Effect of herbal feed additives on intake, rumen fermentation, availability of nutrients and energetic efficiency of feeds in Barbari kids reared under confined condition

INDU CHATURVEDI¹, T K DUTTA^{2⊠}, P K SINGH³, A CHATTERJEE², D K MANDAL² and ARUN K DAS⁴

ICAR-Central Institute for Research on Goats, Makhdoom, P.O. Farah, Mathura, Uttar Pradesh 281 122 India

Received: 27 July 2020; Accepted: 12 September 2021

ABSTRACT

Weaned male Barbari kids (24) were divided equally into three groups (T₁, T₂ and T₃) to investigate the effect of supplementation of herbal feed additives in the complete pelleted feed on intake of nutrients, rumen fermentation, availability of nutrients and energetic efficiency under stall-fed condition during an eight months feeding trial. Treatments were T₁, Concentrate mixture (40%) plus arhar (Cajanus cajan) straw (60%) in Total Mixed Ration (TMR) form fed ad lib.; T₂, Concentrate mixture (40%) plus arhar straw (60%) in Complete Feed Pellets form fed ad lib.; T₃, Concentrate mixture (40%) plus arhar straw (60%) in Complete Feed Pellets form supplemented with herbal mixture (four herbs; Tulsi: Haldi: Amla: Arni, ratio 1:1:1:1 on DM basis) @ 0.5% in complete feed fed ad lib. Rumen fermentation pattern was studied at 3rd and 25th weeks of experimental feeding. A metabolism trial was $conducted \ at \ the \ last \ phase \ of \ the \ experiment. \ During \ metabolism \ trial, \ DMI \ (g)/kg \ W^{0.75} \ and \ CPI \ (g)/kg \ W^{0.75} \ was$ greater in kids under T3 and T2 than T1. Pelleted complete feed supplemented with phytogenic feed additives resulted greater total VFA (mmol/dl SRL) concentration in rumen liquor of kids under T3 than TMR fed kids (T1) at three weeks of experimental feeding. The concentration of NH3-N (mg/dl SRL) was depressed significantly in T_3 at 3^{rd} and 25^{th} weeks of feeding; T_1 showed highest values during both periods. TDN intake (g)/kg $W^{0.75}$ and Digestible Energy intake (MJ)/kg $W^{0.75}$ were increased significantly in T_3 and T_2 than T_1 . DCP intake (g)/kg $W^{0.75}$ was also higher in T₂ and T₃ than T₁. Similarly, N-balance (g)/kg W^{0.75} increased significantly in T₃ and T₂ than T₁. Therefore, it may be concluded that densification of feeds in the form of complete pelleted feed (T2) and further supplementation (@ 0.5% in the complete feed) with herbal mixture (Amla, Haldi, Arni and Tulsi=1:1:1:1 on DM basis) (T₃) increased the intakes of DM, TDN, digestible energy and protein; enhanced rumen fermentation pattern, and increased N-balance in finisher Barbari kids.

Keywords: Barbari, Complete feed, Digestibility, Fermentation, Herbal additives, Kids

Phytogenics or herbal additives are reported to have potential effect in increasing appetite, growth of favourable microorganisms, feed consumption, digestion, weight gain in livestock and act as rumen fermentation modifiers to improve health status (Karásková et al. 2015, Brand et al. 2019). These additives are well accepted by the consumers over chemical compounds, because they are considered safe and healthy (Das et al. 2020). Use of phytogenic feed additives (PFA) improved the digestibility of all the nutrients, without any significant negative effect on dry matter intake or body weight changes (Choubey et al. 2016). Emblica officinalis primarily contains tannins, flavonoids,

Present address: ¹ICAR-Central Institute for Research on Goats, Makhdoom, Uttar Pradesh. ²ICAR-National Dairy Research Institute, Eastern Regional Station, Kalyani,Nadia, West Bengal. ³Raja Balwant Singh College, Dr. Bhim Rao Ambedkar University, Agra, Uttar Pradesh. ⁴ICAR-Indian Veterinary Research Institute, Eastern Regional Station, Kolkata, West Bengal. [⊠]Corresponding author e-mail: tkdcirg@gmail.com

saponins, terpenoids, ascorbic acid, carbohydrates and many other compounds (Khan 2009). The average daily gain in lambs significantly improved (P<0.05) due to supplementation of Emblica officinalis fruit in the concentrate mixture (0.4 or 0.6 or 0.8%) as compared to control (Bostami et al. 2015). Oderinwale et al. (2019) concluded that breeds of kid and turmeric powder inclusion and their interaction influenced pre- and post-weaning performance of the kids. A significant increase in average body weight gain, feed intake and feed conversion efficiency was observed in crossbred (Holstein cross) calves when supplemented with Allium sativum extract @ 250 mg/ d/kg BW (Ghosh et al. 2010). Similarly, feeding garlic powder increased growth performance, feed digestion, rumen fermentation and the health status of lambs infected with gastro-intestinal nematodes (Zhong et al. 2019). Higher gut fill in goats fed Kalmegh (Andrographis paniculata) suggested slow rate of digestion; which could have improved utilization of nutrients by the animals (Yusuf et al. 2014). Kids that received garlic or thyme had higher feed consumption and average daily gain (Usur 2019).

Hence, it is presumed that pelletization of complete feed and blending with Indian herbs in combination (phytogenic additives) may increase voluntary intake, rumen fermentation and nutrients utilization pattern in kids. Therefore, the present experiment was conducted to investigate the effect of supplementation of mixed herbal feed additives in the complete pelleted feed on intake of nutrients, rumen fermentation, availability of different nutrients and energetic efficiency of complete feeds in finisher Barbari kids reared under confined condition.

MATERIALS AND METHODS

Study site: The experiment was conducted in the experimental unit of Nutrition, Feed Resource and Products Technology Division, ICAR-Central Institute for Research on Goats (CIRG), Makhdoom, Farah, Mathura (Uttar Pradesh). Makhdoom is situated at 27°10'N latitude and 70°02'E longitude and at an altitude of 169 meter MSL in semi-arid region of Indo-Gangetic plain.

Experimental animals and diets: Twenty-four weaned male Barbari kids (age 144.67 days, weight, 11.99±0.49 kg) were divided equally into three treatment groups (T₁, T₂ and T₃) having eight kids in each group. The animals were dewormed at the beginning of the experiment. The kids were vaccinated against PPR, goat pox, enterotoxeamia, FMD and HS as per standard schedule. Four phytogenic (herbal) plant parts were selected such as leaf and small stems of Ocimum sanctum (Tulsi), roots of Curcuma longa (Haldi), fruits of Emblica officinalis (Amla) and leaves and small stem of Clerodendrum phlomidis (Arni) for evaluation in kids. After estimating DM content, the samples were grinded with laboratory Wiley mill and preserved in polythene bags. The concentrate mixture was prepared with feed ingredients, such as barley grain (Hordium vulgare) 40%, linseed cake (Linum usitatissimum) 15%, groundnut cake (Arachis hypogaea) 20%, wheat bran (Triticum aestivum) 10%, Bengal gram chuni (Cicer arietinum) 12%, mineral mixture 2% (Totavit Strong 1.75%, Vet Mankind + Supplevite-M 0.25%, Zydus AHL) and common salt 1%.

Above mineral mixture was used to avoid deficiency of vitamins, minerals and other critical nutrients (lysine, methionine) since no green fodder was fed to the experimental kids during the entire experimental period. However, same concentrate mixture was used in all three diets. The feeding schedule was followed as given here.

T₁: Concentrate mixture (40%) + Arhar (*Cajanus cajan*) straw (60%) in Total Mixed Ration (TMR) form fed *ad lib*.

 T_2 : Concentrate mixture (40%) + Arhar straw (60%) in Complete Feed Pellets form fed *ad lib*.

T₃: Concentrate mixture (40%) + Arhar straw (60%) in Complete Feed Pellets form supplemented with herbal mixture** fed *ad lib*. [**Herbal mixture: Combination of four phytogenic feed additives (Tulsi: Haldi: Amla: Arni, ratio 1:1:1:1 on DM basis) @ 0.5% in complete feed].

Evaluation of intake, nutrient utilization and energy value: The experimental kids in each group were allowed

for feeding for 8 months by following the respective feeding schedule. Clean water was freely available to all the animals throughout the experimental period. A metabolism trial was conducted in all kids under three treatments at the last phase of growth trial (7th month of feeding) with a collection period of 6 days using specially designed metallic goat cages. Intake of diets was measured on daily basis using double pan balance (Avery, India). Samples of feeds and herbal additives offered, residues left and faeces voided were analyzed for proximate composition (AOAC 1995) and cell wall components (Goering and Van Soest 1970) in order to estimate digestibility and availability of different nutrients in kids. Energy value (MJ) of feeds and faeces of each animal was estimated by Bomb Calorimeter (Model no. 6200, Parr Instrument Company, India).

Evaluation of rumen fermentation: Rumen liquor was collected from the donor kids of respective treatment groups (at 3rd and 25th weeks of feeding) before feeding (at 9.00 AM) with the help of stomach tube (Prakash et al. 2006) and taken in a clean thermo flask after filtering through double layer muslin cloth. The strained rumen liquors were stored in properly corked and labeled plastic bottles at -10 to -12°C for further analysis. The pH of the rumen fluid was determined by using digital pH meter (Elico, India). The N-fractions in the incubation medium were analyzed in accordance with Micro-Kjeldahl method (AOAC 1995). Total volatile fatty acid (TVFA) concentration in the incubation medium was estimated according to John et al. (1957). The TVFA was fractioned as per the method described by Ervin et al. (1961) using Gas Chromatograph (Amil Nucon 5700, India) fitted with chromosorb 101 column.

Statistical analysis: Data on intake of nutrients, rumen fermentation and nutrients utilization were analyzed with one-way ANOVA using randomized complete block design with eight replications (kids) in each group during animal experimentation (Snedecor and Cochran 1994). Computerized IBM SPSS 20.0 package was used for analysis of variance. Duncan's Multiple Range Test was used to measure the differences of means (Duncan 1955).

RESULTS AND DISCUSSION

Chemical composition of feed: Chemical composition of herbal additives, concentrate mixture, arhar straw (Cajanus cajan) and complete feeds (TMR and pelleted feeds) are presented in Table 1. The CP and NDF content (%) in herbal ingredients ranged from 13.31 (Haldi) to 14.06 (Arni) and 42.40 (Haldi) to 57.70 (Tulsi), respectively. CP content in different complete feeds was more than 12%. The gross energy value was estimated 18.97, 18.94 and 18.54 MJ/kg of feed in T₁, T₂ and T₃, respectively. Hence, complete diets under three treatment groups were made isocaloric and iso-nitrogenous.

Intake, digestibility of nutrients and N-balance: DMI (g/d/kid) was significantly (P<0.01) higher in T_3 and T_2 than T_1 during metabolism trial (Table 2). Similarly, DMI (g)/kg $W^{0.75}$ was also statistically greater (P<0.001) in T_2 (98.83)

Table 1. Chemical composition (%) of feeds used during metabolism trial period in weaned Barbari kids

Ration	OM	CP	EE	ТСНО	Ash	NDF	ADF	Hemi- cellulose	Cellulose	Lignin	Energy (MJ/kg)
Tulsi	89.45	13.58	2.78	73.09	10.55	57.70	37.93	19.77	25.67	9.67	-
Haldi	91.07	13.73	1.99	75.35	8.93	42.40	23.07	19.33	19.77	2.75	-
Amla	88.69	13.31	2.46	72.92	11.31	47.35	20.71	26.64	17.23	3.11	-
Arni	86.02	14.06	2.01	69.95	13.98	48.16	30.46	17.70	18.59	8.00	-
Arhar straw	89.57	8.08	1.91	79.58	10.43	71.69	52.90	18.79	45.99	6.02	-
Concentrate mixture	92.21	19.08	3.34	69.79	7.79	39.24	21.65	17.59	15.58	6.07	-
T_1	90.52	13.17	3.00	74.35	9.98	60.01	42.49	17.52	35.01	6.07	18.97
T_2	89.94	12.83	3.09	74.02	10.06	59.84	43.30	16.54	35.85	6.13	18.94
T_3^2	88.88	13.00	3.90	71.98	11.12	60.02	42.33	17.69	34.64	6.09	18.54

OM, Organic matter; CP, Crude protein; EE, Ether extract; TCHO, Total carbohydrate; NDF, Neutral detergent fibre; ADF, Acid detergent fibre; T_1 , TMR (Concentrate: Arhar straw = 40:60); T_2 , Complete pellet feed (Concentrate: Arhar straw = 40:60); T_3 , Complete pelleted feed (Concentrate: Arhar straw = 40:60) with 0.5% herbal additive mixed in concentrate mixture (Tulsi: Arni: Haldi: Amla = 1:1:1:1).

Table 2. Intake, apparent digestibility of nutrients and N balance in kids under different treatments

Parameter (%)	T_1	T_2	T_3	SEM	P value			
DM intake								
g/d/kid	684.11 ^a	962.13 ^b	1028.30 ^b	49.06	0.005			
Kg/100 kg BW	3.52^{a}	4.37^{b}	4.53 ^b	0.12	0.002			
g/ kg W ^{0.75}	73.78a	94.42 ^b	98.83 ^b	2.97	P<0.001			
CP intake								
g/d/kid	90.87a	124.33 ^b	130.92 ^b	6.32	0.014			
g/100 kg BW	467.47a	564.92 ^b	575.31 ^b	13.89	0.001			
g/kg W ^{0.75}	9.80 ^a	12.20 ^b	12.54 ^b	0.37	0.001			
Water intake								
ml/d/kid	764.90	859.91	938.05	40.23	0.219			
litre/kg DMI	1.12	0.90	0.95	0.00	0.073			
ml/kg $W^{0.75}$	82.88	84.73	91.01	3.22	0.579			
Apparent digestibility coefficients of nutrients (%)								
DM	55.13	54.05	55.15	0.88	0.853			
OM	58.67	62.69	61.60	1.34	0.468			
CP	56.98	60.13	59.65	1.41	0.635			
EE	69.81	73.45	72.38	1.61	0.659			
TCHO	58.62	62.66	63.22	1.31	0.306			
NDF	52.69	57.40	59.19	1.64	0.257			
ADF	44.69	51.22	49.59	1.99	0.396			
Hemi-cellulose	55.45	57.70	59.63	0.79	0.091			
Cellulose	59.52	61.70	63.68	1.53	0.160			
N-balance study								
N-intake (g)	14.53a	19.89 ^b	20.95^{b}	1.01	0.014			
N-faeces (g)	6.20a	7.72^{b}	8.30 ^b	0.33	0.017			
N-urine (g)	5.09	6.83	7.40	0.61	0.284			
N-balance (g)	3.26^{a}	5.35 ^b	5.24 ^b	0.32	0.006			
N-balance/kg W 0.75	0.35 ^a	0.54 ^b	0.50^{b}	0.00	0.008			

Means with different superscripts (a, b) in the same row are significantly different. BW, body weight.

and T $_3$ (94.42) than T $_1$ (73.78). Total CP intake (P<0.05) and CPI (g)/kg W $^{0.75}$ (P<0.001) increased significantly in T $_2$ and T $_3$ than T $_1$. Total water intake (ml/d/kid), water intake (litre)/kg DM intake and water intake (ml)/kg W $^{0.75}$ were measured

similar among three treatment groups.

DM digestibility was statistically similar among all three groups (Table 2). The values ranged from 54.05% in T_2 to 55.15% in T_3 . The digestibility (%) of OM and total carbohydrates (TCHO) ranged from 58.67 (T_1) to 62.69 (T_2) and 58.62 (T_1) to 63.22 (T_3), respectively. Digestibility of CP was found similar in kids among all three treatments. Similarly, such dietary treatments did not differ in EE digestibility. The digestibility of NDF and ADF were also similar in weaned Barbari kids under all treatments. The NDF digestibility (%) ranged from 52.69 in T_1 to 59.19 in T_3 . The digestibilities of hemi-cellulose and cellulose were also similar among three treatments.

N-intake in Barbari kids was significantly increased (P<0.01) in T_3 and T_2 than T_1 (Table 2). N-intake increased in T_2 and T_3 due to greater DM intake; which was attributed to pelletization of feed as well as supplementation of herbal mixture in the pelleted feed. Nitrogen voided through faeces were also higher (P<0.01) in T_3 and T_2 than T_1 . Whereas, nitrogen excreted through urine was similar among all treatments. N-balance (g) was significantly greater (P<0.01) in T_2 and T_3 than T_1 . Similarly, N-balance (g)/kg $W^{0.75}$ increased significantly (P<0.01) in T_3 and T_2 than T_1 .

Therefore, the increase in intakes of DM and CP in finisher Barbari kids could be attributed to densification of TMR in pelleted form (T_2) and adjunct effect of pelletization and herbal mixture (Amla, Haldi, Arni and Tulsi) (T₃). However, it was observed that T2 and T3 diets tended to enhance the digestibility of OM, CP, EE, TCHO, NDF, ADF, cellulose and hemi-cellulose; although, the variations were non-significant. It may also be inferred that pelleted feed (T2) and herbal mixture added (T3) pelleted feed increased availability of nutrients and N-balance. N-intake and nitrogen excretion through faeces were higher in T₂ and T₃ due to increased intake of nutrients (DM and CP) which may be attributed to greater density of nutrients due to pelleting and increased palatability of diets due to blending of phytogenic feed additives. Similarly, herbs influence the eating pattern, secretion of digestive juices and total feed

intake and play an important role as growth promoters (Woodward et al. 2001). Kids that received garlic or thyme had higher feed consumption and average daily gain (Usur 2019). However, earlier studies revealed that digestibility of DM and OM increased due to addition of different herbal additives. El-Foly et al. (2005) reported that addition of fenugreek seed or vegetable oil in the ration of sheep significantly increased organic matter and nitrogen free extract digestibility. Ishtiyak et al. (2010) also reported an improvement in the in vitro dry matter and organic matter digestibility after addition of Trigonella foenumgraecum in ration. The use of 50 mg/kg of Aloe vera, Azadirachta indica, Moringa oleifera, Jatropha curcas, Tithonia diversifolia and Carica papaya extract to a forage-based diet reduced methane production while improving feed digestibility under in vitro system (Akanmu et al. 2020). Herbal feed additives also enhance digestibility by stimulating endogenous enzyme activity and facilitating nitrogen absorption (Gill 2001). However, herbal components in these studies were different as compared to our study; which could be the reason for such type variation in the results. Presence of active biological properties of the herbal mixture (Amla, Haldi, Arni and Tulsi) supplemented in complete pelleted feed in T₃ of present study could have resulted in greatest values of intake pattern of DM and CP in finisher Indian Barbari kids. However,

Table 3. Rumen fermentation pattern in kids under different treatments

T_1	T_2	T_3	SEM	P value
6.45a	6.89a	6.64 ^b	0.00	0.026
95.90	98.00	91.40	3.02	0.680
36.40	34.30	34.65	1.10	0.728
59.50	63.70	56.75	3.37	0.716
27.00^{b}	21.18a	21.50a	0.84	0.002
7.92^{a}	9.46^{b}	11.25 ^c	0.39	0.000
68.42	67.47	66.95	0.30	0.132
20.29	21.23	22.00	0.32	0.090
11.29	11.29	11.05	0.21	0.877
3.39	3.19	3.06	0.00	0.078
6.38^{a}	6.95 ^c	6.62^{b}	0.00	P<0.001
93.16	97.82	96.23	1.23	0.310
34.67 ^c	33.6 ^{ab}	30.28^{a}	0.75	0.037
58.48	64.22	65.95	1.40	0.070
29.32^{b}	25.69ab	22.96a	0.95	0.016
8.50	9.51	9.98	0.36	0.098
67.62	67.45	66.06	0.30	0.066
20.81	20.73	22.05	0.28	0.098
11.56	11.81	11.89	0.15	0.671
3.26	3.27	3.00	0.00	0.084
	6.45 ^a 95.90 36.40 59.50 27.00 ^b 7.92 ^a 68.42 20.29 11.29 3.39 6.38 ^a 93.16 34.67 ^c 58.48 29.32 ^b 8.50 67.62 20.81 11.56	6.45a 6.89a 95.90 98.00 36.40 34.30 59.50 63.70 27.00b 21.18a 7.92a 9.46b 68.42 67.47 20.29 21.23 11.29 3.39 3.19 6.38a 6.95c 93.16 97.82 34.67c 33.6ab 58.48 64.22 29.32b 25.69ab 8.50 9.51 67.62 67.45 20.81 20.73 11.56 11.81	6.45a 6.89a 6.64b 95.90 98.00 91.40 36.40 34.30 34.65 59.50 63.70 56.75 27.00b 21.18a 21.50a 7.92a 9.46b 11.25c 68.42 67.47 66.95 20.29 21.23 22.00 11.29 11.29 11.05 3.39 3.19 3.06 6.38a 6.95c 6.62b 93.16 97.82 96.23 34.67c 33.6ab 30.28a 58.48 64.22 65.95 29.32b 25.69ab 22.96a 8.50 9.51 9.98 67.62 67.45 66.06 20.81 20.73 22.05 11.56 11.81 11.89	6.45a 6.89a 6.64b 0.00 95.90 98.00 91.40 3.02 36.40 34.30 34.65 1.10 59.50 63.70 56.75 3.37 27.00b 21.18a 21.50a 0.84 7.92a 9.46b 11.25c 0.39 68.42 67.47 66.95 0.30 20.29 21.23 22.00 0.32 11.29 11.29 11.05 0.21 3.39 3.19 3.06 0.00 6.38a 6.95c 6.62b 0.00 93.16 97.82 96.23 1.23 34.67c 33.6ab 30.28a 0.75 58.48 64.22 65.95 1.40 29.32b 25.69ab 22.96a 0.95 8.50 9.51 9.98 0.36 67.62 67.45 66.06 0.30 20.81 20.73 22.05 0.28 11.56 11.81 11.89 0.15

Means with different superscripts (a, b) in the same row are significantly different. Total-N, total nitrogen; NPN, non protein nitrogen; TCA-ppt-N, Tricarboxylic acid precipitable nitrogen; NH₃-N, ammonia nitrogen; TFVA, total volatile fatty acids; A/P ratio, Acetate/Propionate ratio.

pelleting of feed ingredients in the form of complete diet may enhance voluntary intake in goats; since, Singh *et al.* (2010) reported higher DM intake in weaned Jamunapari male kids fed with complete pelleted feed (pulse straw based) than total mixed ration (TMR) (concentrate: roughage=50:50).

Rumen fermentation pattern: The pH in rumen liquor of kids was highest in T₂ estimated at 3rd (P<0.05) and 25th (P<0.001) weeks of feeding; however, the pH values was also higher in T₃ than T₁ during both the periods (Table 3). The concentration of total N was similar among three treatments during both the periods. NPN level (mg/dl of SRL) was also found similar among three treatments at initial phase of growth; whereas, it was reduced (P<0.05) in T₃ at the mid-phase of the experiment when compared with T₁. The concentration of NH₃-N (mg/dl SRL) was depressed significantly in T₃ at 3rd (P<0.01) and 25th weeks (P<0.05) of feeding; T₁ showed highest values during both periods. TCA-ppt-N (mg/dl SRL) was found similar in rumen liquor estimated during different time intervals; however, pelleting of TMR (T₂) and addition of herbal mixture in pelleted diet (T₃) tended to increase TCA-ppt-N concentration in the rumen liquor of finisher Barbari kids at 25th weeks of feeding. Pelleted complete feed (T₂) and pelleted complete feed added with phytogenic feed additives (T₃) resulted in greater (P<0.001) total VFA (mmol/dl SRL) concentration in rumen liquor of kids than TMR fed kids (T₁) after three weeks of experimental feeding. Whereas, TVFA level tended to increase in T₂ and T₃ than T₁ after 25 weeks of feeding, but the difference was non-significant. The proportion of acetate, propionate and butyrate were statistically similar in the kids of all treatments. However, propionate level was marginally improved in T₃ than T₁ and T2. Similarly, acetate/propionate ratio was reduced marginally in T₃ during both times of sampling as compared to other treatments; but the difference was statistically nonsignificant.

Similarly, the results of the present study corroborated the findings of the earlier works who have supplemented different herbal component/s in the diet of small ruminants. Herbs influence the growth of favourable microorganisms in the rumen or stimulate the secretion of various digestive enzymes which in turn may improve the efficient utilization of nutrients (Karásková et al. 2015). Probably, due to this reason higher level of ammonia-N was utilized by rumen microbes for their growth; hence, greater concentration of TVFA and TCA-ppt-N was recorded due to supplementation of herbal additives in T_3 . In the present study pH increased due to supplementation of herbal mixture. Whereas, Ishtiyak et al. (2010) reported no significant change in in vitro fluid pH after addition of different herbal plants with rumen liquor of goats. Feeding garlic powder increased rumen fermentation, and the health status of lambs infected with gastro-intestinal nematodes (Zhong et al. 2019). Methanolic extracts of Azadirachta indica, Carica papaya, Jatropha curcas, Tithonia diversifolia and Moringa oleifera leaves, and Moringa oleifera pods, resulted in reduced CH₄ production and superior OM digestibility under *in vitro* rumen fermentation system (Akanmu and Hassen 2018).

Availability of nutrients and energetic efficiency of diets: The total TDN intake (g) increased significantly (P<0.05) in finisher Barbari kids reared under T_3 and T_2 than T_1 ; similarly, TDN intake (g)/kg W^{0.75} was also significantly greater (P<0.01) in T_3 (58.56) and T_2 (56.52) than T_1 (41.75) (Table 4). DCP intake (g) and DCP intake (g)/ kg W^{0.75} were higher (P<0.05) in T_2 and T_3 than T_1 . Gross Energy (GE) intake (MJ/d/kid) was significantly (P<0.01) higher in T₃ and T₂ than T₁. GE intake (MJ)/kg W^{0.75} was increased (P<0.01) in T₃ and T₂ than T₁. Similarly, Digestible Energy (DE) intake (MJ/d/kid) was significantly greater (P<0.01) in T₃ and T₂ than T₁. Similarly, pelleted feed and pelleted feed blended with herbal additives increased (P<0.01) DE intake (MJ)/kg $W^{0.75}$ in T_3 and T_2 than T_1 . Similarly, we ned kids consumed higher (P<0.01) metabolizable energy (ME) (MJ/d/kid) in T₃ and T₂ than T₁. However, ME intake (MJ)/ $kg\ W^{0.75}$ was found similar among three treatment groups. Intake of digested NDF (g)/kg W^{0.75} was significantly (P<0.01) improved in T_2 and T_3 than T_1 . Similarly, digested ADF intake (g)/kg $W^{0.75}$ were greater (P<0.05) in T_2 and T_3 than T_1 .

TDN and CP percentages were statistically similar among three treatments. Digestible and metabolisable energy values (Mcal/kg feed) of feeds under T_2 and T_3 increased by 1.17 and 0.94; and 0.94 and 0.75 MJ/kg of feed, respectively as compared to T_1 feed. Therefore, pelletization of the complete diet and supplementation of selected herbal additives (Amla, Arni, Haldi and Tulsi) in the complete pelleted feed increased the energetic efficiency of feed and nutrient utilization.

Similarly, the results of the present study corroborated the findings of the earlier experiments done in small ruminants and supplemented with different herbal component/s. Herbs influence the growth of favourable microorganisms in the rumen or stimulate the secretion of various digestive enzymes which in turn may improve the efficient utilization of nutrients (Karásková et al. 2015). Supplementation of herbs mixture @ 2% (Mentha piperita, Urtica dioica, Matricaria chamomilla, Thymus Vulgaris, Salvia officinalis, Foeniculum vulgare, Viola tricolor and Trigonella foenum- graecum) resulted increased feed intake and body weight in calves (Kraszewski et al. 2002). Total Digestible Nutrient (TDN%) and starch equivalent (SE%) was increased significantly in sheep fed grams diet supplemented with fenugreek seeds (El-Foly et al. 2005). Feeding garlic powder increased growth performance, feed digestion, rumen fermentation, and the health status of lambs infected with gastro-intestinal nematodes (Zhong et al. 2019).

Densification of feeds in the form of complete pelleted feed and further supplementation with potential herbal components increased the voluntary intake of DM, digestible energy and protein as well as N-balance and also enhanced rumen fermentation pattern and energetic efficiency of feeds in finisher Barbari kids. Further, intake

Table 4. Availability of different nutrients and nutritive value of feeds under different treatments

Parameter	T_1	T_2	T ₃	SEM	P value
TDN intake					
g/d/kid	389.24a	580.88 ^b	614.21 ^b	37.82	0.024
$g/kg W^{0.75}(g)$	41.75 ^a	56.52 ^b	58.56 ^b	2.52	0.006
DCP intake					
g/d/kid	52.14a	76.10 ^b	79.07^{b}	5.01	0.048
per kg $W^{0.75}$ (g)	5.60 ^a	7.40 ^b	7.52 ^b	0.33	0.022
GE intake					
MJ/d/kid	12.98a	18.22 ^b	19.06 ^b	0.93	0.009
MJ/kg W ^{0.75}	1.40 ^a	1.79 ^b	1.83 b	0.00	0.000
DE intake					
MJ/d/kid	7.48^{a}	11.70 ^b	12.25 ^b	0.74	0.009
MJ/kg W ^{0.75}	0.80^{a}	1.14 ^b	1.17 ^b	0.00	0.001
ME intake					
MJ/d/kid	5.99a	9.36 ^b	9.80^{b}	0.59	0.009
MJ/kg W ^{0.75}	0.95	0.97	0.91	0.00	0.523
Digested NDF intal	ke				
g/d/kid	228.41a	355.95 ^b	388.82 ^b	25.34	0.016
g/kg W ^{0.75}	24.47 ^a	34.54 ^b	37.11 ^b	1.79	0.004
Digested ADF intak	ke				
g/d/kid	131.65a	218.62 ^b	214.26 ^b	16.29	0.041
g/kg W ^{0.75}	14.04 ^a	21.18 ^b	20.35 ^b	1.20	0.021
Nutritive value of fe	eeds				
TDN % in feed	56.47	59.33	59.20	1.35	0.640
DE (Mcal)/kg feed		12.04	11.81	0.25	0.130
ME (Mcal)/kg feed		9.64	9.45	0.20	0.130
DCP % in feed	7.57	7.77	7.60	0.20	0.912

Means with different superscripts (a, b) in the same row are significantly different. TDN, Total digestible nutrients; DCP, Digestible crude protein; GE, Gross energy; DE, Digestible energy; ME, Metabolizable energy; NDF, Neutral detergent fibre; ADF, Acid detergent fibre.

of DM, TDN and CP/DCP in kids under all three treatments were estimated adequate and higher than the recommended requirements of NRC (2007) for goats with ADG of about 50 g. Hence, this type of complete pelleted feeding module may be a practical option for increasing growth in finisher kids under stall-fed condition.

ACKNOWLEDGEMENTS

The authors sincerely acknowledge the Director, ICAR-Central Institute for Research on Goats, Farah, Mathura, India for facilitating this research work.

REFERENCES

Akanmu A M and Hassen A. 2018. The use of certain medicinal plant extracts reduced *in vitro* methane production while improving *in vitro* organic matter digestibility. *Animal Production Science* **58**: 900–08.

Akanmu A M, Hassen A and Adejoro F A. 2020. Gas production, digestibility and efficacy of stored or fresh plant extracts to reduce methane production on different substrates. *Animals*

- **10**: 146–60.
- AOAC. 1995. Official Methods of Analysis, 16th ed. Association of Official Analytical Chemists, Washington, D.C.
- Bostami A B M R, Selim A S M, Hoque S A M, Rabbi A K M Z and Siddiqui M N. 2015. Effects of medicinal herb (*Emblica officinalis*) on growth performance, fecal microbiota and diarrhea prevalence in growing sheep. *International Journal of Current Research* 7: 13720–27.
- Brand T, Hünerberg M, McAllister T A, He M, Saleem A M, Shen Y, Miller B and Yang W. 2019. Impact of a phytogenic feed additive on growth performance, feed intake, and carcass traits of finishing steers. *Translational Animal Science* 3: 1162–72.
- Choubey M, Pattanaik A K, Baliyan S, Dutta N, Jadhav S E and Sharma K. 2016. Dietary supplementation of a novel phytogenic feed additive: Effects on nutrient metabolism, antioxidant status and immune response of goats. *Animal Production Science* **56**: 1612–21.
- Duncan D B. 1955. Multiple range and multiple F tests. *Biometrics* 11: 1–42.
- Das A K, Nanda P K, Madane P, Biswas S, Das A, Zhang W and Lorenzo J M. 2020. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. *Trends Food Science Technology* 99: 323–36.
- El-Foly A H, Abd El-Baki S M, Nowar M E, Shehata S A and Ibrahim M K. 2005. Effect of fenugreek seeds and vegetable oil addition on digestibility and nitrogen and energy utilization of sheep. *Egyptian Zagazig Journal of Agriculutre Research* 10: 1271–89.
- Ervin E S, Marco G A and Emergy E M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatograph. *Journal of Dairy Science* **44**: 1768–73.
- Ghosh S, Mehta R M, Sirohi S K and Roy B. 2010. The effect of dietary garlic supplementation on body weight gain, feed intake, feed conversion efficiency, faecal score, faecal coliform count and feeding cost in crossbred dairy calves. *Tropical Animal Health and Production* 42: 961–68.
- Gill C. 2001. Safe and sustainable feed ingredients. *Feed International* 22: 40–45.
- Goering H K and Van Soest P J, 1970. Forage Fiber Analysis (Apparatus Reagents, Procedures and Some Applications). Agriculture Handbook CN-1 AG84AH 20.
- Ishtiyak A M, Kumar R, Sharma R K and Barman K. 2010. Effect of addition of herbes on *in vitro* digestibility of feed with rumen liquor of goat. *Indian Journal of Veterinary Research* **19**: 13–18.
- John A, Barnett G and Reid R L. 1957. Studies on the production of volatile fatty acids from grass by rumen liquor in an artificial

- rumen: II. The volatile fatty acid production from dried grass. *Journal of Agricultural Science* **49**: 171–79.
- Karásková K, Suchý P and Straková E. 2015. Current use of phytogenic feed additives in animal nutrition: A review. Czech Journal Animal Science 60: 521–30.
- Khan K H. 2009. Roles of Emblica officinalis in Medicine A Review. *Botany Research International* 2: 218–28.
- Kraszewski J, Wawrzynczak S and Wawrzynski M. 2002. Effect of herb feeding on cow performance, milk nutritive value and technological suitability of milk for processing. *Annals of Animal Science* 2: 147–58.
- National Research Council. 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press, Washington, DC. (http://doi.org/10.17226/11654).
- Oderinwale O A, Oluwatosin B O, Onagbesan M O, Akinsoyinu A O and Amosu S D. 2019. Performance of kids produced by three breeds of goat fed diets supplemented with graded levels of turmeric powder. *Tropical Animal Health Production* **52**(10): 1239–48.
- Prakash B, Dutta T K, Siddiqui I A. 2006. Effect of plane of nutrition on nutrient utilization and performance of Barbari kids. *Indian Journal of Animal Nutrition* 23: 29–33.
- Singh M K, Dutta T K, Sharma R B, Das A K, Singh N P. 2010. Evaluation of growth, feed conservation efficiency and carcass traits of Jamunapari goats under intensive feeding system. *Indian Journal of Animal Sciences* 80: 382–84.
- Snedecor G W and Cochran W G. 1994. Statistical Methods, 8th edn. Iowa, Iowa State University Press.
- Usur J O. 2019. Effects of thyme and garlic on growth and biochemical traits in goats. *Livestock Research for Rural Development* 31: *Article #38*, retrieved June 24, 2020, from http://www.lrrd.org/lrrd31/3/jalal31038.html
- Woodward S L, Waghorn G C J, Ulyatt M J and Lassey K R. 2001. Early indication that feeding lotus will reduce methane emission from ruminants. 61st Conference Proceedings of New Zealand Society of Animal Production Lincolin University, New Zealand 61: 23–26.
- Yusuf A L, Goh Y M, Samsudin A A, Alimon A R and Sazili A Q. 2014. Growth performance, carcass characteristics and meat yield of boer goats fed diets containing leaves or whole parts of Andrographis paniculata. Asian-Australasian Journal of Animal Science 27: 503–10.
- Zhong R, Xiang H, Cheng L, Zhao C, Wang F, Zhao X and Fang Y. 2019. Effects of feeding garlic powder on growth performance, rumen fermentation, and the health status of lambs infected by gastrointestinal nematodes. *Animals* 9: 102– 12.