Main risk factors associated with small and large ruminant brucellosis

MARYAM DADAR^{1⊠} and JACQUES GODFROID²

Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran

Received: 25 August 2021; Accepted: 7 September 2021

ABSTRACT

Brucellosis is a neglected zoonotic bacterial disease in most of the developing world that has a significant impact on public health. The prevalence of brucellosis in livestock, particularly in large and small ruminants is variable in many countries and seems to remain high, especially amongst subsistence and small-scale livestock farmers. There are different factors that may influence the prevalence of brucellosis in large and small ruminants. This review is aimed at describing the most important factors that need to be taken into consideration for the planning and implementation of effective brucellosis control programmes. Common risk factors in the brucellosis development in small and large ruminant animals include species, age, sex, extensive or intensive production system, herd/flock size, mixed farming, introduction of new animals in the farms, breeding practice, hygiene, absence of vaccination, and awareness of the disease. This review suggests that different risk factors might have various impacts on brucellosis seroprevalence that need to be addressed in epidemiological studies in different farming systems.

Keywords: Brucellosis, Large ruminant, Risk factor, Small ruminant

According to the World Health Organization (WHO), the Office International des Epizooties (OIE), and the Food and Agriculture Organization (FAO), brucellosis is still one of the most widespread and important zoonotic infection in developing countries (B Lopes et al. 2010, Seleem et al. 2010). This disease is a source of different economic concerns because of infertility in both sexes and late term abortion (Sulima and Venkataraman 2010, Angara et al. 2016, Awah-Ndukum et al. 2018, Deka et al. 2018, Franc et al. 2018), decreased milk yield (Herrera et al. 2008, Mellado et al. 2014), loss of draught power and market value of animals, missed reproductive cycle, decreased productivity, increased veterinary costs, and birth of weak offspring with low birth weight in farms (Blasco and Molina-Flores 2011, Dadar et al. 2020, Lokamar et al. 2020). Brucellosis is a chronic and infectious zoonotic disease of domestic and wild animals caused by several species of *Brucella* bacteria (Franc et al. 2018). Currently, twelve species could infect different domestic and wild animal species (Whatmore et al. 2016). Among them, six Brucella species have been divided based on their preferred hosts and pathogenicity as Brucella melitensis (goats and

Present address: ¹Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. ²Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT-The Arctic University of Norway; Tromsø, Norway. ™Corresponding author email: dadar.m77@gmail.com

sheep), Brucella abortus (cattle), Brucella suis (pigs), Brucella ovis (rams), Brucella canis (dogs), and Brucella neotomae (desert wood rat, common voles). B. melitensis, B. suis, and B. abortus are known as the most important pathogenic species in livestock (Omer et al. 2000, Lindahl et al. 2014, Wareth et al. 2014, Kaynak-Onurdag et al. 2016, Whatmore et al. 2016, Dadar et al. 2019a), while Brucella. melitensis is the main source of human infections (Dadar et al. 2019a, b). Beside well-known endemic regions located in Africa, South and Central America, the Mediterranean Basin, Middle East, and Asia, brucellosis remains a neglected disease in several areas which can lead to serious economic concern for the livestock industry (Sulima and Venkataraman 2010, Santos et al. 2013, Mableson et al. 2014, Bamaiyi 2015, Singh et al. 2015). The aim of this mini-review is to highlight the potential risk factors for Brucella infections in small and large ruminants.

Brucellosis in large ruminants

Brucella abortus has been known as a Gram-negative coccobacillus bacteria in the class Alphaproteobacteria, family Brucellaceae that commonly infects cattle and other bovinae as the primarily hosts. Brucella abortus is divided into eight biovars (1–7, 9), of which biovars 1 to 3 are the most commonly isolated biovars from humans. Brucella melitensis, B. canis and B. suis have been reported as other Brucella species that could be isolated in cattle (Khurana et al. 2021). Reservoir hosts of B. abortus are reported as cattle, water buffalo, African buffalo, American bison (Bison

bison), and elk (Cervus elaphus nelsonii) (Abubakar et al. 2012, Dadar et al. 2019a, Dadar et al. 2021). However, other species such as sheep, pigs, camel and horse might also sustain B. abortus for a certain period of time (Alamian and Dadar 2019, Fiebig et al. 2021), although such infection is almost always reported to be associated to the presence of infected animal in reservoir species (Godfroid et al. 2013). It has been reported that a number of countries like European Union Member States, New Zealand, Australia, Canada, the USA, Israel, and Japan eliminated bovine brucellosis through eradication programs (Abubakar et al. 2012), although B. abortus infection is still found worldwide in bovines of Asia, South and Central America, Africa, the Mediterranean Basin, Sahara and the Caribbean (Corbel 1997). Wildlife reservoirs of *B. abortus* are elk and bison in parts of North America (Olsen 2010). The infection of cattle by *B. abortus* occurs by close contact to birth products, including fetus, fetal fluids placenta, and vaginal discharges of infected animals. Moreover, the bacteria can also enter the body of animal through lesions in the skin. Cattle can shed B. abortus whether they carry the pregnancy to term or abort and remain infected for years. Brucella abortus is also shed in semen, milk and urine (Capparelli et al. 2009, Aune et al. 2012). Vaccination of cattle can help to decrease the B. abortus prevalence during control programs and the clinical signs of brucellosis in infected herds (Cheville et al. 1996, Yang et al. 2013). Generally, two licensed live attenuated vaccines are used for B. abortus infection in cattle, including B. abortus strain 19 (S19), and B. abortus RB51, although other vaccines such as the S2 B. suis vaccine in China, and the strain 75/79-AB and 82 B. abortus vaccines in Russia are used (Yang et al. 2013). Importantly, these later vaccines are not recommended by the OIE (https://www.oie.int). The performance of these animal vaccines is dependent upon the host species, route, and dose of immunization (de Oliveira et al. 2021).

Brucellosis in small ruminants

Brucella melitensis is described as a Gram negative coccobacillus in the class Alphaproteobacteria and family Brucellaceae that mainly infects sheep and goats as reservoir hosts. B. melitensis is divided into three biovars (that are actually only serovars). Brucella suis and B. abortus have been reported occasionally as other Brucella species in small ruminants, although there are rare clinical symptoms caused by these species (Gumaa et al. 2014, Wareth 2015). Infection with B. melitensis also have also been described in cattle, water buffalo, yaks (Bos grunniens), dromedary and Bactrian camels, pigs, alpacas, horses and dogs (Alamian and Dadar 2020, Dadar and Alamian 2020). Wildlife reservoirs of B. melitensis is reported as Iberian wild goats (C. pyrenaica), chamois (Rupicapra rupicapra), wild Alpine ibex (*Capra ibex*), sable antelope (*Hippotragus* niger), impala (Aepyceros melampus), bharal goats (Pseudois nayaur) and Arabian oryx (Oryx leucoryx). Infection by *B. melitensis* has been reported in the most Mediterranean countries, the Middle East, some southern

and eastern European countries, South-West of Asia and parts of Latin America and Africa (Erganis *et al.* 2005, Janowicz *et al.* 2020). The most common routes of *B. melitensis* infection in small ruminants are close contact with birth products such as fetus, placenta, fetal fluids and vaginal discharges of infected animals. The infection in sheep and goats may persist for years (Tittarelli *et al.* 2005). Small ruminant animals can shed *B. melitensis* in the vaginal discharges, semen, urine and milk. Currently, the control of small ruminant brucellosis has been performed through the licensed live attenuated vaccine of *B. melitensis* Rev. 1 (Banai 2002).

Potential risk factors associated with small ruminant brucellosis

The most significant factors in the brucellosis persistence in many regions of world need extensive and in depth analysis of associated risk factors (B Lopes et al. 2010, Ning et al. 2013, Moosazadeh et al. 2016). Brucellosis is considered as an occupational threat for subsistence, smallscale goat and sheep farmers and pastoralists because of the lack of awareness regarding quarantine practices as well as specific safety recommendation for brucellosis and absence of knowledge of transmission routes to humans (Peck et al. 2019). Furthermore, the consumption of raw dairy products is another important risk factor due to the common shedding of *Brucella* spp. (specially *B. melitensis*) into the milk of infected livestock (Dadar et al. 2019b). Risk factors for brucellosis seroprevalence in sheep and goat flocks were reported as breed, contact with other animals (cattle, horse, monkey, dog, cat), herd size with more animal's movements and intensive management practices, age at animal population level, the incorporation on new animals to the flock during the previous year, frequency of disinfecting practices per year, implementation of brucellosis control programs for sheep and goat flocks, type of grazing, feeding, mate control, origin of the farm (Teklue et al. 2013, Lindahl et al. 2014, Kelkay et al. 2017, Saleem 2019). Abortion history in small-ruminant was a significant risk factor with flock-level seropositivity of brucellosis (Megersa et al. 2011, Abnaroodheleh et al. 2021). Brucellosis seropositivity was also reported as significantly associated with history of retained fetal membrane in small ruminants (Adem et al. 2021).

Species, age, and sex of the small ruminants also were reported to influence the occurrence of brucellosis among flocks (Dabassa *et al.* 2013, Behera *et al.* 2020). Furthermore, it has been showed that lack of corral hygiene, large flock size, high animal density, uncontrolled animal movements, close contact between sheep and goats, shared pasture for grazing, and mixed herding with large ruminants are important risk factors for *Brucella* infection (Teklue *et al.* 2013, Primatika *et al.* 2016). A case–control study with 255 small ruminants herds and multivariable logistic regression model in Portugal demonstrated that the lack of cleaned watering places, contamination of the water with urine and faeces, insufficient cleaning premises and

insufficient manure removal, introduction of animals from herds of unknown status or from infected brucellosis herds and the herds with more than 116 animals are important as risk factors for *Brucella* seropositivity (Coelho *et al.* 2007). Moreover, the univariable logistic regression analysis on individual animal-level risk factors showed altitude/agroecology as one of the flock-level risk factors considered during the brucellosis evaluation in small ruminants in Ethiopia. This analysis reported higher seroprevalence in the mid-highland (30.8%) and lowland (50%) in comparison to highland (5%) (Teklue *et al.* 2013).

Potential risk factors associated with large ruminant brucellosis

The prevalence of large ruminant brucellosis is related to herd size (Terefe et al. 2017). Herd size is a critical risk factor due to the contact among and within herds, and the impact of environmental and management factors related to herd size (Matope et al. 2010, Mai et al. 2013, Cowie et al. 2014). In addition, a number of possible risk factors for Brucella seropositivity in dairy cattle farms have been reported as increasing stocking density, the presence of other animal species (horses, dog, monkey, sheep, goat, cat, poultry) in the farm, purchase source and frequency, the type of service used for breeding (artificial or natural insemination), type of personnel used (hired or family members), methods of disposal of manure, use of calving pens, and use of permanent housing for cows (Omer et al. 2000). Using a negative binomial regression model, the seropositivity of cattle appeared to be independently related to geographical area, stocking density, keeping mixed breed herds, and herd size (Matope et al. 2010). However, no association between brucellosis prevalence and geographical locations was observed in farms that were located in the mountainous areas, plain and hilly areas, and the large herds far from main roads of Tanzania (Ukita et al. 2021). Furthermore, the cattle breed management and the lack of knowledge about brucellosis by farmers were independently related to the rate of abortion in small household herds from different areas of Zimbabwe (Matope et al. 2010, Pathak et al. 2016). The poor implementation of brucellosis control programs for livestock, including testing of animals, reporting disease to the veterinary services and movement of infected cattle were reported as important risk factors for bovine brucellosis (Pathak et al. 2016, Awah-Ndukum et al. 2018). Recently epidemiological investigations reported that the breed of dairy cattle, abortion history and abortion period along with farm location had important effect on the brucellosis incidence among dairy cattle (Halliday et al. 2015, Akinseye et al. 2016, Geresu et al. 2016, Carbonero et al. 2018). A cross sectional study showed that the seroprevalence of bovine is significantly associated with various risk factors including the reproductive status, number of service per conception, age, gender, and calving interval (Asgedom et al. 2016). Sharing water sources for cattle within and outside farms as well as having a history of reactor cattle for brucellosis

are significant risk factors for *Brucella* infection in dairy cattle farms (Tukana and Gummow 2017). The important risk factor for high prevalence of cattle brucellosis in endemic areas of Tanzania was determined as the introduction of cattle from other herds (Ukita *et al.* 2021).

Potential risk factors related to brucellosis in camel due to either *B. meliten*sis or *B. abortus*, were evaluated using a multivariable logistic regression model in several studies and a significant association was reported with the lack of adequate *Brucella* control program in cattle, and sheep and goat, contact with other livestock species, particularly ruminants, uncontrolled animal transportation, absence of hygienic measures (Al-Majali *et al.* 2008, Fatima *et al.* 2016, Alamian and Dadar 2019), locality, herd size and contact with other camels (Ghanem *et al.* 2009), season, abortion, and orchitis history (Fatima *et al.* 2016).

Conclusion

The main risk factors reported in this review support current recommendations for brucellosis control. Brucellosis is a neglected zoonotic disease with serious consequences on the reproductively and productivity of small and large ruminants. It is thus important to improve both preventive and control methods through the evaluation of potential risk factors impacting livestock health and economy. The spread of Brucella infection has been affected by the type of husbandry system implemented and the presence of abortion in small and large ruminant was the most important risk factors for brucellosis seropositivity. However, the type of animal species has a statistically significant effect on seroprevalence. The common flock/ herd-level risk factors evaluated during different studies were flock/herd size, common grazing lands, and purchase of animal with unknown brucellosis status, abortion management, altitude/agro-ecology, sharing of breeding ram/buck/bulls, keeping of animals together, and dog presence (scavenging aborted materials). Moreover, the poor farmers' awareness and perception on abortion management and brucellosis transmission could aggravate the situation of disease on the farm.

ACKNOWLEDGEMENTS

This work was supported by the Razi Vaccine and Serum Research Institute; Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran [grant number 2-18-18-033-950404/3].

REFERENCES

Abnaroodheleh F, Emadi A and Dadar M. 2021. Seroprevalence of brucellosis and chlamydiosis in sheep and goats with history of abortion in Iran. *Small Ruminant Research*.

Abubakar M, Mansoor M and Arshed M J. 2012. Bovine brucellosis: Old and new concepts with Pakistan perspective. *Pakistan Veterinary Journal* **32**(2).

Adem A, Hiko A, Waktole H, Abunna F, Ameni G and Mamo G. 2021. Small ruminant *Brucella* seroprevalence and potential risk factor at Dallo-manna and Harannabulluk districts of Bale zone, Oromia regional state, Ethiopia. *Ethiopian Veterinary*

- Journal 25(1): 77-95.
- Akinseye V O, Adesokan H K, Ogugua A J, Adedoyin F J, Otu P I, Kwaghe A V, Kolawole N O, Okoro O J, Agada C A and Tade A O. 2016. Sero-epidemiological survey and risk factors associated with bovine brucellosis among slaughtered cattle in Nigeria. *Onderstepoort Journal of Veterinary Research* 83(1): 1–7.
- Al-Majali A M, Al-Qudah K M, Al-Tarazi Y H and Al-Rawashdeh O F. 2008. Risk factors associated with camel brucellosis in Jordan. *Tropical Animal Health and Production* 40(3): 193– 200.
- Alamian S and Dadar M. 2019. *Brucella abortus* contamination of camel milk in two Iranian regions. *Preventive Veterinary Medicine* 169: 104708
- Alamian S and Dadar M. 2020. *Brucella melitensis* infection in dog: a critical issue in the control of brucellosis in ruminant farms. *Comparative Immunology*, *Microbiology and Infectious Diseases* 73: 101554.
- Angara T, AAA I I A and Osman S. 2016. Assessment of the economic losses due to bovine brucellosis in Khartoum State, Sudan. *International Journal of Technical Research and Applications* **4**(2): 85–90.
- Asgedom H, Damena D and Duguma R. 2016. Seroprevalence of bovine brucellosis and associated risk factors in and around Alage district, Ethiopia. *SpringerPlus* 5(1): 851.
- Aune K, Rhyan J C, Russell R, Roffe T J and Corso B. 2012. Environmental persistence of *Brucella abortus* in the Greater Yellowstone Area. *Journal of Wildlife Management* **76**(2): 253–61.
- Awah-Ndukum J, Mouiche M, Bayang H, Ngwa V N, Assana E, Feussom K, Manchang T and Zoli P. 2018. Seroprevalence and associated risk factors of brucellosis among indigenous cattle in the Adamawa and north regions of Cameroon. *Veterinary Medicine International* 2018.
- B Lopes L, Nicolino R and P A Haddad J. 2010. Brucellosis-risk factors and prevalence: A review. *Open Veterinary Science Journal* **4**(1).
- Bamaiyi P H. 2015. The economic impact attributable to brucellosis among goat farms in Peninsula Malaysia and cost benefit analysis. *Research Opinions in Animal Veterinary Sciences* 5: 57–64.
- Banai M. 2002. Control of small ruminant brucellosis by use of *Brucella melitensis* Rev. 1 vaccine: laboratory aspects and field observations. *Veterinary Microbiology* **90**(14): 497–519.
- Behera S K, Das D, Balasubramani K, Chellappan S, Rajaram K, Mohanta H K and Nina P B. 2020. Seroprevalence and risk factors of brucellosis in livestock in the wildlife and livestock interface area of Similipal Biosphere Reserve, India. *Veterinary World* 13(3): 465.
- Blasco J M and Molina-Flores B. 2011. Control and eradication of *Brucella melitensis* infection in sheep and goats. *Veterinary Clinics: Food Animal Practice* **27**(1): 95–104.
- Capparelli R, Parlato M, Iannaccone M, Roperto S, Marabelli R, Roperto F and Iannelli D. 2009. Heterogeneous shedding of Brucella abortus in milk and its effect on the control of animal brucellosis. Journal of Applied Microbiology 106(6): 2041– 47
- Carbonero A, Guzmán L, García-Bocanegra I, Borge C, Adaszek L, Arenas A and Saa L. 2018. Seroprevalence and risk factors associated with *Brucella* seropositivity in dairy and mixed cattle herds from Ecuador. *Tropical Animal Health and Production* 50(1): 197–203.
- Cheville N F, Olsen S C, Jensen A E, Stevens M G, Palmer M V

- and Florance A M. 1996. Effects of age at vaccination on efficacy of *Brucella abortus* strain RB51 to protect cattle against brucellosis. *American Journal of Veterinary Research* 57(8): 1153–56.
- Coelho A, Coelho A, Roboredo M and Rodrigues J. 2007. A case—control study of risk factors for brucellosis seropositivity in Portuguese small ruminants herds. *Preventive Veterinary Medicine* **82**(34): 291–301.
- Corbel M J. 1997. Brucellosis: An overview. *Emerging Infectious Diseases* **3**(2): 213.
- Cowie C E, Marreos N, Gortázar C, Jaroso R, White P C and Balseiro A. 2014. Shared risk factors for multiple livestock diseases: A case study of bovine tuberculosis and brucellosis. *Research in Veterinary Science* **97**(3): 491–97.
- Dabassa G, Tefera M and Addis M. 2013. Small ruminant brucellosis: serological survey in Yabello district, Ethiopia. *Asian Journal of Animal Science* 7: 14–21.
- Dadar M and Alamian S. 2020. Isolation of *Brucella melitensis* from seronegative camel: potential implications in brucellosis control. *Preventive Veterinary Medicine* **185**: 105–194.
- Dadar M, Alamian S, Behrozikhah A M, Yazdani F, Kalantari A, Etemadi A and Whatmore A M. 2019a. Molecular identification of *Brucella* species and biovars associated with animal and human infection in Iran. *Veterinary Research Forum*, pp 315–20. Faculty of Veterinary Medicine, Urmia University.
- Dadar M, Shahali Y and Fakhri Y. 2020. A primary investigation of the relation between the incidence of brucellosis and climatic factors in Iran. *Microbial Pathogenesis* **139**: 103858.
- Dadar M, Shahali Y and Wareth G. 2019a. Molecular Diagnosis of Acute and Chronic Brucellosis in Humans. *Microbial Technology for the Welfare of Society*, pp 223–45. Springer.
- Dadar M, Shahali Y and Whatmore A M. 2019b. Human brucellosis caused by raw dairy products: A review on the occurrence, major risk factors and prevention. *International Journal of Food Microbiology* 292: 39–47.
- Dadar M, Wareth G and Neubauer H. 2021. Brucellosis in Iranian buffalo: A mini review. German Journal of Veterinary Research.
- de Oliveira M M, Pereira C R, de Oliveira I R C, Godfroid J, Lage A P and Dorneles E M S. 2021. Efficacy of *Brucella abortus* S19 and RB51 vaccine strains: a systematic review and meta analysis. *Transboundary and Emerging Diseases*.
- Deka R P, Magnusson U, Grace D and Lindahl J. 2018. Bovine brucellosis: prevalence, risk factors, economic cost and control options with particular reference to India—A review. *Infection Ecology and Epidemiology* 8(1): 1556548.
- Erganis O, Hadimli H H, Solmaz H and Corlu M. 2005. *Brucella melitensis* and *Brucella suis*. *Bulletin of the Veterinary Institute in Pulawy* **49**: 165–67.
- Fatima S, Khan I, Nasir A, Younus M, Saqib M, Melzer F, Neubauer H and El-Adawy H. 2016. Serological, molecular detection and potential risk factors associated with camel brucellosis in Pakistan. *Tropical Animal Health and Production* 48(8): 1711–18.
- Fiebig A, Vrentas C E, Le T, Huebner M, Boggiatto P M, Olsen S C and Crosson S. 2021. Quantification of *Brucella abortus* population structure in a natural host. *Proceedings of the National Academy of Sciences* **118**(11).
- Franc K, Krecek R, Häsler B and Arenas-Gamboa A. 2018. Brucellosis remains a neglected disease in the developing world: A call for interdisciplinary action. *BMC Public Health* **18**(1): 125.
- Geresu M A, Ameni G, Tuli G, Arenas A and Kassa G M. 2016.

- Seropositivity and risk factors for *Brucella* in dairy cows in Asella and Bishoftu towns, Oromia Regional State, Ethiopia. *African Journal of Microbiology Research* **10**(7): 203–13.
- Ghanem Y M, El-Khodery S A, Saad A A, Abdelkader A H, Heybe A and Musse Y A. 2009. Seroprevalence of camel brucellosis (*Camelus dromedarius*) in Somaliland. *Tropical Animal Health and Production* **41**(8): 1779.
- Godfroid J, Al Dahouk S, Pappas G, Roth F, Matope G, Muma J, Marcotty T, Pfeiffer D and Skjerve E. 2013. A "One Health" surveillance and control of brucellosis in developing countries: Moving away from improvisation. *Comparative Immunology, Microbiology and Infectious Diseases* **36**(3): 241–48.
- Gumaa M, Osman H, Omer M, El Sanousi E M, Godfroid J and Ahmed A. 2014. Seroprevalence of brucellosis in sheep and isolation of *Brucella abortus* biovar 6 in Kassala State, Eastern Sudan.
- Halliday J E, Allan K J, Ekwem D, Cleaveland S, Kazwala R R and Crump J A. 2015. One health: Endemic zoonoses in the tropics: A public health problem hiding in plain sight. *Veterinary Record* 176(9): 220.
- Herrera E, Palomares G and Díaz Aparicio E. 2008. Milk production increase in a dairy farm under a six year brucellosis control program. *Annals of the New York Academy of Sciences* **1149**(1): 296–99.
- Janowicz A, De Massis F, Zilli K, Ancora M, Tittarelli M, Sacchini F, Di Giannatale E, Sahl J W, Foster J T and Garofolo G. 2020. Evolutionary history and current distribution of the West Mediterranean lineage of *Brucella melitensis* in Italy. *Microbial Genomics* 6(11).
- Kaynak-Onurdag F, Okten S and Sen B. 2016. Screening *Brucella* spp. in bovine raw milk by real-time quantitative PCR and conventional methods in a pilot region of vaccination, Edirne, Turkey. *Journal of Dairy Science* **99**(5): 3351–57.
- Kelkay M Z, Gugsa G, Hagos Y and Taddelle H. 2017. Seroprevalence and associated risk factors for *Brucella* seropositivity among small ruminants in Tselemti districts, Northern Ethiopia. *Journal of Veterinary Medicine and Animal Health* 9(11): 320–26.
- Khurana S K, Sehrawat A, Tiwari R, Prasad M, Gulati B, Shabbir M Z, Chhabra R, Karthik K, Patel S K and Pathak M. 2021. Bovine brucellosis—A comprehensive review. *Veterinary Quarterly* **41**(1): 61–88.
- Lindahl E, Sattorov N, Boqvist S, Sattori I and Magnusson U. 2014. Seropositivity and risk factors for *Brucella* in dairy cows in urban and peri-urban small-scale farming in Tajikistan. *Tropical Animal Health and Production* **46**(3): 563–69.
- Lokamar P N, Kutwah M A, Atieli H, Gumo S and Ouma C. 2020. Socio-economic impacts of brucellosis on livestock production and reproduction performance in Koibatek and Marigat regions, Baringo County, Kenya. BMC Veterinary Research 16(1): 1–13.
- Mableson H E, Okello A, Picozzi K and Welburn S C. 2014.
 Neglected zoonotic diseases—the long and winding road to advocacy. PLoS Neglected Tropical Diseases 8(6): e2800.
- Mai H, Irons P, Kabir J and Thompson P. 2013. Herd-level risk factors for *Campylobacter fetus* infection, *Brucella* seropositivity and within-herd seroprevalence of brucellosis in cattle in northern Nigeria. *Preventive Veterinary Medicine* 111(3–4): 256–67.
- Matope G, Bhebhe E, Muma J, Lund A and Skjerve E. 2010. Herd-level factors for *Brucella* seropositivity in cattle reared in smallholder dairy farms of Zimbabwe. *Preventive Veterinary Medicine* **94**(3–4): 213–21.

- Megersa B, Biffa D, Abunna F, Regassa A, Godfroid J and Skjerve E. 2011. Seroprevalence of brucellosis and its contribution to abortion in cattle, camel, and goat kept under pastoral management in Borana, Ethiopia. *Tropical Animal Health and Production* **43**(3): 651–56.
- Mellado M, Garcia A M, Arellano-Reynoso B, Diaz-Aparicio E and Garcia J E. 2014. Milk yield and reproductive performance of brucellosis-vaccinated but seropositive Holstein cows. *Tropical Animal Health and Production* **46**(2): 391–97.
- Moosazadeh M, Abedi G, Kheradmand M, Safiri S and Nikaeen R. 2016. Seasonal pattern of brucellosis in Iran: A systematic review and meta-analysis. *Iranian Journal of Health Sciences* **4**(1): 62–72.
- Ning P, Guo M, Guo K, Xu L, Ren M, Cheng Y and Zhang Y. 2013. Identification and effect decomposition of risk factors for *Brucella* contamination of raw whole milk in China. *PLoS ONE* 8(7): e68230.
- Olsen S. 2010. Brucellosis in the United States: Role and significance of wildlife reservoirs. *Vaccine* **28**: F73–76.
- Omer M, Skjerve E, Woldehiwet Z and Holstad G. 2000. Risk factors for *Brucella* spp. infection in dairy cattle farms in Asmara, State of Eritrea. *Preventive Veterinary Medicine* **46**(4): 257–65.
- Pathak A D, Dubal Z, Karunakaran M, Doijad S P, Raorane A V, Dhuri R, Bale M, Chakurkar E B, Kalorey D R and Kurkure N V. 2016. Apparent seroprevalence, isolation and identification of risk factors for brucellosis among dairy cattle in Goa, India. Comparative Immunology, Microbiology and Infectious Diseases 47: 1–6.
- Peck M E, Jenpanich C, Amonsin A, Bunpapong N, Chanachai K, Somrongthong R, Alexander B H and Bender J B. 2019. Knowledge, attitudes and practices associated with brucellosis among small-scale goat farmers in Thailand. *Journal of Agromedicine* 24(1): 56–63.
- Primatika R A, Nugroho W S and Septana A I. 2016. Survey of brucellosis in goats using Rose Bengal Test (RBT) and Complement Fixation Test (CFT) methods in Gunungkidul district, special region of Yogyakarta, Indonesia. *AIP Conference Proceedings*, p 040006. AIP Publishing LLC.
- Saleem M Z. 2019. Role of ticks in transmission of brucellosis and skin/hide damage in small and large ruminants. University of Veterinary and Animal Sciences, Lahore.
- Santos R L, Martins T M, Borges Á M and Paixão T A. 2013. Economic losses due to bovine brucellosis in Brazil. *Pesquisa Veterinária Brasileira* **33**(6): 759–64.
- Seleem M N, Boyle S M and Sriranganathan N. 2010. Brucellosis: A re-emerging zoonosis. *Veterinary Microbiology* **140**(3–4): 392–98.
- Singh B, Dhand N K and Gill J. 2015. Economic losses occurring due to brucellosis in Indian livestock populations. *Preventive Veterinary Medicine* **119**(3–4): 211–15.
- Sulima M and Venkataraman K. 2010. Economic losses due to *Brucella melitensis* infection in sheep and goats. *Tamil Nadu Journal of Veterinary and Animal Sciences* **6**(4): 191–92.
- Teklue T, Tolosa T, Tuli G, Beyene B and Hailu B. 2013. Seroprevalence and risk factors study of brucellosis in small ruminants in Southern Zone of Tigray Region, Northern Ethiopia. *Tropical Animal Health and Production* **45**(8): 1809– 15.
- Terefe Y, Girma S, Mekonnen N and Asrade B. 2017. Brucellosis and associated risk factors in dairy cattle of eastern Ethiopia. *Tropical Animal Health and Production* **49**(3): 599–606.
- Tittarelli M, Di Ventura M, De Massis F, Scacchia M,

- Giovannini A, Nannini D and Caporale V. 2005. The persistence of *Brucella melitensis* in experimentally infected ewes through three reproductive cycles. *Journal of Veterinary Medicine, Series B* **52**(9): 403–09.
- Tukana A and Gummow B. 2017. Dairy farm demographics and management factors that played a role in the re-emergence of brucellosis on dairy cattle farms in Fiji. *Tropical Animal Health and Production* **49**(6): 1171–78.
- Ukita M, Hozé N, Nemoto T, Cauchemez S, Asakura S, Makingi G, Kazwala R and Makita K. 2021. Quantitative evaluation of the infection dynamics of bovine brucellosis in Tanzania. *Preventive Veterinary Medicine*.
- Wareth G, Melzer F, Elschner M C, Neubauer H and Roesler U. 2014. Detection of *Brucella melitensis* in bovine milk and milk

- products from apparently healthy animals in Egypt by realtime PCR. *Journal of Infection in Developing Countries* **8**(10): 1339–43
- Wareth G, Melzer F, Tomaso H, Roesler U and Neubauer H. 2015. Detection of *Brucella abortus* DNA in aborted goats and sheep in Egypt by real-time PCR. *BMC Research Notes* 8(1): 1–5.
- Whatmore A M, Koylass M S, Muchowski J, Edwards-Smallbone J, Gopaul K K and Perrett L L. 2016. Extended multilocus sequence analysis to describe the global population structure of the genus *Brucella*: Phylogeography and relationship to biovars. *Frontiers in Microbiology* 7: 2049.
- Yang X, Skyberg J A, Cao L, Clapp B, Thornburg T and Pascual D W. 2013. Progress in *Brucella* vaccine development. *Frontiers in Biology* **8**(1): 60–77.