 5. Major constraints faced by the farmers during lockdown

| Major problems                                                   | Frequency | Percent |
|------------------------------------------------------------------|-----------|---------|
| Selling of milk and milk products                                | 95        | 95      |
| Shutdown of regular market (hostels, hotels, bakery, sweet mart) | 85        | 85      |
| Increase in price of feed and fodder                             | 97        | 97      |
| selling and purchasing of animals                                | 77        | 77      |
| Accessibility of veterinary and extension services               | 68        | 68      |
| Low market price for milk                                        | 92        | 92      |
| Profitability of dairy farm diminished during lockdown           | 50        | 50      |

that majority of the farmers (97%) faced the burden of price hike of feed and fodder due to shutdown of feed and fodder shops and unavailability of feed and fodder. Similar findings were reported by Smitha (2019). Further, it was recorded that 95% of farmers faced the difficulties in selling of milk and milk products and 92% farmers reported low price of milk during lockdown. Similar results were reported by Rachna *et al.* (2018) study conducted in Haryana.

## Livestock health and AI services delivered by paravets/AI inseminator during lockdown

The results regarding livestock health and management services delivered by the paravets/AI inseminator revealed that the average experience (years) in delivering the livestock health service by the paravets /AI inseminator was 11.2 years. This is in line with the findings of Sen and Chander (2001) who found average working experience of 5–10 years of private veterinary practitioner in West Bengal. Further, about the type of cases attended by the paravets (Table 6; Fig. 2), it was found that the average number of artificial insemination (AI) and pregnancy diagnosis (PD) cases attended were reduced per day during lockdown. There might be various other reasons like fear of corona, fear of police, followed by no calls from the farmers in getting the livestock health services during lockdown. Further, veterinary first-aid cases and number of villages

Table 6. Overview of livestock health services delivered by private paravets/AI inseminator (N=60) during lockdown

| Variables                                                    | No of respondents | Mean | Standard deviation |
|--------------------------------------------------------------|-------------------|------|--------------------|
| Experience of livestock service providers (years)            |                   | 11.5 | 5.95               |
| No of cases attended per day<br>Artificial insemination (AI) | ı                 |      |                    |
| a) AI before lockdown                                        |                   | 6.41 | 2.52               |
| b) AI during lockdown<br>Veterinary First Aid                |                   | 2.93 | 1.95               |
| c) Medicinal cases<br>before lockdown                        |                   | 2.82 | 2.16               |
| d) Medicinal cases<br>during lockdown                        |                   | 1.42 | 0.92               |

(Table 6 concluded)

| Variables                                                  | No of respondents | Mean  | Standard<br>deviation |
|------------------------------------------------------------|-------------------|-------|-----------------------|
| Reasons for less no.                                       |                   | 7.34  | 2.31                  |
| of AI during lockdown                                      |                   |       |                       |
| a) No calls from farmers                                   | 35 (58.3)         |       |                       |
| b) Fear of police                                          | 46 (76.6)         |       |                       |
| c) No movement pass was                                    | 33 (55)           |       |                       |
| issued                                                     |                   |       |                       |
| d) Fear of corona                                          | 51 (85)           |       |                       |
| Problems faced in                                          |                   | 4.09  | 3.29                  |
| delivering other services                                  |                   |       |                       |
| during lockdown                                            |                   |       |                       |
| <ul> <li>a) Farmer wanted free of cost services</li> </ul> | 32 (53.3)         |       |                       |
| b) Challan by police                                       | 01 (1.66)         |       |                       |
| c) Lack of veterinary                                      | 18 (30)           |       |                       |
| medicine d) Lack of availability LN <sub>2</sub>           | 16 (26.6)         |       |                       |
|                                                            | 10 (20.0)         | 0.0   | 1.05                  |
| Reasons for attending less<br>number of cases during       |                   | 0.9   | 1.05                  |
| lockdown                                                   |                   |       |                       |
| a) No phone calls from farmer                              | 40 (66.66)        |       |                       |
| b) Lack of availability of semen                           | 20 (33.3)         |       |                       |
| Suggestion to support                                      |                   |       |                       |
| paravets during COVID                                      |                   |       |                       |
| like situation                                             |                   |       |                       |
| a) Honorium grant                                          | 52 (86.7)         |       |                       |
| Source of earning of livestock                             |                   | 2.65  | 1.05                  |
| health service providers                                   |                   |       |                       |
| during lockdown                                            |                   |       |                       |
| a) Agriculture                                             | 14 (23.3)         |       |                       |
| b) Animal Husbandry (AH)                                   | 02 (3.3)          |       |                       |
| c) Agril +AH                                               | 34 (56.7)         |       |                       |
| d) Saving only                                             | 10 (16.7)         |       |                       |
| Stay before lockdown                                       |                   | 1.41  | 0.9                   |
| a) Urban/Peri-Urban                                        | 25 (41.7)         |       | 3.7                   |
| b) Village                                                 | 35 (58.3)         |       |                       |
| Stay during lockdown                                       | , ,               | 1.03  | 0.18                  |
| a) Urban/Peri-urban                                        | 08 (13.3)         |       |                       |
| b) Village                                                 | 52 (86.7)         |       |                       |
| Village coverage to provide livestock health services      |                   |       |                       |
| a) No. of village                                          |                   | 16.8  | 6.5                   |
| covered before                                             |                   | 10.0  | 0.5                   |
| lockdown                                                   |                   |       |                       |
| b) No. of village                                          |                   | 5.69  | 3.54                  |
| covered during                                             |                   |       |                       |
| lockdown                                                   |                   |       |                       |
| Pregnancy diagnosis                                        |                   |       |                       |
| (PD) attended                                              |                   |       |                       |
| a) Before lockdown                                         |                   | 24.47 | 4.11                  |
| b) During lockdown                                         |                   | 6.98  | 1.8                   |

<sup>\*</sup>The figures in parenthesis indicate percentage.

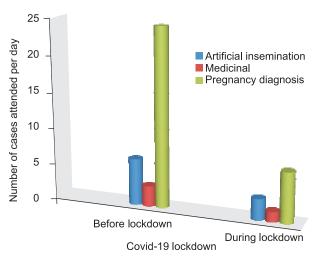



Fig. 2. The types of cases attended by the paravets before and during lockdown.

covered to provide livestock services got reduced during lockdown. The problems faced by the paravets in delivering the livestock health services during lockdown were—the farmers expected to get free of cost services in view that government had offered many incentive/welfare scheme for the farmers and others whose livelihood affected due to COVID-19. Further, lack of availability of veterinary medicine and liquid nitrogen (LN2) were also the major constraints in delivering the livestock health services. The suggestions to overcome the issue of delivering the livestock services were recorded from the paravets /AI inseminator and they reported that honorium grant should have also been provided to them for disseminating livestock services as their jobs were also affected due to COVID. Similar findings were reported by Channaappagouda and Sasidhar (2018) in their study conducted in Karnataka.

Regarding the source of income /livelihood during the lockdown period among the paravets and AI inseminator, it was found that most of the paravets (56.7%) were involved in agriculture and animal husbandry sector to earn their livelihood. Further, most of the paravets (58.3%) were living in urban/peri-urban areas before lockdown to provide better education to their children and better living to their family and during the lockdown they shifted from urban to their own village (86.7%) to make their daily lives easy. The above findings clearly indicated that the paravets/AI Inseminator, who were working privately, faced serious repercussion of COVID-19 lockdown in delivering the livestock health, AI and veterinary first aid services to the livestock farmers.

The study concluded that situation needs critical analysis to ameliorate the condition of the farmers in terms of providing hassel free services to them during COVID like situation and private veterinary practitioner/AI inseminators should also be given free movement pass to enable them to provide the services at the doorsteps of the farmers. Also, an educational campaign need to be launched exclusively for the farmers to remove their fatigue that corona does not infect their livestock, because it has not been proved so far.

### REFERENCES

- Adnan Tariq. 2019. Economic impact of ICAR-IVRI Crystoscope on loss reduction due to delayed conception from failure to detect optimum breeding time in dairy animals. MVSc thesis, Deemed University, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh.
- Agrawal A and Raju R. 2021. Marketed surplus and milk marketing channels in Madhya Pradesh: Implications for dairy farmers and traders. *Indian Journal of Dairy Science* **74**(2): 150–58.
- Chandrasekar G K, Satyanarayan K, Jagadeeswary V and Shree J S. 2017. Relationship between socio-economic and psychological factors of dairy farmers with days open—A study in rural Karnataka. *International Journal of Pure and Applied Biosciences* 5(1): 171–77.
- Channappagouda B and Sasidhar P V K. 2018. Livestock service delivery in karnataka— perceptions and reflections of veterinarians. *International Journal of Livestock Research* 8(3): 172–81.
- CMIE. 2020. The jobs blood bath of April 2020. https://www.cmie.com/kommon/bin/sr.php?kall=warticle&dt=2020-05-05%2008:22:21&msec=776.
- FAO. 2020. Mitigating the impacts of COVID-19 on the livestock sector. http://www.fao.org/3/ca8799en/CA8799EN.pdf
- Gangaiah B, Pooja Bohra, Harsha Haridas, Bala PA, Saktivel K, Zamir Ahmed S K, Bommayasamy N, Saravanan K, Sushil Kumar Singh and Swarnam T P. 2019. An Overview of Integrated Farming Systems of Coastal India. ICAR–Central Island Agricultural Research Institute, Port Blair, pp. 1–185.
- Gour S, Mandal M K and Singh R. 2016. Assessing knowledge of tribal farmers regarding scientific animal husbandry practices. *Indian Research Journal of Extension Education* **15**(2): 91–94.
- Neeraji A and Kumar P. 2018. Problems perceived by livestock farmers in utilization of livestock extension services of Animal Husbandry Department in Jammu District of Jammu and Kashmir, India. *International Journal of Current Microbiology and Applied Sciences* 7(3): 1106–13.
- OECD. 2020. Flattening the COVID-19 peak: Containment and mitigation, OECD Publishing, https://read.oecd-ilibrary.org/view/?ref=124\_124999-yt5ggxirhc&Title=Flattening%20the%20COVID-19%20peak:.Containment%20and%20mitigation%20policies
- Pathade S S, Singh B P, Chander M and Bardhan D. 2020. Profitability of dairy and goat production system: A multivariate typology of farm households. *Indian Journal of Animal Sciences* 90(2): 275–80.
- Rachna G and Malik A. 2017. Mixed dairy farming systems in Haryana: A constraint analysis. *Indian Research Journal of Extension Education* 18(1): 45–52.
- Rawat H. 2020. The lockdown ignores the needs of livestock. https://idronline.org/the-lockdown-ignores-the-needs-of-livestock/
- Sen A and Chander M. 2001. Socio-personal characteristics of Private Veterinary Practitioners (PVPs) in developing countries: A study in West Bengal State of India. *Livestock Research for Rural Development* **13**(6): 33–40.
- Smitha S, Mca Devi, Letha Devi G and Subash S. 2019. Analysis of constraints in dairy farming in Kerala-multi stakeholder perspective. *Indian Journal Dairy Science* **72**(3): 342–46.
- Verma K V S, Garai S, Maiti S, Meena B S, Bhakat M and Kadian K S. 2020. Demand driven livestock extension services: Farmers' participatory assessment in Eastern Haryana. *Indian Journal of Animal Sciences* **90**(5): 792–97.