Genetic evaluation for productive and reproductive traits in Holstein Friesian cows under subtropical condition

SHYMA M EL-KOMY¹ and A M RASHAD^{2 \boxtimes}

Garbyia Governoate, Egypt

Received: 10 August 2020; Accepted: 12 September 2021

ABSTRACT

Lactation records (1,017) of Holstein cows, kept in private dairy farm in Egypt, from 2008 to 2015 were used for the study. The objectives were to estimate the effect of some factors on performance and estimate some genetic parameters. Traits studied were 305 day milk yield (305-dMY), lactation period (LP), peak milk yield (PY), number of services per conception (NSC), days open (DO) and calving interval (CI). Data were analyzed using Multi Traits Animal Model. Least squares means were 4436 kg, 215 d and 37 kg for 305-dMY, LP and PY, respectively, and 3.45, 182 d, and 452 d for NSC, DO and CI, respectively. Season and year of calving and parity had significant effects on all traits, except that of year of calving on PY and parity on NSC. Sire had significant effect only on 305-dMY and PY. Estimates of heritability for 305-dMY, LP, PY, NSC, DO and CI were 0.20, 0.07, 0.19, 0.07, 0.03 and 0.07, respectively. Phenotypic correlations among productive or reproductive traits were positive and between productive and reproductive traits were likewise positive. Genetic correlations among productive or reproductive traits ranged from 0.75 to 0.80 and 0.22 to 0.45, respectively.

Keywords: Genetic evaluation, Holstein cows, Productive, Reproductive

Milk yield characteristics and fertility performance of dairy cows are principal factors to affect the profitability of a dairy enterprise. Early maturity, high fertility and rapid postpartum conception bring about extra calves and, consequently, more milk yield per unit of time throughout the herd life of a dairy cow (Khattab and Atil 1999). The genetic influence on fertility of dairy cows should be evaluated before detection of the direct effect of reproductive performance on cow's milk yield and its association with fertility. Kafidi et al. (1992), El-Nady (1996), Khattab and Atil (1999) and Mariam et al. (2013) reported that fertility traits have low heritabilities ranging between 0.01 and 0.04 and concluded that little genetic improvement per unit of time can be achieved for reproductive performance traits. Moreover, the genetic correlation between milk yield and reproductive traits were negative. The objectives of this study were to: estimate the effect of non-genetic factors on some productive and reproductive traits and estimate heritabilities, phenotypic and genetic correlations for the same groups of traits in a commercial herd of Holstein Friesian cows in Egypt.

MATERIALS AND METHODS

Data of the present study were obtained from the history

Present address: ¹Animal Production Department, Tanta University, Egypt. ²Animal Production Department, Alexandria University, Alexandria 22545, Egypt. [⊠]Corresponding author email: amr_rashad43@yahoo.com

sheets of Holstein Friesian cows kept in Negim Private Farm, located in Garbyia Governorate in the middle of Delta region of northern Egypt and comprised 1,017 records on cows completed one or more normal lactations and calving between 2008 to 2015. Cows were kept loose under semiopen sheds all the year round and were fed on concentrate mixture, rice straw and were allowed to graze on berseem (Trifolium alexandrinum) when available. The concentrate mixture consisted of 45% cotton seed cake, 26% wheat bran, 17% yellow maize, 7% rice bran, 2% molasses, 1% sodium chloride and 2% calcium carbonate. Concentrates were offered according to cow body weight and milk production twice a day before milking. Heifers were first inseminated artificially at 18 months of age and for subsequent seasons were initially inseminated 60-70 days postpartum. Cows were machine milked twice a day and milk yield recorded daily. Late pregnant cows and those producing above 10 kg a day were given extra amount of concentrate ration. Complete or incomplete records were included only if the cow remained in the herd for full lactation of 305 day period. Lactations initiated after abortion or those interrupted by injury or sickness were excluded. The studied traits were 305 day milk yield (305-dMY), lactation period (LP), peak milk yield (PY), number of service per conception (NSC), days open (DO) and calving interval (CI).

Statistical analysis: Data were analyzed preliminarily using GLM procedure of the SAS Computational program (Statistical Analysis System 2004). The model included the

Table 1. Unadjusted means, standard deviation (SD) and coefficient of variability (CV, %) for productive and reproductive traits in Holstein Friesian cows (no. = 1017)

Trait	Mean	SD	CV (%)
305 day milk yield (kg)	4436.00	2645.00	59.63
Lactation period (day)	215.00	131.00	60.93
Peak yield (kg)	37.00	9.00	24.32
No. of service/ conception	3.45	2.63	76.23
Days open (day)	182.00	124.00	68.13
Calving interval (day)	452.00	124.00	27.43

fixed effects of season and year of calving and parity and the random effects of sires and errors. Then the Multi Traits Animal Model (MTAM, Boldman *et al.* 1995) was utilized. The model included the fixed effects of month and year of calving and parity and the random effects of cows, permanent environment and residual.

RESULTS AND DISCUSSION

Unadjusted means, standard deviation and coefficient of variability for productive and reproductive traits are presented in Table 1. Means of 305-dMY and LP were lower than those reported by El-Arian et al. (2003) and Rashad (2013) who obtained ranges of 5021-5498 kg for 305-dMY and 286-390 d for LP when scrutinized data of other commercial herds of Holstein Friesian in Egypt. Mean of peak yield, however, was higher than those reported by El-Arian and Shalaby (2001) and El-Shalmani (2011) on other dairy herds of Friesian cows in Egypt, being 19.7 and 20 kg, respectively. Means of NSC, DO and CI for our study being 3.45, 182 and 452 d, respectively were lower than those reported by Rashad (2013) on another similar herd of Holstein Friesian cows in Egypt which were 185 and 469 d, respectively. However, the present NSC (3.45) was higher than that found by El-Nady (1996) which was 2.80 in another commercial herd of Holstein Friesian in Egypt. The large CVs for 305-dMY, LP, NSC and DO, reflect high variation between cows for such important traits of concern. Herd differences for these traits could be attributed to differences in climatic and management conditions and to the genetic background of cows in different commercial herds.

Non genetic factors: Least squares means and analysis of variance for the factors affecting productive and reproductive traits are presented in Tables 2 and 3. Year of calving had significant effects on 305-dMY, LP and PY and on NSC, DO and CI. These results are in agreement with those found on Friesian cows raised in different areas of Egypt (El-Nady 1996, Khattab and Atil 1999, El-Arian and Shalaby 2001, El-Arian et al. 2003, Noweir 2006, El-Shalmani 2011 and Rashad 2013). Similar results were also reported on Friesian cows in other countries (Kafidi et al. 1992, Bahreini et al. 2013, Mariam et al. 2013 and Goshu et al. 2014). Year to year variation in productive and reproductive traits may be attributed to changes in herd size, age of cows, diversed management practices from year to another and, consequently, phenotypic trends created by

Table 2. Least squares means ± standard errors for factors affecting productive traits in Holstein Friesian cows

Factor	LP (day)	305-dMY (kg)	PY (kg)
Year	**	**	**
2008	259.93±32.67ab	4032.60±247.10 ^c	36.03±0.75ab
2009	219.45±29.14ab	4057.56±251.19c	37.79±0.72a
2010	252.09±22.91ab	4672.07±242.16bc	37.60±0.65a
2011	208.16±20.64 ^b	4932.09±257.20b	37.01±0.69ab
2012	253.08±16.00ab	4821.59±252.75 ^b	35.57 ± 0.72^{b}
2013	270.56±12.90a	4748.26±227.01b	35.18±0.70 ^b
2014	240.37±11.07 ^b	6235.64±212.62a	38.00±0.67a
Season	*	**	**
Autumn	206.46±17.36 ^c	3449.69±167.90c	36.97±0.52b
Spring	304.89±24.63a	5027.14±267.13a	34.95±0.82°
Summer	262.18±19.84ab	4168.65±223.66 ^b	32.64 ± 0.72^{d}
Winter	225.90±17.09bc	4522.27±185.34ab	38.48±0.53a
Parity	NS	NS	**
1	250.82±16.16	3946.83±168.81	29.50±0.53c
2	239.53±18.14	4557.92±202.56	38.16±0.62a
3	224.09±21.30	4528.79±245.47	38.69±0.71a
4	275.08±24.81	4251.38±258.31	37.09±0.78ab
5	259.75±23.99	4174.75±282.24	35.36±0.87 ^b
Sire	NS	**	**

^{*,} Significant at P≤0.05; **, Significant at P≤0.01; ns, non-significant (P≥0.05). ^{a-d}Means with different letters in the same row within the same are significantly different. 305-dMY, 305 day milk yield; LP, lactation period; PY, peak milk yield.

Table 3. Least squares means ± standard error for factors affecting reproductive traits for Holstein Friesian cows

Factor	DO (day)	CI (day)	NSC	
Year	**	**	**	
2008	232.13±10.77 ^a	502.13±10.77 ^a	3.54 ± 0.24^{bc}	
2009	189.59±10.48 ^b	459.58±10.48°	3.34 ± 0.23^{c}	
2010	203.71±9.81 ^b	473.71±9.81 ^b	4.05 ± 0.22^{ab}	
2011	185.10±10.34 ^b	455.10±10.34bc	3.72 ± 0.23^{bc}	
2012	193.89±11.22b	463.89±11.22bc	3.66 ± 0.25 bc	
2013	209.55±10.75ab	479.55±10.75ab	4.52 ± 0.24^{a}	
2014	193.11±10.03 ^b	463.11±10.03°	3.84 ± 0.22^{bc}	
Season	**	**	**	
Autumn	171.91±8.01 ^c	441.91±8.01 ^c	3.03±0.18 ^c	
Spring	293.89±13.29a	563.89±13.29a	5.08 ± 0.30^{a}	
Summer	193.05±10.77 ^b	463.05±10.77 ^b	3.05 ± 0.24^{c}	
Winter	215.07 ± 8.60^{b}	485.07 ± 8.60^{b}	3.64 ± 0.19^{b}	
Parity	*	*	NS	
1	223.35±8.30 ^a	493.35±8.30a	3.64±0.19	
2	212.36±9.71ab	482.36±9.71ab	3.69 ± 0.22	
3	196.03±11.00b	466.04±11.00b	3.25 ± 0.25	
4	237.26±12.08 ^a	507.26±12.08a	4.16±0.27	
5	223.40±12.74ab	493.39±12.74a	3.76±0.29	
Sire	NS	NS	NS	

^{*,} Significant at P≤0.05; **, Significant at P≤0.01; NS, non-significant (P≥0.05). ^{a-c}Means with different letters in the same row within the same are significantly different. DO, days open; CI, calving interval, NSC, number of service per conception.

these factors. Also, season of calving had significant effects on productive and reproductive traits (P<0.01). This is in agreement with results of El-Nady (1996), Khattab and Atil (1999), El-Arian *et al.* (2003), Noweir (2006), El-Shalmani (2011), Bahreini *et al.* (2013), Mariam *et al.* (2013) and Rashad (2013). Winter and spring calvers showed higher 305-dMY, LP and PY than summer and autumn calvers, probably due to the higher availability of green fodder and to the accessibility of the good weather. The longer DO, CI and NSC obtained for cows calving during winter and spring seasons reflect lower fertility measures and may be associated with high milk production of these cows. The antagonistic relationship between milk production and fertility are well documented and form a technical problem in the management practices of dairy enterprises.

Parity had significant effects on all studied traits (P<0.05 or 0.01). The present results are in agreement with those obtained by El-Nady (1996), Khattab and Atil (1999), El-Arian and Shalaby (2001), El-Arian *et al.* (2003), Noweir (2006), El-Shalmani (2011) and Rashad (2013). All traits increased with the advancement of parity till third or fourth then decreased thereafter. This is in logical agreement with the increase in body weight associated with advancement of age and the development of the secretory tissue of the udder. At this age, cows become mature with fully developed body weight and size accompanied by an increase in the size and functions of digestive and circulatory systems, mammary gland, and other body organs. This along with the increase in feed intake and feed utilization increase the efficiency of milk synthesis and secretion.

Sire effect: Sire had significant effects on 305-dMY and PY (P<0.01), but had no significant effect on LP, DO, CI and NSC. These results indicated that genetic improvement of milk yield could be achieved through sire selection. Similar results were reported by El-Nady (1996), Khattab and Atil (1999), Noweir (2006) and Rashad (2013).

Genetic parameters: The heritability estimates of productive and reproductive traits and phenotypic and genetic correlations among them are shown in Table 4. The heritability estimate of 305-dMY was 0.20. This value was similar to that estimated by Kafidi et al. (1992), Mostafa (2001) and slightly smaller than that reported by Bahreini et al. (2013) and Goshu et al. (2014), but were lower than that reported by El-Arian et al. (2003). Heritability estimate for PY was 0.19, nearly similar to those found by Noweir (2006) and Mariam et al. (2013). The moderate estimates of heritability for 305-dMY and PY suggest that more efforts should be made to bring about an improvement in milk yield through phenotypic selection, also better managerial practices should not be ignored. Estimate of heritability for LP was very small approaching 0.07 and was similar to that reported by El-Arian et al. (2003) and slightly higher than that reported by Mariam et al. (2013). Heritability estimates for DO, CI and NSC were 0.03, 0.07 and 0.07, respectively. The present low estimates were similar to those reported by Kafidi et al. (1992), E-Nady (1996), Khattab and Atil (1999), Noweir (2006), El-Shalmani (2011),

Table 4. Heritability estimates (on diagonal), genetic correlation (below diagonal) and phenotypic correlation above diagonal among productive and reproductive traits

Trait	305-dMY	LP	PY	NSC	DO	CI
305 d M	Y 0.20	0.91	0.90	0.50	0.51	0.51
LP	0.77	0.07	0.85	0.80	0.91	0.91
PY	0.80	0.75	0.19	0.01	0.04	0.05
NSC	0.10	0.25	0.24	0.03	0.22	0.54
DO	0.05	0.35	0.23	0.27	0.07	1.00
CI	0.07	0.39	0.35	0.22	0.45	0.07

305-dMY, 305 day milk yield; LP, lactation period; PY, peak milk yield; NSC, number of service per conception; DO, days open; CI, calving interval.

Mariam *et al.* (2013) and Rashad (2013) which ranged from 0.01 to 0.08. Low heritability estimates for LP, DO, CI and NSC indicated that these traits are affected mainly by environmental factors. Therefore, improvement of feeding, management, detection of heat and insemination at proper time with good quality semen would help in improving NSC, DO and CI. Khattab and Atil (1999) for another herd of Friesian cows in Egypt, found that heritability for DO and CI were 0.05 and concluded that a major part of variation in these traits were of environmental origin and recommended that selection for these traits would not be effective in bringing about significant genetic improvement. Alternatively, good management practices can play an effective role in improving these traits.

Genetic correlations among 305-dMY, LP and PY were high, positive and ranged from 0.75 to 0.80. These results indicated that PY can be used successfully for early prediction of selection progress. These results also suggested that genes associated with long lactation period might be associated with those favourable for milk yield and, therefore, selection for length of lactation is also expected to increase milk production. These results were comparable to those found by El-Nady (1996), Khattab and Atil (1999), Noweir (2006), El-Shalmani (2011), Mariam et al. (2013). Genetic correlation between reproductive traits and milk traits though positive were moderate and ranged from 0.07 to 0.39. The implications of those results on genetic improvement in milk production are unfavourable might decrease breeding efficiency. Similar antagonism has been described by many authors (Kafidi et al. 1992, El-Nady 1996, El-Shalmani 2011 and Mariam et al. 2013) but the causal factors have not been well defined yet. This antagonism seems to be more pronounced for primiparous and decreases thereafter with parity advancement. On the other hand, Khattab and Atil (1999) found negative genetic correlation between milk traits and reproductive traits.

Most estimates of phenotypic correlations were similar in value and direct to the corresponding estimates of genetic correlation. High positive phenotypic correlations between 305-dMY, LP and PY indicated that the three traits can be used alternatively for evaluating milk producing ability of cow because cows with higher milk yield have high peak

yield and are characterized with longer lactation period. The specific positive phenotypic correlations between milk production traits and DO and CI may occur through a direct causative relation; the longer DO will result in longer CI and consequently will allow more days in milk for the cow to produce more milk.

The moderate heritabilities for 305 day milk yield and peak yield indicated the possibility of achieving genetic improvement for milk production through selection. Whereas low heritability estimates for lactation period, number of service per conception, days open and calving interval may indicate that little improvement for reproductive traits may be expected in this herd but improvement may occur by developing more efficient feeding system and managerial practices.

ACKNOWLEDGEMENTS

The authors wish to thank the Negim private dairy farm for providing data from their records for performing this study. The cooperation of the company's team is greatly appreciated.

REFERENCES

- Bahreini M R, Amini A A, Aslaminejad A A and Tahmoorespour M. 2013. Estimation of genetic parameter for production traits of Iranian Holstein dairy cattle. *Livestock Research for Rural Development* 25: 156.
- Boldman K C, Kriese L A, Van Vleck L D, Van Tassell C P and Kachman S D. 1995. Manual for use of MTDFREML. Lincoln, USA. *Department of Agriculture, Agricultural Research Service* p. 120.
- El-Arian M N and Shalaby N A. 2001. Genetic analysis for lactation curve traits and persistency indices for Friesian cattle in Egypt. *Mansoura University Journal of Agricultural Science* (Egypt) **26**: 207–16.

- El-Arian M N, El-Awady H G and Khattab A S. 2003. Genetic analysis for productive traits of Holstein Friesian cows in Egypt through MTDFREML Program. *Egyptian Journal of Animal Production* **40**: 99–109.
- El-Nady S S. 1996. 'Genetic study for fertility traits in a herd of Friesian cattle in Egypt'. M.Sc. Thesis. Faculty of Agriculture, Tanta University, Egypt.
- El-Shalmani A F. 2011. 'Evaluation of production performance in relation to genetic structure of some economical traits in Friesian cows'. Ph.D. Thesis. Faculty of Agriculture, Saba Basha, Alexandria University, Egypt.
- Goshu G, Singh H, Petersson K J and Lundeheim N. 2014. Heritability and correlation among first lactation traits in Holstein Friesian cows at Holeta Bull dam station. *International Journal of Livestock Production* 5: 47–53.
- Kafidi M P C, Leroy P, Michaux C and Francois A. 1992. Relationship between milk production and current calving interval in Belgian Black and White breed. *Journal of Animal Breeding and Genetics* 109: 136–43.
- Khattab A S and Atil H. 1999. Genetic study of fertility traits and productive in a local born Friesian cattle in Egypt. *Pakistan Journal of Biological Sciences* **2**(4): 1178–83
- Mariam M H, Bowman P J and Pryce J E. 2013. Genetic analyses of fertility and production traits in Holstein herds with low and high mean calving intervals and in Jersey herds. *Journal of Dairy Science* **96**: 655–67.
- Mostafa M A. 2001. Relationship between milk production and postpartum reproductive performance in Friesian cows. *Mansoura University Journal of Agricultural Sciences* (Egypt) **26**: 1909–20.
- Noweir A M. 2006. 'A comparison between sire model and animal model for some economic traits on Friesian cattle in Egypt'. M.Sc. Thesis. Faculty of Agriculture, Tanta University, Egypt.
- Rashad A M. 2013. 'Evaluation of performance of some dairy herds in Egypt'. Ph.D. Thesis. Faculty of Agriculture, Alexandria University, Egypt.
- SAS. 2004. Statistical Analysis System User's Guide (version 9). SAS Institute. Inc. Cary. North Carolina. USA.