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Estimation of heritability of Karan Fries cattle using Bayesian procedure
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Recent progress in the field of quantitative genetics for
both animals and plants has done an immense contribution
to increasing the production and productivity of animals
and plants. Quantitative genetics is a model-based study
that deals with the genetics of complex traits or characters
in which genes, as well as non-genetic factors, influence
the trait of interest. The origin of quantitative genetics
started with the development of the basic statistical tools
which measure the targeted traits which are influenced by
both genotypes and by the environment. It finds a way to
improve animal populations by inferring the breeding value
from the phenotypic value to maximize the probability of
selecting better parents.

As stated by Dairy and Milk Processing Market in
India (2018-2023), as of 2018, India leads in the milk
production in the world, accounting for ~19% of the global
market share. According to Basic Animal Husbandry
Statistics, DAHD&F, Gol, the Milk production and per
capita availability of milk in India for the year 2018-
19 has increased to 187.70 Million tonnes and 394 gms/
day. The report published in ‘Food Outlook, 2018’ by the
United Nations Food and Agriculture Organization, milk
production for the world scenario has increased from 800.2
MMT in 2016 to 811.9 MMT in 2017 with a growth rate
of 1.46%.

Statistical methods using a linear mixed model (LMM)
are diverse and applied in various fields (Brown and Prescott
1999, Demidenko 2004). Estimation of heritability and
breeding values (BV) therefore received much attention in
the quantitative genetic literature (Sorensen and Gianola
2007). Among the class of linear mixed model (LMM)), the
animal model becomes one of the popular methods which
has been used for many decades in the field of animal
breeding (Henderson 1975, Wang ef al. 1993). It combines
phenotypic records of an individual with pedigree and/
or genetic marker information to draw inferences about
the parameters of interest. Animal model uses pedigree /
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genetic marker information as a form of an additive genetic
matrix (Ahlinder et al. 2013). Recently, estimation of
genetic parameters using the Bayesian model gained much
more reputation (Sorensen and Gianola 2007, Hadfield
2010) and Gianola et al. (1990) pointed out the framework
of Bayesian methodology for the estimation of breeding
values when variances are not known.

Let ¢ be the unknown variance components of a mixed
model, the marginal posterior density i.e. f(c/y) is given
by- f(o/y) = Ibf(,cs/y) ; where the joint posterior density and
f(,0/y) o f(y/,6)*f(,06); where f(y/,0) and f(,c) corresponds
to the likelihood and the joint prior density of and o
respectively. In Bayesian Structure, the specification of
prior distributions is not straightforward. Gianola and
Fernando (1986) also stated that the prior distribution
depends on many factors such as information contained in
past data, theoretical considerations, and personal beliefs
which affect Posterior inference. Bayesian inference also
required a complex computation procedure via Markov
chain Monte Carlo (MCMC) (Gilks et al. 1995). The two
commonly used MCMC methods are the Gibbs sampler
and the Metropolis-Hastings (M—H) algorithm. Wang et al.
(1993) applied MCMC methods in the standard additive
polygenic model. Breslow and Clayton (1993) helped to
popularize GLMMs and emphasized likelihood-based
inference via penalized quasi-likelihood (PQL). Ahlinder
etal. (2013) proposed an analytic Bayesian implementation
of the mixed linear model for estimation of heritability in
animal models without convergence problems. The breeding
values and residual variance component are analytically
integrated out from the model and utilized Gibbs sampling
distribution. Meyer Karin (2007) developed Wombat,
a software package for quantitative genetic analyses of
continuous traits using linear mixed model. The developed
package accommodate a variety of models for numerous
traits, multiple fixed and random effects, selected genetic
covariance structures, random regression models etc.
Holand et al. (2013) studied mixed model approach using
integrated nested Laplace approximations (INLA) in
Bayesian paradigm using pedigree structure. Singh et al.
(2016) applied single trait linear mixed random regression
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model for analyzing the first lactation monthly test-day
milk yield records in Karan Fries cattle. Singh et al. (2020)
estimated genetic parameters of first lactation 305-day milk
yield and energy traits in karan fries cattle.

In this paper, we have used Bayesian Linear mixed
model for estimation of heritability using pedigree data.
Linear mixed models provide a flexible framework for
modeling a wide range of pedigree data but in some
practical situations, response variables do not follow
normality assumptions. Hence for non-Gaussian response
variables, a generalized linear mixed model solves the
complex architecture. Generalized Linear Mixed Models
using MCMC (Hadfield 2009) is applied and MCMC
algorithm is used to approximate the posterior distribution
of the parameter of interest. Diagnostic test of the MCMC
was done graphically as well as by the Heidelberg
stationarity test. Estimation of Variance estimates of the
random effects (V,) and residual variance estimation (V)
and Variance estimates location effects i.e. fixed effects
were done by using the Bayesian procedure. Finally, the
posterior estimate of heritability (h?) for first lactation 305
days or less milk yield (FL305DMY) was estimated along
with its Highest Posterior Density (HPD) intervals.

A general form of the linear mixed model is represented
as follows:

y=XpBt+tZu+e(l)

Where, y, vector of response variables of size nx1; £,
vector of fixed effects with size p x 1; u, vector of random
genetic effects with size n x 1. Here both X and Z are
known incidence matrices relating phenotypic records to
respective parameters included in (1), and e is a vector of
errors that follow a multivariate normal distribution with
zero mean vector, and covariance structure IGZE, where I is
the identity matrix of order n.

Let the responses vector be Y=[Y, ..., Y ]" with
corresponding means u=[ul, ..., un]". For generalized
linear models, the marginal mean p of the response Y is
related to a linear predictor through a link function g(u).
The observation vector Y is not necessarily Normal (e.g.,
Gamma, Inverse Gaussian, etc.) E(Y|U)= p and g(p)=
XPB+ZU, here g is assumed as link function.

Suppose represents the probability distribution of i
observation with latent variable /. The linear model for the
latent variable with known design matrices X and Z with
parameter vectors and is given by:

1=XPB+Zu+E

Here it is assumed that the location effects ( f and «) and
the residuals (e) follow a multivariate normal distribution-
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Here S, denotes the prior means of fixed effect and B,
G and R denote the expected (co)variances of the fixed
effect, random effects, and residuals respectively. Here it
is also seen that fixed effects, random effects, and residuals
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are independent. Generally, they are unknown and must
be estimated from the data, usually by assuming they are
structured in a way that they can be parameterized by a few
parameters.

Here, we have applied the Bayesian Animal model using
the following information of Bayesian structure-

Prior distribution: Prior distributions for the fixed effects
are assumed to follow Normal distribution. The random
effects are assumed to be Inverse-Gamma distribution with
parameters =1, =0.002, and finally, the prior distribution
for the residual variance is also assumed to follow Inverse-
Gamma distribution with the same parameters. Inverse
Gamma is parameterized differently using o and 3, where
a=% and B =% Hence, the actual value becomes an inverse-
Gamma (0.001; 0.001).

The Bayesian paradigm requires other important
parameters also, i.e. a total number of iterations=100000,
burn-in period i.e. the number of iterations to drop at the
beginning (convergence)=10000, and thin, i.e. the number
of iterations stored in memory=10 are applied. Here, Lag
10 states the values of autocorrelation for every 10 iteration
values. Since our thinning parameter was 10, this refers
actually to the correlation of every sampled value with
the following one. Theoretically, it should be good to re-
run a longer MCMC to increase the effective sample size.
The effective sample size of the mean (Intercept) is larger
than the effective sample size for variance components, for
which the autocorrelation is greater.

The records of first lactation data of production
(305-day or less milk yield and daily milk yield) and
reproduction traits (AFC, FSP) on 1481 Karan-Fries cows
were collected over 26 years from 1984 to 2009 at Dairy
Cattle Breeding Division (DCB), National Dairy Research
Institute (NDRI), Karnal. FL305MY, i.e. First lactation 305
days or less milk yield was collected and analyzed for the
above-discussed procedure.

Results and diagnostic of the MCMC output: Here
MCMC algorithm was used to solve Bayesian linear
mixed model. MCMC algorithm (Markov Chain Monte
Carlo) used in Bayesian model helps to approximate the
posterior distribution of the parameters of interest. Here,
the diagnostic of MCMC by graphically and Heidelberg
stationarity test is shown below.

Diagnostic of the MCMC: The pattern of behaviour of
the MCMC algorithm i.e. trace and the convergence and
autocorrelation of our ‘chain’ of samples are graphically
represented in Fig. 1 and 2. The posterior density function
for each component (Intercept, animal, and units or
residual) is graphically represented from the right side of
Fig.1 and 2.

Results suggest the effective sample size of the mean
(Intercept), variance components for animal and units
were 8115481, 920.306, and 1169.66 respectively.
The diagnostic tests of convergence were done by the
Heidelberg stationarity test. Table 1 shows that for both the
cases i.e. Animal and Residual, the condition of stationarity
is satisfied.
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Fig. 1. Trace of the mean (or intercept).
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Fig. 2. Trace of the variances. (Animal, V, ; units,V ).
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Fig. 3. Trace (left) and posterior density (right) of the heritability.
Table 1. Diagnostic tests of convergence
(Heidelberg stationarity test)
Stationarity Start iteration p-value
Animal Passed 1 0.773
Residual Passed 1 0.902

For model selection, DIC (Deviance Information
Criterion) associated with the model is calculated, which
is 13552.65. Variance component estimates of the random
effects (V,), residual variance estimation (V,), and location
effects i.e. fixed effects (the populations mean is called as
Intercept) are given in Table 2.
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Table 2. Variance estimates

Random effects (V) and Residual variance estimation (V)

Posterior Lower 95% Upper 95%  Effective

mean CI CI sample size
Animal 146819 78027 224891 920.3
Residual 277574 217266 339986 1170

Location effects i.e. fixed effects

Posterior L-95% U-95% Effective pMCMC
mean CI CI sample size

Intercept 3217 3144 3292 8115 <le-04

ks
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The value of pMCMC is the posterior probability
associated with the event which is not a p-value but
provides the same kind of information. Here, the pMCMC
is very weak indicating that the population mean is very
different from zero. Here the posterior estimate of the
heritability was calculated along with its lower HPD
interval and Upper HPD interval, which is presented in
Table 3. The heritability of the trait is about 0.34 with 95%
of probability to lie between 0.19 and 0.50. The plot of the
trace and the density function is given in Fig. 3.

Table 3. Heritability estimates along with HPD interval

Mean Lower HPD Upper HPD
interval interval
Heritability 0.34 0.19 0.50
SUMMARY

In this study, Bayesian model was applied for analyzing
the first lactation in Karan Fries cattle. First lactation data
of production (305-day or less milk yield and daily milk
yield) were collected from the history-cum pedigree sheet
and daily milk yield registers of the division of Dairy
Cattle Breeding (DCB), National Dairy Research Institute,
Karnal. In the Bayesian paradigm, MCMC method was
applied to solve complex mathematical problems to
estimate a large number of unknown parameters. Assuming
linear mixed model and using the different prior set up,
diagnostic of MCMC (Markov Chain Monte Carlo) was
carried out graphically as well as by Heidelberg stationarity
test. Variance estimates of the random effects (VA) and
residual variance estimation (VR) and Variance estimate
location effects, i.e. fixed effects were calculated along
with effective sample size. Finally, heritability (h?) estimate
for First lactation 305 days or less milk yield (FL305DMY)
was estimated along with its credible interval.
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