Effect of cooling strategies on milk production, physiological variables and blood profile during hot-dry and hot-humid summer in Sahiwal cattle

B YADAV^{1⊠}, A K MADAN¹, S YADAV¹, V PANDEY¹ and R SIROHI¹

Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, Uttar Pradesh 281 001 India

Received: 5 August 2020; Accepted: 17 August 2021

ABSTRACT

The present experiment was undertaken to study the effect of misting and splashing during hot-dry and hot-humid months in lactating Sahiwal cattle. The study was conducted during May, June (hot-dry) and July (hot-humid) with monthly average temperature-humidity index (THI) of 79.88, 80.57 and 85.36, respectively. Eighteen lactating cattle were selected on the basis of days in milk, milk yield, and parity and then divided into three groups: control (no cooling), cooling by misting and cooling by splashing. Milk production was not affected by hot-dry and hot-humid heat stress in Sahiwal cattle. RT and RR were significantly lower in misting and splashing group as compared to control during hot-dry period. The heat stress-induced leucocytosis, lymphocytopenia and neutrophilia were significantly ameliorated by both misting and splashing during the study period. Heat stress-induced alterations in serum creatinine, sodium and ROS concentration were significantly mitigated by misting in hot-humid climate. The prolactin level significantly decreased in animals by misting during the study period. The results suggested that misting was more efficient than splashing as a cooling strategy in hot dry condition while splashing was more effective in hot-humid condition and mitigated the heat stress-induced alterations in different welfare parameters but could not fully nullify it. However, the resultant stress was not sufficient enough to decrease the milk yield in Sahiwal cattle. It may also be concluded that the Sahiwal cattle have high heat tolerance and could sustain production even in a hot-dry and hot-humid environment.

Keywords: Heat stress, Milk production, Misting, Sahiwal cattle, Splashing

Alterations in environmental temperature and relative humidity are the important tenets of climate change and are globally jeopardizing animal production and health especially in subtropical and tropical countries. India has several thermo-tolerant indigenous breeds of cattle which have the ability to adapt in different agro-climatic zones in changing climate conditions (Kumar *et al.* 2018, 2020). Cross-breeding between zebu and exotic cattle breeds resulted in augmentation in milk productivity in India and rearing of cattle alien to an agro-climatic region has become common amongst the livestock farmers. Despite the higher productivity, susceptibility to diseases and production losses are more in exotic and crossbred cattle, than in zebu cattle especially under changing climate scenarios (Yadav *et al.* 2013, 2015, 2016a).

The temperature-humidity index (THI) is used to measure the level of environmental heat stress in livestock worldwide. THI value has been defined: no stress <72, moderate stress 72–78, heavy stress >79–83 (Akyuz *et al.* 2010) however, the stratification of THI for measuring the

Present address: ¹College of Veterinary Science and Animal Husbandry, Veterinary University, Mathura, Uttar Pradesh.

□Corresponding author email: drbrijvet@gmail.com

comfort levels in bovine breeds of Indian subcontinent varies (Kumar et al. 2020). In semi-arid regions of India, the THI during summer months ranges from 80 to 88 (Yadav et al. 2016b). However, the stress components in terms of meterological variables vary dramatically. In month of May and June, stress is mainly due to excess temperature whereas in July and August stress is mainly endowed to high humidity (Yadav et al. 2016b). The cumulative heat load culminates in a cascade of physiological reactions in the animal which hampers the production performance and animal welfare. For sustainable milk production and animal welfare during summer months, several cooling strategies have been attempted in cattle (Butt et al. 2020, Lees et al. 2020). Fan-assisted ventilation and cooling improved the milk production during hot-dry summer in Sahiwal cattle (Ahmed et al. 2018, Butt et al. 2020). Studies on cooling methodologies during both hot-dry and hot-humid summer are scarce. The present study was attempted to explicate the effect of misting and splashing during hot-dry and hothumid summer months in lactating Sahiwal cattle.

MATERIALS AND METHODS

The experiment was carried out at the Livestock Farm Complex, Veterinary University (DUVASU), situated in the

Table 1. Meteorological variables and THI during the study period

Environ-	r	Temperature	e	Relative	THI
mental variable	Minimum	Maximum	Average	humidity	
May	25.60a	46.46a	36.03a	21.67 ^a	79.88ª
June	28.02^{b}	41.08^{b}	34.55 ^b	33.53^{b}	80.57a
July	26.91 ^b	36.83 ^c	31.88 ^c	77.32°	85.36 ^b
SE	0.51	0.82	0.61	2.41	0.60
P value	<0.0001*	<0.0001*	<0.0001*	<0.0001*	<0.0001*

Standard error uses pooled estimate of error variance. Means with different superscripts in a column differ significantly (P<0.05).

semiarid region at longitude 78°E and latitude 27°N with elevation of 177 m from mean sea level. The average annual ambient temperature ranges from 5 to 45°C and relative humidity (RH) varies from 15 to 90%. The study was conducted during May to July when average temperature, RH and THI ranged from 32–36°C, 30–75% and 79–90, respectively. Meteorological variables during the study were recorded and THI was calculated (Mader *et al.* 2006).

 $THI = (0.8 \ T_{db}) + [(RH/100) \ (T_{db} - 14.4)] + 46.4$ where, T_{db} , Dry bulb temperature; RH, Relative humidity.

Experimental animals and management: For this study, 18 lactating Sahiwal cattle maintained at LFC were selected based on their parity, stage of lactation (2nd to 4th month), and milk yield. All the animals were offered a balanced ration throughout the experimental period along with ad lib. clean drinking water. Prophylactic measures against endo and ecto-parasitic infestations and infectious diseases were carried out to ascertain proper health of the animals. The animals were kept in well-ventilated sheds. Different sheds were used for the animals of different treatment groups in tail to tail system of housing. The shed was equipped with misting systems and ceiling fans. Mistings was applied in the area of 72 m² with the help of eight misting pumps, each having a capacity to use 1.5 litres of water per minute with a droplet size of 3-5 micron. Splashing was done outside the shade near the wallowing tank. The research protocol and the animal usage in this experiment were approved by the institutional animal ethics committee, Veterinary University Mathura, India.

Experimental design: The experiment was conducted during hot-dry and hot-humid summer from May to July. The average ambient temperature was higher and RH was lower during May and June months while average ambient temperature was lower and RH was higher during the month of July (Table 1). Eighteen lactating cattle were randomly allocated into three equal groups and were subjected to three different treatments: negative control (no cooling), T1 (misting) (for 5 min duration at an interval of every 30 min from 11:30 h to 15:30 h) and T2 (splashing) (thrice a day for 15 min each; at 11:30 h, and 13:30 and 15:30 h). Milk production was recorded daily and blood sampling was done once (n=18) in the last week of each month at 14:30 h. The

blood was used for haematological examinations and serum was harvested for biochemical and hormonal estimations.

Physiological parameters: Clinical thermometer was used to measure rectal temperatures (RT) in °C. Recording of respiratory rates (RR) was done by observing costal movements per minute and expressed as breaths per minute. Pulsation of the middle coccygeal artery at the base of the tail was used to record pulse rate (PR) and was expressed as beats per minute.

Blood sampling and analysis: 8 ml of blood was sampled through jugular venipuncture in heparinised vacutainer tubes and also in tubes without anticoagulant. After complete blood clotting, serum was harvested by centrifugation at 3,500 rpm at room temperature for 20 min and then kept at -20°C till further analysis. The blood samples were analyzed for total packed cell volume (PCV), hemoglobin (Hb), total erythrocyte count (TEC) and total leukocyte count (TLC) by standard methods. For differential leukocyte count (DLC), blood films were prepared, stained with Leishman solution and counted later as per protocol.

Hormone assay: Serum alkaline phosphatase (AKP) and aspartate aminotransferase (AST) activity and urea, glucose, creatinine, chloride, calcium and phosphorous concentration were estimated using kits (SPAN Diagnostic Ltd, India). Flame photometry was used to estimate the levels of sodium and potassium in the serum. Serum reactive oxygen species (ROS) (Brambilla *et al.* 2001) level and superoxide dismutase (SOD) (Madesh and Balasubramanian 1998) activity were estimated using microtitre plate method. Serum cortisol, prolactin, tri-iodothyronine (T_3) and thyroxin (T_4) levels were measured by ELISA kits (Thermo Fisher Scientific India, Private Limited).

Statistical analysis: The effects of month, treatment, and interaction of month and treatment on different variables were analyzed using repeated measures of ANOVA model (SAS, 9.4). Differences among the period and treatment were determined using Tukey's test indicated by both P values and superscripts (P<0.05). Least squares means and pooled standard errors were reported. The level of significance was set at P<0.05.

RESULTS AND DISCUSSION

Temperature and humidity are the major components of the meteorological variables which determine the level of heat stress in animals. THI has been the preferred parameter of animal scientists to express level of heat stress throughout world, with variation in weightage to temperature and humidity in different climatic zones (Dikman and Hansen 2009). In temperate climate, temperature is the main driver of heat stress whereas; temperature and humidity both play a critical role in the tropical and sub-tropical climate in ascertaining the level of heat stress. In certain months of the year, like May and June, the stress is due to increase in heat load due to increased temperature, while during July, August and September, stress is due to inability of the animal to reduce heat load due to increased humidity. Hence, the cooling strategies also differ according to the source of

Table 2. Effect of misting and splashing on physiologic parameters and milk yield during summer in Sahiwal cattle

Parameter		RT	RR	PR	Milk yield/Month
Over-experimental period	Control	38.59bc	37.67 ^{de}	51.17 ^{ab}	177.89
•	Misting	38.27 ^e	35.5°	48.28 ^{ab}	177.55
	Splashing	38.46 ^{cd}	34.56bc	48.72 ^{ab}	174.41
May	Control	38.60 ^{ab}	35.00 ^c	52.67 a	180.80
,	Misting	38.27 ^e	33.00 ab	50.83 ab	181.50
	Splashing	38.49 ^{cd}	32.00 a	51.50 ab	185.66
June	Control	38.75 ^a	40.33e	47.67 ^{ab}	175.50
	Misting	38.27 ^e	37.17 ^d	47.50 ^{ab}	176.50
	Splashing	38.52 ^{bc}	37.17 ^d	47.50 ^{ab}	172.00
July	Control	38.42 ^{bcde}	37.67 ^{de}	53.17 ^a	176.67
3	Misting	38.28 ^{de}	36.33 ^{cd}	46.50 ^c	170.50
	Splashing	38.37 ^{cde}	34.50 ^{bc}	47.17 ^{bc}	170.42
Pooled SE	1 0	0.05	0.61	0.46	23.16
Period (P value)		0.0010*	0.0010*	0.0010*	0.74
Treatment (P value)		0.0010*	0.0010*	0.0010*	0.90
Period* Treatment (P value)		0.015*	0.091	<0.0001*	0.99

Standard error uses pooled estimate of error variance. Effect of period, treatment and interaction of period and treatment are indicated with P values. Means within a column having different superscripts differ significantly (P<0.05). RT, Rectal temperature (°C); RR, Respiratory rate (breathes/minute); PR, Pulse rate (beats/minute).

meteorological variable causing heat stress during different summer months. The present study was aimed to ascertain the type of cooling method during hot-dry and hot-humid summer months in lactating cattle to optimize production and animal welfare.

The meteorological variables and THI during the study period is presented in Table 1. During the month of June and July, both average minimum and maximum temperature were found to be significantly (P<0.01) higher as compared to May. Average temperature decreased significantly (P<0.01) from May to July whereas, relative humidity followed reverse trend. THI was significantly (P<0.01) lower in May and June as compared to July. The meteorological data in the present study suggested that lower RH and higher ambient temperature during hot-dry period (May and June) facilitated better evaporative cooling, whereas, in July (hot-humid), higher RH diminished the rate of evaporative heat loss. Although a wide variation exists in upper critical THI, depending upon different climatic zones of the world (Pinto et al. 2020, Srivastava et al. 2021). THI data of the present study indicated that heat stress was higher during hot-humid period as compared to hot-dry period.

The effect of misting and splashing on milk production is presented in Table 2. For this experiment, each group of animals had similar milk production at the beginning of the experiment. Milk yield decreased non-significantly (P>0.05) during moderate and high THI periods. Different treatments did not induce any change in milk production during the experiment. The effect of heat stress in physiological, productive and reproductive terms has been well documented in indigenous Indian cattle (Kumar *et al.* 2018, 2020) and accordingly shed and nutritional management have been attempted to ameliorate heat stress. The present study revealed an apparent decrease in milk

production during the experimental period in all groups. In the present study it was hypothesized that reduction in milk yield was due to heat stress, however, the results suggested that the decrease in milk production may be due to advancing lactation, from 2-4 month to 5-7 month, and negated the hypothesis. Absence of appreciable decrease in milk yield during summer months can be attributed to higher thermo-tolerance and low milk production of the Sahiwal cattle. In low milk producing animals less metabolic heat is generated which is dissipated easily using different efficient mechanisms of heat loss in Zebu cattle. Kohli et al. (2014) also reported that milk yield declined only in high producing crossbreed cattle (>18 litre/day) during high THI and it was not affected in low producing cattle (<8 litre/ day) which was in concurrence with the findings of the present study. On the contrary, Kumar et al. (2020) reported that milk production began to decline at a THI more than 81 in Hariana cattle that was attributed to less thermotolerance of Hariana cattle breed.

A significant (P<0.05) effect of period (hot-dry and hothumid), treatment, and interaction of period and treatment was found on different physiological parameters during the study. The RT and RR were significantly (P<0.05) lower in misting and splashing group as compared to control group during hot and dry period, while, RR decreased significantly (P<0.05) and RT decreased non-significantly (P>0.05) during hot-humid period. Pulse rate did not change significantly (P>0.05) during hot-dry period in control group whereas in hot-humid period increase in PR was significantly (P<0.05) ameliorated by both misting and splashing (Table 2). In the present experiment, the animals responded to increased heat load due to high THI by increasing physiological heat loss mechanism, viz. RR, PR and RT as reported in previous studies (Yadav et al. 2015, 2016a, 2017), although the quantum of increase was

Table 3. Effect of misting and splashing on hematological parameters during summer in lactating Sahiwal cattle

Parameter		PCV	Hemoglobin	TEC	TLC	Neutro	Lympho	Mono	Eosino	Baso
Over-experimental	Control	30.27 ^{ab}	9.99a	5.04 ^a	7.45 ^a	33.22a	57.66 ^b	4.50	4.61	0
period	Misting	30.28ab	10.31 ^b	5.24 ^b	6.96 ^c	27.44^{b}	64.05a	4.22	4.28	0
	Splashing	31.18 ^a	10.31 ^b	5.31 ^b	7.10^{bc}	27.22^{b}	64.06^{a}	3.89	4.83	0
May	Control	31.30 ^a	10.37 ^b	5.23 ^b	7.34 ^{ab}	32.50a	58.83 ^b	4.50	4.17	0
	Misting	31.58a	10.67 ^b	5.42 ^b	6.98 ^c	26.67^{b}	65.33a	4.00	4.00	0
	Splashing	31.30 ^a	10.45 ^b	5.37^{b}	7.08^{c}	26.83 ^b	64.00^{a}	3.80	5.33	0
June	Control	30.30 ^{ab}	10.00 ^{ab}	5.00 ^a	7.53 ^a	32.50a	58.83 ^b	4.50	4.17	0
	Misting	30.78^{ab}	10.60 ^b	5.36^{b}	6.97 ^c	27.50^{b}	64.00 ^a	4.33	4.17	0
	Splashing	31.7 ^{ab}	10.30 ^b	5.29^{b}	7.13 ^{bc}	28.00^{b}	64.00 ^a	3.83	4.17	0
July	Control	29.20 ^b	9.60 ^a	4.89 ^a	7.5 ^a	34.67a	55.33 ^b	4.50	5.50	0
•	Misting	28.50^{b}	9.67 ^a	4.96^{a}	6.94c	28.17^{b}	62.83a	4.33	4.67	0
	Splashing	30.95 ^{ab}	10.18 ^b	5.28 ^b	7.10 ^{bc}	26.83 ^b	64.17 ^a	4.00	5.00	0
Pooled SE		0.79	0.26	0.13	0.06	0.63	0.81	0.29	0.66	0
Period (P value)		0.02*	0.01*	0.03*	0.24	0.07	0.02*	0.77	0.26	0
Treatment (P value)	0.29	0.22	0.04*	<0.0001*	<0.0001*	<0.0001*	0.06	0.59	0	
Period* Treatment (P value)		0.53	0.51	0.51	0.36	0.13	0.12	0.96	0.71	0

Effect of period, treatment and interaction of period and treatment are indicated with p values. Means within a column having different superscripts differ significantly (P<0.05). The standard error uses pooled estimate of error variance. PCV, Packed cell volume(%); Hb, Hemoglobin (g %); TEC, Total erythrocyte count (10⁶/µl); TLC, Total leukocyte count (10³/µl); Neutro, Neutrophil (%); Lympho, Lymphocyte (%); Mono, Monocyte (%); Eosino, Eosinophil (%); Baso, Basophil (%).

minimal. Misting and splashing were able to resist an increase in RR, PR and RT by enforcing additional physical and physiological heat loss and decreasing the heat load (Yadav *et al.* 2016b, Ahmed *et al.* 2018). Results of physiological responses also suggested that misting and splashing both were equally effective as a cooling strategy during hot-dry period; however, splashing was more efficient during hot-humid period in reducing the heat load. In the present study, splashing was done outside the shed, in open, where a lower RH facilitated better evaporative heat loss as compared to misting which resulted in increased humidity in the shed and decreased the evaporative heat loss

A significant (P<0.05) change was observed in PCV, haemoglobin, TEC, TLC, neutrophil and lymphocyte percentage during different periods (Table 3). TEC was found to be significantly (P<0.05) lower in the control group as compared to both misting and splashing groups in second half of hot-dry period, whereas, it was higher only in the splashing group in hot-humid period. The heat stressinduced leucocytosis, neutrophilia and lymphocytopenia were significantly (P<0.05) ameliorated by both misting and splashing during the study period. The present experiment exhibited that misting and splashing were equally effective in preventing an alteration in various haematological parameters (TEC, TLC, Neutrophil % and lymphocyte %) during hot-dry and hot-humid periods in cattle. A decrease in TEC and PCV in the control group was attributed to increased water intake due to heat stress resulting in hemodilution (Parmer et al. 2013). Heat stressinduced increase in glucocorticoids mediates alterations in the distribution of lymphocytes and neutrophils which

changes the neutrophil and lymphocyte count (Parmar *et al.* 2013). However, misting and splashing were able to ameliorate heat stress and no change could be observed in neutrophil and lymphocyte count in treatment groups in the present study.

The serum urea, creatinine, sodium, AST, AKP, calcium, phosphorus, SOD and ROS levels altered significantly (P<0.05) during study period (Table 4). Serum creatinine, sodium and ROS concentration were significantly (P<0.05) lower in the misting group as compared to the control and splashing group. Further the concentration of urea, creatinine, AST, SOD and ROS were significantly (P<0.05) lower during hot and dry period than during hot and humid period, while the concentration of AKP and phosphorus were significantly (P<0.05) higher during the hot and dry period.Plasma metabolite, electrolyte, liver enzyme and redox status reflects the general health status of the animal (Sreedhar et al. 2013). In the present study, heat stressinduced alterations were non-significant in plasma metabolite, electrolyte, liver enzyme and redox status. The decrease in feed intake and increase in water intake during heat stress is one of the probable factors responsible for an apparent alteration in plasma profile besides other direct impact of heat stress.

The serum prolactin and T_4 level changed significantly (P<0.05) during the study period. The prolactin concentration decreased significantly (P<0.05) in second half of hot-dry and hot-humid period by misting. However, other hormones did not change significantly (P<0.05) by misting and splashing during the study period (Table 5). For acclimatization to heat stress, endocrine alterations are of paramount importance (Lakhani *et al.* 2020, Yadav *et*

Table 4. Effect of misting and splashing on serum metabolites, electrolytes, enzyme activity and redox status during summer in lactating Sahiwal cattle

Parameter		Urea	Creatinine	Glucose	Sodium	Potassium	Chloride	AST	AKP	Calcium	Phosphorus	SOD	ROS
Over-experi-	Control	20.16a	1.85a	52.44	140.50 ^a	6.39	88.83	39.81ab	9.96ab	10.62bc	5.27a	305.17 ^b	4.63a
mental period	Misting	19.85^{a}	1.79 ^b	53.58	$139.50^{\rm b}$	6.55	88.80	38.98^{ab}	10.08^{ab}	10.79 bc	5.46^{ab}	300.67^{b}	4.43 ^b
	50	19.98^{a}	1.85^{a}	52.98	141.66^{a}	6.28	88.74	39.94^{ab}	9.99 ^{ab}	10.65^{bc}	5.34^{ab}	$302.67^{\rm b}$	4.49 ^b
May		19.60^{a}	1.78^{bc}	52.62	139.50^{ab}	6.33	89.10	37.11 ^b	10.39^{a}	11.00^{ab}	5.70^{a}	295.00^{b}	4.50^{ab}
		19.37^{a}	1.72^{c}	53.43	140.50^{ab}	6.33	89.03	$36.94^{\rm b}$	10.28^{ab}	11.03^{a}	5.70^{a}	289.33^{b}	4.41 ^b
-		19.50^{a}	1.73°	53.67	140.83^{ab}	6.50	88.88	37.63 ^b	10.35^{ab}	10.90^{ab}	5.73^{a}	291.67^{b}	4.44 ^b
June		19.90^{a}	1.74^{c}	53.07	141.17^{ab}	6.50	89.17	37.53 ^b	10.23^{ab}	11.13^{a}	5.33^{ab}	294.67^{b}	4.53^{ab}
	Misting	19.50^{a}	1.73°	54.23	139.33^{b}	7.00	89.07	37.01^{b}	10.36^{ab}	11.00^{ab}	5.27a	288.00^{b}	4.41 ^b
-		19.77^{a}	1.77^{c}	53.03	142.33^{a}	6.50	89.17	37.43 ^b	10.31^{ab}	11.07^{a}	5.33^{ab}	$293.83^{\rm b}$	4.45^{b}
July		20.97^{b}	2.04^{a}	51.63	140.83^{ab}	6.33	88.23	44.79ª	9.25°	9.73°	4.77^{ab}	325.83^{a}	4.87^{a}
		20.67^{b}	1.92^{ab}	53.07	138.67^{b}	6.33	88.30	43.00^{a}	9.59 bc	10.33^{abc}	5.40^{ab}	324.67^{a}	4.47^{ab}
-		20.67^{b}	2.04^{a}	52.23	141.83^{ab}	5.83	88.17	44.76^{a}	9.32°	9.97 pc	4.97^{ab}	322.50^{a}	4.57^{ab}
Pooled SE		0.35	0.03	0.63	0.74	0.33	0.51	0.87	0.17	0.22	0.17	5.42	0.08
Period (P value)		0.0001*	<0.0001*	0.08	0.52	0.18	0.08	<0.000*	<0.0001*	<0.0001*	<0.0001*	<0.0001*	0.0146*
Treatment (P value)		0.56	0.03*	0.00	0.004*	0.58	0.97	0.36	69.0	0.62	0.42	0.59	0.02*
Period* Treatment (P value)	it (P value)	0.94	0.27	0.82	0.17	0.67	0.99	0.88	0.76	0.56	0.28	960	0.34

Sodium (meq/L), Potassium (meq/L), Chloride (mg/100 ml). AST Effect of period, treatment and interaction of period and treatment are indicated with p values. Means within a column having different superscripts differ significantly (P<0.05). Reactive oxygen species (mg H₂O₂ equivalents/ml) Creatinine (mg/100 ml), Glucose (mg/100 ml), Aspartate aminotransferase (IU/L); AKP, Alkaline phosphatase (KA units); SOD, Superoxide dismutase (U/ml); ROS, standard error uses pooled estimate of error variance. Urea (mg %),

Table 5. Effect of misting and splashing on endocrine parameters during summer in lactating Sahiwal cattle

Parameter		Cortisol	Prolactin	T_3	T_4
Over-	Control	3.03 ^{ab}	59.02 ^b	1.23 ^{ab}	32.86 ^{ab}
experimental	Misting	2.83^{ab}	37.41 ^a	1.26ab	33.24 ^a
period	Splashing	3.00^{ab}	59.46 ^b	1.19^{ab}	29.84^{ab}
May	Control	2.70^{a}	33.22e	1.42a	43.34 ^a
•	Misting	2.83a	29.52e	1.11 ^{ab}	33.08^{ab}
	Splashing	2.72^{a}	32.89e	1.34^{ab}	31.52^{ab}
June	Control	3.19 ^{ab}	61.24 ^{cd}	1.11 ^{ab}	29.45^{ab}
	Misting	2.97^{a}	32.66e	1.40^{a}	31.77^{ab}
	Splashing	3.01ab	66.57 ^{bc}	1.12ab	28.73^{ab}
July	Control	3.19ab	82.59a	1.17^{ab}	25.80 ^b
-	Misting	2.69a	50.06 ^d	1.26ab	34.87^{ab}
	Splashing	3.26^{ab}	78.92 ^{ab}	1.10^{ab}	29.26^{ab}
Pooled SE		0.16	3.17	0.09	3.26
Period		0.04*	<0.0001*	0.55	0.04*
(P value)					
Treatment		0.274	<0.0001*	0.80	0.38
(P value)					
Period*Treatme	nt	0.187	<0.0001*	0.0022*	0.052
(P value)					

Effect of period, treatment and interaction of period and treatment are indicated with P values. Means within a column having different superscripts differ significantly (P<0.05). The standard error uses pooled estimate of error variance. All concentrations are in ng/ml.

al. 2021). Acclamatory hormones mainly include thyroid hormones, prolactin (Kumar et al. 2018) and glucocorticoids (Lakhani et al. 2020, Yadav et al. 2021). In the present study, cortisol, prolactin and thyroxin level were altered during hot-dry and hot-humid periods however the alteration was more prominent in hot-humid period. Heat stress-mediated increase in cortisol (Yadav et al. 2015) and prolactin (Kumar et al. 2018) has been earlier confirmed in cattle during heat stress. Misting was observed to be efficient in preventing an increase in prolactin level in second half of dry-hot period and hot-humid period. Amaral et al. (2009) reported that the use of sprinklers during heat stress reduced the prolactin levels which corroborates with the results of our study. The endocrine response to heat stress and response after its abatement suggested that animals make hormonal adjustment after a certain threshold level of stress to support required metabolism and recover to its original level when the stress is reduced below threshold level.

ACKNOWLEDGEMENTS

The authors acknowledge and thank the authorities of Veterinary University, Mathura for providing research grant and other facilities for successful completion of this research work.

REFERENCES

Ahmad M, Bhatti J A, Abdullah M, Javed K, Ali M, Rashid G, Uddin R, Badini A H and Jehan M. 2018. Effect of ambient

- management interventions on the production and physiological performance of lactating Sahiwal cattle during hot dry summer. *Tropical Animal Health and Production* **50**: 1249–54.
- Akyuz A, Boyaci S and Cayli A. 2010. Determination of critical period for dairy cows using temperature humidity index. *Journal of Animal and Veterinary Advances* **9**: 1824–27.
- Amaral Do B C, Connor E E, Tao S, Hayen J, Bubolz J and Dahl G E. 2009. Heat-stress abatement during the dry period: Does cooling improve transition into lactation? *Journal of Dairy Science* **92**: 5988–99.
- Brambilla G, Fiori M and Archetti L I. 2001. Evalution of the oxidative stress in growing pigs by microplate assays. *Journal of Veterinary Medicine Series* A **48**: 33–38.
- Butt M A, Bhatti J A, Khalique A and Shahid M Q. 2020. Effect of fans and showers on the physiological measures and reproductive performance of Holstein Friesian bulls during subtropical summer. *Tropical Animal Health Production* **52**(4): 1991–2000.
- Dickmen S and Hansen P J. 2009. Is the temperature- humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? *Journal of Dairy Science* **92**: 109–16.
- Kohli S, Atheya U K and Thapliyal A. 2014. Assessment of optimum thermal humidity index for crossbred dairy cows in Dehradun district, Uttarkhand, India. *Veterinary World* 7: 917– 21
- Kumar J, Madan A K, Kumar M, Sirohi R, Yadav B, Reddy AV andSwain D K. 2018. Impact of season on antioxidants, nutritional metabolic status, cortisol and heat shock proteins in Hariana and Sahiwal cattle. *Biological Rhythm Research* 49: 29–38.
- Kumar J, Yadav B, Madan AK, Kumar M, Sirohi R, Reddy A V. 2020. Dynamics of heat shock proteins, metabolic and endocrine responses during increasing temperature humidity index (THI) in lactating Hariana (Zebu) cattle. *Biological Rhythm Research* **51**(6): 934–50.
- Lakhani P, Kumar P, Lakhani N and Naif Alhussien M. 2020. The influence of tropical thermal stress on the seasonal and diurnal variations in the physiological and oxidative status of Karan Fries heifers. *Biological Rhythm Research* 51(6): 837–46
- Lees A M, Lees J C, Sejian V, Sullivan M L and Gaughan J B. 2020. Influence of shade on panting score and behavioural responses of *Bos taurus* and *Bos indicus* feed lot cattle to heat load. *Animal Production Science* **60**: 305–15.
- Mader T, Davis MS and Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. *Journal of*

- Animal Science 84: 712-19.
- Madesh M and Balasubramanian K A. 1998. Microtiter plate assay for superoxide dismutase using MTT reduction by superoxide. *Indian Journal of Biophysics* **35**: 184–88.
- Parmar M S, Madan A K, Rastogi S K and Huozha R. 2013. Comparative study of seasonal variations on haematological profil in Sahiwal cows (*Bos indicus*) and Murrah Buffalo (*Bubalus bubalis*). *Journal of Animal Research* 3: 167–71.
- Pinto S, Hoffmann G, Ammon C and Amon T. 2020. Crtical THI thresholds based on the physiological parameters of lactating dairy cows. *Journal of Thermal Biology* **88**: 102523.
- Sreedhar S, Rao K S, Suresh J, Moorthy P R and Reddy V P. 2013. Changes in haematocrit andsome serum biochemical profile of Sahiwal and Jersey Sahiwal cows in tropical environments. *Veterinarski Archiv* 83: 171–87.
- Srivastava A, Yadav P, Mahajan A, Anand M, Yadav S, Madan A K and Yadav B. 2021. Appropriate THI model and its threshold for goats in semi-arid regions of India. *Journal of Thermal Biology* **96**:102845.
- Yadav B, Singh G and Wanker A. 2015. Adaptive capability as indicated by redox status and endocrine responses in crossbred cattle exposed to different thermal stresses. *Journal of Animal Research* 5: 67–73.
- Yadav B, Pandey V, Yadav S, Singh Y, Kumar V and Sirohi R. 2016b. Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrrah buffalo. *Journal of Animal Science and Technology* 58: https://doi.10.1186/s40781-015-0082-0
- Yadav B, Singh G and Wanker A. 2021. Acclimatization dynamics to extreme heat stress in crossbred cattle. *Biological Rhythm Research* 52: 524–34.
- Yadav B, Singh G and Wanker A K. 2017. The use of infrared skin temperature measurements for monitoring heat stress and welfare of crossbred cattle. *Indian Journal of Dairy Science* 70: 1–5.
- Yadav B, Singh G, Verma A K, Dutta N and Sejian V. 2013. Impact of heat stress on rumen functions. *Veterinary World* **6**: 922–96.
- Yadav B, Singh G, Wanker A K, Dutta N, Chaturvedi V B and Verma M R. 2016a. Effect of simulated heat stress on digestibility, methane emission and metabolic adaptability in crossbred cattle. Asian Australasian Journal of Animal Science 29: 1585–92.
- Yadav B, Singh G and Wanker A. 2015. Adaptive capability as indicated by redox status and endocrine responses in crossbred cattle exposed to thermal stress. *Journal of Animal Research* 5: 67–73.