Prevalence of trichostrongylids in small ruminants of Kashmir valley

I M ALLAIE $^{1 \boxtimes}$, R A SHAHARDAR 1 , S R TRAMBOO 1 , A PRASAD 2 , AQUIL MOHMAD 2 , Z A WANI 1 and K H BULBUL 1

Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Kashmir, Jammu and Kashmir 190 025 India

Received: 6 September 2020; Accepted: 21 August 2021

ABSTRACT

The present study was undertaken to work out the population structure of trichostrongylids affecting the small ruminants of Kashmir valley. The faecal samples were collected from each zone and sector of the valley and were examined by qualitative as well as quantitative techniques for presence of trichostrongyle eggs, followed by coproculture using petridish method for harvesting of infective larvae. The overall prevalence revealed Haemonchus spp. to be the most predominant trichostrongyle worm followed by Trichostrongylus spp., Oesophagostomum spp., Teladorsagia spp., Chabertia spp. and other larvae, the difference being statistically significant. In south Kashmir, a different trend was observed for trichostrongyle worms with predominance of *Trichostrongylus* spp., followed by Haemonchus spp., Oesophagostomum spp. and other larvae, the difference being statistically significant (P<0.05). Teladorsagia spp. and Chabertia spp. were not recorded in the south Kashmir, while as Oesophagostomum spp. and Chabertia spp. were not recorded in the north Kashmir. In small ruminants of Kashmir valley, predominance of Haemonchus spp. was observed in private sector farms than government sector farms, whereas predominance of Trichostrongylus spp. was observed in government sector farms than private sector farms, and both the difference were statistically significant. Non-significantly Teladorsagia spp. was found more in government sector farms than private sector farms. In government sector farms *Oesophagostomum* spp. and *Chabertia* spp. were recorded, while as in private sector farms Oesophagostomum spp. and Chabertia spp. were not recorded. It is concluded that trichostrongylid worms are prevalent throughout Kashmir valley in the small ruminants and appropriate control strategies need to be adopted for their control.

Keywords: Kashmir valley, Prevalence, Small ruminants, Trichostrongyle worms

Small ruminants suffer from various diseases among which helminth parasitism is globally considered the most important transmissible disease in sheep and goats (Sanyal 1996). In India, helminth diseases alone are responsible for 5% mortality and more than 10% morbidity in sheep (Chakraborty and Lodhi 1994). Among helminth parasitism, gastrointestinal nematodosis, is a major parasitic disease and is widely spreading in the world (Men et al. 2016). This is the main problem which affects sheep and goat production and causes huge economic losses in a wide range of agro-climatic zones (Waller 1997). The typical agroclimatic conditions of Kashmir valley provide a conducive environment to the growth of gastrointestinal nematodes (GIN), thereby posing the greatest challenge to the economic rearing of small ruminants. In order to control GIN infections in animals to substantially increase their body weight and productivity, the prevalence of these

Present address: ¹Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Kashmir, Jammu and Kashmir. ²Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh. ⊠Corresponding author email: idreesmehraj @skuastkashmir.ac.in

worms needs to be mapped out accurately, as they vary from region to region depending upon the local climatic conditions and managemental practices adopted (Fitzpatrick 2013), for development of various control measures. In Kashmir valley, the incidence of GIN infection in sheep and goats has been reported by various workers (Wani *et al.* 2011, Tramboo *et al.* 2015, Bihaqi *et al.* 2017) from few farms or places and not much emphasis has been laid on trichostrongylids, which account for major infections related to GIN. Therefore, the present study was undertaken to work out the population structure of trichostrongylids affecting the small ruminants of Kashmir valley on a large-scale considering government as well as private sector farms in every zone of valley to evolve a package of practices for control of these parasites to prevent economic losses.

MATERIALS AND METHODS

The study was conducted on sheep and goats reared at various government and private breeding farms from different regions of Kashmir valley over a period of two years (2016 to 2018). The study area comprised of three zones, viz. central, south and north Kashmir and a total of six farms from central and five each from south and north

Table 1. Farms and number of samples with EPG ≥150

Zone	Farm and location		Small	ruminant and breed Sa	Samples (EPG ≥150)	
Central	Mountain Research Centre for Sheep and Goats, SKUAST-K	Shuhama (Alusteng) District: Srinagar	Sheep	Corriedale, Hampshire, Poledorset, Bakerwal, Southdown, PC cross and Kashmir Merino	38	
	Government Sheep Breeding Farm (SBF)	Dachigam District: Srinagar	Sheep	Kashmir Merino	81	
	Government SBF	Kralpathri District: Budgam	Sheep	Kashmir Merino	26	
	Government SBF	Goabal District: Ganderbal	Sheep	Australian Merino cross, crosses of Swarna Merino a Dorper crosses	68 and	
	Private SBF	Zakura District: Srinagar	Sheep	Kashmir Merino cross	40	
	Private SBF	Chunchur (Noorbagh) District: Srinagar	Sheep	Kashmir Merino cross	40	
South	Government SBF	Daksum District: Anantnag	Sheep	Kashmir Merino	102	
	Government SBF	Kewa District: Kulgam	Sheep	Kashmir Merino	10	
	Government SBF	Zawoora District: Shopian	Sheep	Corriedale and Kashmir Me	rino 08	
	Private SBF	Devalgam (Kokernag) District: Anantnag	Sheep	Kashmir Merino cross	20	
	Private SBF	Kadlabal (Pampore) District: Pulwama	Sheep	Kashmir Merino cross	52	
North	Government goat farm	Arin District: Bandipora	Goat	Alpine, Bakerwali, Boer, Be and Kajani	etal 76	
	Government SBF	Poshnar District: Kupwara	Sheep	Kashmir Merino	18	
	Private SBF	Takiyaahmad Shah District: Bandipora	Sheep	Kashmir Merino cross	23	
	Private goat farm	Shockbaba (Sumlar) District: Bandipora	Goat	Bakerwali	52	
	Private SBF	Sulinda (Tangmarg) District: Baramulla	Sheep	Kashmir Merino cross	52	

Total Zones, 3; Total farms, 16 (09 Government, 7 private); Total districts, 10; Total sheep farms, 14; Total goat farms, 2; Total samples (EPG above or equal to 150), 706.

Kashmir were screened for trichostrongylid nematodes (Table 1). Central Kashmir comprises of three districts, viz. Ganderbal, Srinagar and Budgam; South Kashmir comprises of four districts, viz. Anantnag, Kulgam, Shopian and Pulwama and North Kashmir comprises of three districts, viz. Baramulla, Kupwara and Bandipora. A total

of 1,477 copro samples from small ruminants comprising of 686, 412 and 379 from each zone, respectively, were screened. Kashmir valley lies between 33°–20′ and 34°–54′ North latitude and 73°–55′ and 75°–35′ East longitude covering an area of 15,948 km². The temperature ranges from an average daily maximum of 31°C and minimum of

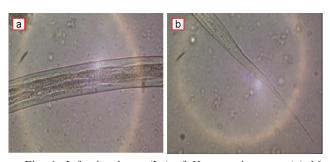


Fig. 1. Infective larva (L_3) of *Haemonchus* spp. (a) 16 rectangular intestinal cells; (b) Kink in the sheath.

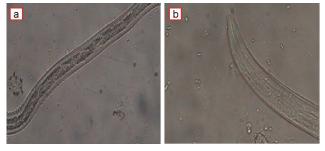


Fig. 2. Infective larva (L_3) of *Teladorsagia* spp. (a) 16 triangular intestinal cells; (b) Square shaped head.

Table 2. Overall and zone-wise prevalence of different genera of trichostrongyle worms in small ruminants of Kashmir valley

Zone	No. of larvae	Haemonchus	Trichostrongylus	Teladorsagia	Oesophagostomum	Chabertia	Others
Central South North Total	600 300 400 1300	301 (50.17) ^{Db} 104 (34.67) ^{Ca} 290 (72.50) ^{Dc} 695 (53.46) ^E	242 (40.33) ^{Cb} 160 (53.33) ^{Dc} 85 (21.25) ^{Ca} 487 (37.46) ^D	17 (2.83) ^{Ba} 0 (0.00) 7 (1.75) ^{Aa} 24 (1.85) ^B	7 (1.17) ^{Aa} 24 (8.00) ^{Bb} 0 (0.00) 31 (2.38) ^B	4 (0.67) ^A 0 (0.00) 0 (0.00) 4 (0.31) ^A	29 (4.83) ^{Ba} 12 (4.00) ^{Aa} 18 (4.50) ^{Ba} 59 (4.54) ^C

Note: Figures within parenthesis indicate percentage. The values with different upper case superscript across columns in same row differ significantly ($P \le 0.05$). The values with different small case superscript across the rows in same column differ significantly ($P \le 0.05$).

Table 3. Overall and Sector-wise prevalence of different genera of trichostrongyle worms in small ruminants of Kashmir valley

Sector	No. of larvae	Haemonchus	Trichostrongylus	Teladorsagia	Oesophagostomum	Chabertia	Others
Govt. Se Private s Total		248 (41.33) ^{Da} 447 (63.86) ^{Db} 695 (53.46) ^E	271 (45.17) ^{Db} 216 (30.86) ^{Ca} 487 (37.46) ^D	13 (2.17) ^{Ba} 11 (1.57) ^{Aa} 24 (1.85) ^B	31 (5.17) ^C 0 (0.00) 31 (2.38) ^B	4 (0.67) ^A 0 (0.00) 4 (0.31) ^A	33 (5.50) ^{Ca} 26 (3.71) ^{Ba} 59 (4.54) ^C

Note: Figures within parenthesis indicate percentage. The values with different upper case superscript across columns in same row differ significantly ($P \le 0.05$). The values with different small case superscript across the rows in same column differ significantly ($P \le 0.5$).

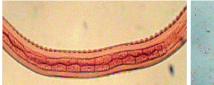


Fig. 3. Infective larva (L_3) of *Chabertia* spp. (a) 24–32 rectangular intestinal cells; (b) Long filiform tail.

15°C in June–July to an average daily maximum of 4°C and minimum of –4°C in January. The maximum daily humidity ranges from 80 to 90% throughout the year and drops to about 70% at night during the winter and 40% during the summer. Most of the precipitation occurs in the form of snow during winter.

Copro samples collected randomly from the rectum of small ruminants were brought to the laboratory in mini polythene bags. These were first examined by standard floatation technique (Soulsby 1982) and samples positive for trichostrongyle eggs were then examined by quantitative technique (Modified Mc Master's technique) to determine the parasitic load, i.e. EPG (eggs per gram) of faeces (Soulsby 1982). At each farm the samples having EPG≥150 were pooled together (Table 1) and subjected to coproculture using petridish method (Sahai 1960) and the third stage larvae were harvested to find out prevalence of different genera of trichostrongylid worms using key morphological features described by Van-Wyk *et al.* (2004).

The results were subjected to standard statistical analysis as per Snedecor and Cochran (1994). The data on the prevalence of different genera of trichostrongyle worms between different groups was analyzed using 'z' test of proportions to test the significance using test equation as: $(p_1-p_2)-0/p(1-p)(1/n_1+1/n_2)$. ' p_1 ' is proportion from the first population and ' p_2 ' is the proportion from the second population.

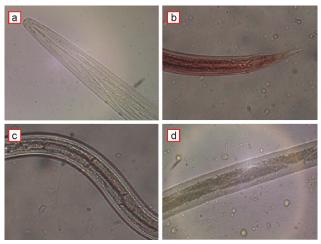


Fig. 4. Infective larvae (L_3) of *Trichostrongylus* spp. (a) Head shape is tapered; (b) No filament formation and short tail sheath; (c) Intestinal cells rectangular in *T. axei*; (d) Triangular intestinal cells in *T. columbriformis*.

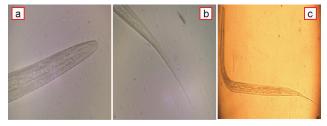


Fig. 5. Infective larva (L_3) of *Oesophagostomum* spp. (a) Head shape broad and rounded; (b) Filament is long and larva is filiform; (c) Triangular intestinal cells.

RESULTS AND DISCUSSION

The present study revealed *Haemonchus* spp. to be the most predominant trichostrongyle worm followed by *Trichostrongylus* spp., *Oesophagostomum* spp., *Teladorsagia* spp., *Chabertia* spp. and other larvae, the

difference being statistically significant (P<0.05) except between *Teladorsagia* spp. and *Oesophagostomum* spp. (Table 2 and 3; Fig. 1 to 5). Our results agree with the results of Bihaqi *et al.* (2017) who reported *Haemonchus* spp. (71.05%) as the predominant strongyle worm followed by *Trichostrongylus* spp. (12.86%), *Chabertia* spp. (8.47%) and *Ostertagia* spp. (7.62%) in caprine population of Kashmir valley. This predominance of *Haemonchus* spp. over the other strongyle worms has also been reported by Tariq *et al.* (2008 and 2010) in sheep and goats of Kashmir valley, respectively. This is because the females of *Haemonchus* spp. are prolific egg layers (Urquhart 1996) and infective stages of *Haemonchus* spp. survive for prolonged periods on pastures (Soulsby 1982).

In central Kashmir Haemonchus spp. was found to be the most predominant trichostrongyle worm followed by Trichostrongylus spp., Teladorsagia spp., Oesophagostomum spp., Chabertia spp. and other larvae, the difference being statistically significant (P<0.05) except between Oesophagostomum spp. and Chabertia spp. (Table 2). The results are in line with Wani et al. (2011) and Tramboo et al. (2015) with respect to predominance of Haemonchus spp. in the ovine populations of Ganderbal and Budgam districts of central Kashmir, respectively. Wani et al. (2011) reported highest prevalence for Haemonchus spp. (41.50) followed by Ostertagia spp. (28.00%), Trichostrongylus spp. (24.83%), Chabertia spp. (20.83%), Bunostomum spp. (14.66%), Nematodirus spp. (13.16%), Oesopahagostomum spp. (11.83%), Trichuris spp. (7.00%), Gaigeria spp. (3.33%) and Marshallagia spp. (3.00%) on gut studies. Tramboo et al. (2015) reported Haemonchus spp. (55.00%) as most prevalent strongyle worm followed by Trichostrongylus spp. (17.50%), Ostertagia spp. (11.67%), Oesophagostomum spp. (9.17%) and Chabertia spp. (6.67%) based on coproculture examination. Bushra et al. (2013), based on coprological examination, also reported Haemonchus spp. (33.78%) as the most predominant strongyle worm followed by Ostertagia spp. (21.62%), Trichostrongylus spp. (14.86%), Chabertia spp. (10.81%), Bunostomum spp. (8.10%), Oesopahagostomum spp. (6.75%), and *Cooperia* spp. (4.05%) in cattle of central Kashmir. In south Kashmir a different trend was observed for trichostrongyle worms with predominance of Trichostrongylus spp. followed by Haemonchus spp., Oesophagostomum spp. and other larvae, the difference being statistically significant (P<0.05). Teladorsagia spp. and Chabertia spp. were not recorded in the south Kashmir (Table 2). Maqbool et al. (2018) on coprological examination reported *Oesophagostomum* spp. (46%) as the most predominant strongyle worm followed by Trichostrongylus spp. (30%), Haemonchus spp. (13%) and Chabertia spp. (11%) in the cattle of Pulwama district of south Kashmir. Saifulislam and Taimur (2008) has also reported predominance of Trichostrongylus spp. over other strongyle worms in goats of Bangladesh. In north Kashmir Haemonchus spp. was found to be the most predominant trichostrongyle worm followed by Trichostrongylus spp.,

Teladorsagia spp. and other larvae, the difference being statistically significant (P<0.05). *Oesophagostomum* spp. and *Chabertia* spp. were not recorded in the north Kashmir (Table 2). Aiman *et al.* (2017), on coprological examination, also reported *Haemonchus* spp. (65%) as the most predominant strongyle worm followed by *Bunostomum* spp. (20%) and *Trichostrongylus* spp. (15%) in cattle of north Kashmir.

Predominance of *Haemonchus* spp. was observed in north Kashmir followed by central Kashmir and least in south Kashmir, the difference being statistically significant (P<0.05), whereas predominance of *Trichostrongylus* spp. and *Oesophagostomum* spp. was observed in south Kashmir followed by central Kashmir and least in north Kashmir, the difference being statistically significant (P<0.05). Non-significantly *Teladorsagia* spp. was found more in central Kashmir than north Kashmir (Table 2). The difference in the prevalence rates could be due to difference in geographical niches and the prevailing climatic conditions that vary from region to region.

In government sector farms of Kashmir valley Trichostrongylus spp. was found to be the most predominant trichostrongyle worm followed by Haemonchus spp., *Oesophagostomum* spp., *Teladorsagia* spp., *Chabertia* spp. and other larvae, the difference being statistically significant (P<0.05) except between Trichostrongylus spp. and Haemonchus spp. (Table 3). At the University goat farm of Nanaji Deshmukh Veterinary Sciences University, Jabalpur (Madhya Pradesh), Dixit et al. (2017) reported high prevalence of H. contortus (81%), followed by Strongyloides spp. (8%), Oesophagostomum spp. (6%), Trichostrongylus spp. (4%) and other larvae (1%). Our observations are not in line with the findings of Dixit et al. (2017) and the possible reason could be variation in type of climate in two regions, i.e. temperate type of climate in valley and a subtropical type of climate in Jabalpur. In private sector farms of Kashmir valley, a different trend was observed for trichostrongyle worms with predominance of Haemonchus spp., followed by Trichostrongylus spp., Teladorsagia spp. and other larvae, the difference being statistically significant (P<0.05). *Oesophagostomum* spp. and Chabertia spp. were not recorded in private sector of Kashmir valley (Table 3). Domke et al. (2013) and Kuchai et al. (2013) also recorded Haemonchus to be one of the most prevalent strongyle worm in sheep from Norway and Ladakh, respectively. Singh et al. (2013) also reported Haemonchus as the main GI parasite in sheep and goats in and around Mathura, India.

The study reported predominance of *Haemonchus* spp. in private sector farms than government sector farms, the difference being statistically significant (P<0.05), whereas predominance of *Trichostrongylus* spp. was observed in government sector farms than private sector farms, the difference being statistically significant (P<0.05). *Teladorsagia* spp. was found more in government sector farms than private sector farms, the difference being statistically non-significant (Table 3). The difference in the

prevalence rates could be due to the differences in the rearing and managemental practices adopted at the different sector farms.

Based on this study, it is concluded that *Haemonchus* spp., *Trichostrongylus* spp., *Oesophagostomum* spp., *Teladorsagia* spp., *Chabertia* spp. and other trichostrongylid larvae are prevalent in the small ruminant population of Kashmir valley and appropriate control strategies need to be adopted for their control to prevent economic losses.

REFERENCES

- Aiman A, Shahardar R A, Wani Z A and Allaie I M. 2017. Prevalence of gastro-intestinal helminths in cattle at north Kashmir. *Indian Journal of Animal Sciences* 87: 147–52.
- Bihaqi S J, Allaie I M, Banday M A A, Wani Z A and Shahardar R A. 2017. Prevalence of caprine GI helminths in temperate areas of Jammu and Kashmir. *Journal of Parasitic Diseases* **41**: 843–49.
- Bushra M, Shahardar R A and Maria A. 2013. Prevalence of gastrointestinal helminth parasites of cattle in central zone of Kashmir valley. *Journal of Veterinary Parasitology* 27: 33– 36
- Chakraborty D and Lodhi C. 1994. Studies on blood and biochemical profiles in naturally infected goats. *Indian Veterinary Journal* 3: 286–88.
- Dixit A K, Das G, Dixit P, Singh A P, Kumbhakar N K, Sankar M and Sharma R L. 2017. An assessment of benzimidazole resistance against caprine nematodes in Central India. *Tropical Animal Health and Production*. DOI 10.1007/s11250-017-1349-x.
- Domke A V M, Chartier C, Gjerde B, Leine N, Vatn S and Stuen S. 2013. Prevalence of gastrointestinal helminths, lungworms and liver fluke in sheep and goats in Norway. *Veterinary Parasitology* **194**: 40–48.
- Fitzpatrick J L. 2013. Global food security: Impact of veterinary parasites and parasitologists. *Veterinary Parasitology* **195**: 233–48.
- Kuchai J A, Chishti M Z, Ahmad F, Mir M R and Darv J A. 2013. Impact of health status and species of the host on prevalence of helminthiasis in sheep and goats of Ladakh. *International Journal of Agronomy and Plant Production* **4**: 869–72.
- Maqbool I, Shahardar R A, Wani Z A, Allaie I M and Shah M M. 2018. Prevalence of gastro-intestinal helminths of cattle in south Kashmir. *Indian Journal of Animal Sciences* 88: 910– 14.

- Men Q, Han H, Zhao Q, Xia W, Dong H and Zhu S. 2016. The prevalence of helminth parasites in *Pelophylax nigromaculatus* (Annura: Ranidae) from Shanghai, China. *Acta Parasitologica* 61: 802–07
- Sahai B N. 1960. 'Studies on host specificity of Haemonchus spp. in sheep and buffaloes'. M.V.Sc. Thesis, Indian Veterinary Research Institute, Izatnagar.
- Saiful-Islam K B M and Taimur M J F A. 2008. Helminthic and Protozoan internal parasitic infections in free ranging small ruminants of Bangladesh. Slo. *Veterinary Research* **45**: 65–72.
- Sanyal P K. 1996. Gastrointestinal parasites and small ruminant production in India. Sustainable parasite control in small ruminants. (Eds) L F Le Jambre and M R Knox. *ACIAR Proceedings Series* **74**: 109–12.
- Singh V, Varshney P, Dash S K and Lal H P. 2013. Prevalence of gastrointestinal parasites in sheep and goats in and around Mathura, India. *Veterinary World* 6: 260–62.
- Snedecor G W and Cochran W G. 1994. *Statistical Methods*. 8th Edition. Iowa state University Press. Iowa, USA.
- Soulsby E J L. 1982. Helminths, Arthropods and Protozoa of Domesticated Animals. 7th Edition. ELBS and Baillere Tindal, London.
- Tariq K A, Chishti M Z and Ahmad F. 2010. Gastro-intestinal nematode infection of goats relative to season, host sex and age from the Kashmir valley, India. *Journal of Helminthology* 84: 93–97.
- Tariq K A, Chisti M Z, Ahmad F and Shawl A S. 2008. Epidemiology of gastrointestinal nematodes of sheep managed under traditional husbandry system in Kashmir Valley. Veterinary Parasitology 158: 138–43.
- Tramboo S R, Shahardar R A, Allaie I M, Wani Z A and Bushra M S. 2015. Prevalence Of gastrointestinal helminth infections in ovine population of Kashmir Valley. *Veterinary World* 5: 667–71.
- Urquhart G M, Armour J, Duncan J L, Dunn A M, Jenings F W. 1996. Veterinary Parasitology. 2nd edition. Blackwell Science, London.
- Van-Wyk J A, Cabaret J and Michael L M. 2004. Morphological identification of nematode larva of small ruminants and cattle simplified. *Veterinary Parasitology* 119: 277–306.
- Waller P J. 1997. Anthelmintic resistance. *Veterinary Parasitology* 72: 391–412.
- Wani Z A, Shahardar R A and Shahnawaz M. 2011. Prevalence of nemathelminth parasites in sheep of Ganderbal district of Kashmir Valley. *Journal of Veterinary Parasitology* 25: 26–29.