Effect of dietary inclusion of vegetable oils on nutrient utilization and ruminal fermentation in Surti goats

A P RAVAL^{1⊠}, V R PATEL¹, L M SORATHIYA², N B PATEL¹ and R R SINGH¹

Navsari Agricultural University, Navsari, Gujarat 396 450 India

Received: 8 December 2020; Accepted: 28 August 2021

Keywords: Nutrient utilization, Rice bran oil, Soybean oil, Surti goat

In India, dairy goat farming is gaining considerable attention amongst small and marginal farmers due to low input and profitable returns. Use of dietary fat has received significant interest due to its high caloric value (Adeyemi et al. 2015) and its ability to modify fatty acid composition of ruminant's products, which are rich in CLA, n-3 and n-6 fatty acids (Bouattour et al. 2008). Vegetable fat supplements are usually more effective in the form of free oil than seeds or cakes at increasing the milk FA content (Nudda et al. 2014). However, due to extensive biohydrogenation of unsaturated lipids in the rumen (Harfoot and Hazlewood 1997) and their negative effects on fibre digestion, higher level of inclusion of dietary oils in ration is limited. Rumen protected fats are good alternative but expensive (Dewhurst et al. 2003) and may not be easily available for small farmers. Thus, supplementation of ration with low cost and easily available non-inert fats would be more feasible and logical. Further, PUFA rich oils like soybean oil (Bouattour et al. 2008, Almeida et al. 2019) and rice bran oil (Maia et al. 2006) supplementation in goats to alter final ruminant products fatty acid composition in western countries has been studied recently. However, to the best of our knowledge, there is scanty information about supplementation of PUFA rich oils in milch goat breed of India. Therefore present experiment was planned to study the effects of soybean oil or rice bran oil supplementation on nutrient utilization and ruminal fermentation in Surti goats.

The present study was carried out at Livestock Research Station (LRS), Navsari Agricultural University, Navsari, Gujarat, India. Multiparous lactating Surti goats (24) were randomly distributed into four groups on the basis of live body weight (28.10±1.04 kg), parity (4.47±0.47) and previous lactation yield (133.39±5.00 kg) for period of 150 days after kidding. Treatment groups were classified as basal diet supplemented with no oil (CON), 3% of DMI of soybean oil (SBO), 3% of DMI of rice bran oil (RBO) and equi-proportional blend of 1.5% of DMI of soybean oil and rice bran oil each (SRBO). Basal diet consisted of

Present address: ¹Navsari Agricultural University, Navsari, Gujarat. ²Kamdhenu University, Gandhinagar, Gujarat. ⊠Corresponding author email: dr.ajayraval@gmail.com

compound concentrate mixture, green jowar and pigeon pea straws. The additives were mixed with concentrate mixture before morning feeding at 08:30 h daily. Compound concentrate mixture was fed at 08:30 h, green sorghum at 10:00 h and 16:00 h while pigeon pea straws were fed *ad lib*. during night hours. Experimental animals were individually fed for 150 days according to ICAR feeding standard (2013).

Body weight and dry matter intake was recorded at fortnight interval throughout experimental period. A metabolism trial of seven days was conducted at mid experiment to assess nutrient utilization efficiency (digestibility) where, all the animals were shifted to the metabolic cages, having facilities for separate urine and faeces collection. Daily feed intake, left over and excretion of faeces and urine were recorded and representative samples were collected for further analysis. Samples of feed ingredient were analysed for proximate composition according to the methods of AOAC (2005) and fibre fractions by Van soest et al. (1991). Rumen liquor samples were collected from each experimental animal through stomach tube in morning hours after feeding of concentrates at 15, 75 and 150 days of experiment. Rumen samples were filtered through muslin cloth and pH was immediately measured with digital pH meter. Strained rumen liquor (SRL) of 50 ml was collected in the airtight plastic bottle container and kept at -20°C until laboratory analysis. Total volatile fatty acids (TVFA) production was determined by steam distillation process using Markham micro-distillation apparatus as reported by Barnet and Ried (1956). Ruminal ammonia nitrogen, total nitrogen, TCA precipitable nitrogen was estimated according to Kjeldahl method (AOAC 2005) while soluble nitrogen was determined by difference between total nitrogen and TCA precipitable nitrogen.

Data for ruminal parameters were analysed by using the PROC MIXED procedure of SAS with repeated measures (version 9.3; SAS Institute Inc., Cary, NC) using Tukey's HSD (honestly significant difference) multiple comparison test and following statistical model was used.

$$Y_{ijk} = \mu + A_k + D_i + T_j + (D_i \times T_j) + e_{ijk}$$

where, Y_{ijk} , Dependent variable, μ , overall mean; A_k ,

Table 1. Proximate composition of experimental feeds (% DM basis)

Attribute	Concentrate mixture	Pigeonpea straws	Green jowar	
Dry matter	89.20	90.25	22.20	
Organic matter	91.27	90.70	83.40	
Crude protein	19.30	09.41	04.00	
Ether extract	04.11	01.26	01.89	
Neutral detergent fibre	22.96	74.48	58.35	
Acid detergent fibre	15.31	57.40	42.60	
Crude fibre	06.90	29.70	29.20	
Nitrogen free extract	60.96	50.33	48.31	
Hemicellulose	07.65	17.08	15.75	
Total carbohydrate	67.86	80.03	77.51	
Lignin	03.48	04.75	10.73	
Ash	08.73	09.30	16.60	
Calcium	01.49	01.68	00.39	
Phosphorus	01.23	00.28	00.20	

Random effect of animals; D_i , Fixed effect of diet; T_j , Fixed effect of time; e_{ijk} , Residual error.

The statistical model contained fixed effects of treatment and experimental period and their interactions, random effects of animal and residual error. Parameters related to digestibility of feed and nitrogen balance were analysed by one-way ANOVA using tukey's HSD. Differences were declared significant at P<0.05, with values of P<0.10 being interpreted as a trend towards significance.

Proximate composition of experimental feeds offered is presented in Table 1. The roughage: concentrate ratio was tried to maintain at 70:30 during whole experimental period. The diet was isonitorgenous but due to addition of oil it was not isocaloric (Bouattor *et al.* 2008, Adeyemi *et al.* 2015).

Average initial and final body weight (kg) of treatment groups was similar (P>0.05) amongst treatment groups. Numerically, increased body weight with time can be correlated with increased DMI and metabolizable energy intake (Table 2) and suggests that all animals were under positive energy and nitrogen balance to meet the nutrient requirements for milk production. Although effect of diet on body weight was not reflected in oil supplemented groups, which might be due to extra available energy that might have been diverted to milk production. Dry matter intake (g/d) remained similar (P>0.05) amongst treatment groups. DMI from concentrate and roughage also remained statistically similar (P>0.05). Present findings are supported by Bouattour et al. (2008), Titi and Rahman (2013), Adeyemi et al. (2015) and Ferreira et al. (2018). Statistically similar DMI due to addition of unprotected oil into ration of lactating goat indicates that plant oil inclusion was in sufficient amount and oil either alone or in combination does not hamper fibre digestion. On the contrary, when Bernard et al. (2015) supplemented linseed and fish oil in goat and Kitessa et al. (2001) supplemented fish oil in sheep they reported that addition of plant origin oil or animal origin oils tends to depress DM intake in small ruminants.

Nutrient intake and digestibility of CP, NDF and ADF for all the treatment groups remained statistically (P>0.05) similar (Table 3). Statistically similar (P>0.05) digestible crude protein intake might be due to isonitrogenous diet and further experimental groups showed non-significant body weight change during the experiments which indicates that nitrogen metabolism was not affected with diet. Almeida *et al.* (2019) found similar protein and fibre digestibility when goats were supplemented with soybean, linseed or fish oil. Non significant digestibility of fibre fractions indicates that ruminal fibre digestion was not

Table 2. Effect of vegetable oil on nutrient intake and apparent digestibility of experimental animals

Attribute	CON	SBO	RBO	SRBO	SEM	P value
Nutrient Intake (g/d)						
Initial body weight (kg)	27.42	28.48	27.97	28.52	0.97	0.980
Final body weight (kg)	29.48	30.15	29.75	30.97	0.93	0.956
Dry matter	975.31	1016.27	1008.91	994.54	28.42	0.751
Concentrate	350.21	354.71	350.07	367.57	5.83	0.144
Dry fodder	511.97	576.59	516.71	542.08	16.72	0.622
Green fodder	256.53	252.99	263.01	222.99	11.19	0.625
Crude protein	118.12	124.92	116.82	122.96	2.27	0.568
Ether extract	23.41 ^b	58.27 ^a	56.58a	54.01 ^a	3.08	< 0.001
Neutral detergent fibre	652.63	699.72	670.21	659.47	15.97	0.762
Acid detergent fibre	490.44	526.72	504.32	496.10	12.11	0.755
DCP	84.85	88.83	84.19	85.05	1.82	0.823
TDN	678.46 ^b	778.97^{a}	771.68 ^a	721.44 ^{ab}	21.73	< 0.049
Apparent Digestibility (%)						
Dry matter	64.92	64.08	66.10	61.03	1.53	0.708
Crude protein	71.91	71.14	72.23	69.45	1.19	0.862
Ether extract	74.31 ^b	93.18 ^a	93.60a	92.38 ^a	1.81	< 0.001
Neutral detergent fibre	67.24	65.79	68.22	63.70	1.40	0.715
Acid detergent fibre	65.83	65.61	66.90	62.06	1.45	0.693

abc, Means with different superscript in a row differ significantly (P<0.05).

Table 3. Effect of vegetable oils on nitrogen balance (g/d) of experimental animals

Attribute	CON	SBO	RBO	SRBO	SEM	P value
N in feed	18.90	19.99	18.69	19.67	0.36	0.569
N in faeces	5.32	5.78	5.22	6.06	0.29	0.734
N in urine	6.42	6.14	5.45	6.79	0.31	0.070
N in milk	3.18	4.00	4.17	2.73	0.35	0.435
N-balance	3.98	4.07	3.85	4.09	0.40	0.863
N-retained % of	21.07	20.36	20.60	20.77	1.54	0.980
N Intake						

hampered by addition of oil and level of oil inclusion was adequate for optimal ruminal environment. Present findings were further, supported by ruminal *pH* of experimental animals which was within range (Table 4). In contrast, Lunsin *et al.* (2012) found decreased fibre fractions digestibility with increasing level of rice bran oil in cattle.

However, EE intake and digestibility was significantly (P<0.01) higher in all three oils supplemented groups as compared to control but remained at par (P>0.05) between oil supplemented groups. Increased EE digestibility can be attributed to the fact that non-fatty acids lipids in the diet are relatively less digestible and diluting this fraction with more easily digestible fatty acids, increases the digestibility of EE fraction (Li *et al.* 2009, Adeyemi *et al.* 2015). In contrast, Kholif *et al.* (2018) found non-significant ether extract digestibility when goats were supplemented with flaxseed oil and seeds. Due to increased EE intake with oils supplementation, TDN intake was also significantly (P<0.05) higher in SBO, RBO and SRBO as compared to CON.

Protein metabolism and turnover rate can be effectively studied by estimation of nitrogen balance. Nitrogen intake from feed for experimental groups remained at par (P<0.05). Nitrogen excretion from faeces, urine and milk and nitrogen retained per cent of intake also remained statistically (P>0.05) similar (Table 3). Non significant DMI and final body weight indicates that protein metabolism was not hampered by oil supplementation. Further, nitrogen balance also indicated that all the animals were on positive nitrogen balance throughout experimental period. Adeyemi *et al.* (2016) also found non-significant nitrogen balance in lactating goat supplemented with blend of canola and palm oil.

Ruminal parameters like pH, ammonia nitrogen, total nitrogen and its fraction were at par (P<0.05) amongst treatments groups and within normal range (Adeyemi et al. 2015). Ruminal pH was affected by neither diet nor sampling time and was ideal for fibre digestion in rumen (Orskov 1994). Further, reduced fibre digestibility and microbial synthesis (De veth and Kolver 2001) have been observed when rumen pH falls below 6.2. Similarly, ADF and NDF digestibility also suggest that oils supplementation did not affect the fibre digesting bacterial population hence, fibre degradability. Ruminal TVFA (mmol/L) was significantly (P<0.05) increased with dietary inclusion of soybean oils and/or rice bran oil as compared to control. However, time had no effect on TVFA concentration. Total VFA concentration in the rumen depends on nutrient digestibility, rumen pH, passage rate, rate of absorption as well as the microbial population and their activities in the rumen. Significantly (P<0.01) higher concentrations of TVFA with SBO, RBO and SRBO indicates more efficient anaerobic fermentation (Morsy et al. 2015).

Ruminal ammonia-N did not differ (P>0.05) significantly with both diet and time. In present study, concentration of rumen ammonia-N was above the minimum concentrations required (≥5 mg/dL) for rumen microbial growth and for optimum fibre degradation in the rumen (Morsy et al. 2015). Non significant (P>0.05) ammonia-N concentrations in the treatment groups can be considered as an indicator of optimum ruminal fermentation rate and microbial protein synthesis. Earlier studies have reported an increase (Messana et al. 2013), a decrease (Morsy et al. 2015) or no variation (Adeyemi et al. 2015) in ammonia-N concentration following lipid supplementation. However, an extensive review by Doreau and Ferlay (1995) suggested little or no effect of dietary lipid on ammonia-N concentration. Total N (mg/dl), TCA precipitable nitrogen and soluble nitrogen remained similar (P>0.05) amongst treatment groups and neither diet nor sampling time showed any effects on mentioned parameters.

SUMMARY

With an objective to study vegetable oils supplementation on nutrient utilization and ruminal fermentation, 24 multiparous lactating Surti goats were divided into four

Table 4. Effect of vegetable oil supplementation on ruminal fermentation of experimental animal

Parameter	CON	SBO	RBO	SRBO	SEM	P value		
						D	T	D×T
рН	6.44	6.49	6.41	6.45	0.04	0.645	0.688	0.207
TVFA (mmol/L)	6.26 ^b	7.06^{a}	6.85 ^{ab}	6.99 ^{ab}	0.29	< 0.012	0.422	0.719
Ammonia Nitrogen (mg/dl)	12.22	12.25	12.72	12.49	0.12	0.217	0.201	0.830
Total Nitrogen (mg/dl)	76.08	76.66	75.55	76.72	2.97	0.991	0.928	0.976
TCA Nitrogen (mg/dl)	29.43	31.30	30.55	30.72	1.38	0.810	0.512	0.988
Soluble Nitrogen (mg/dl)	46.65	45.36	45.00	46.00	3.02	0.981	0.663	0.990

D, Diet; T, Time; D×T, Diet and time interaction; SEM, Standard error of mean; ^{abc}, Means with different superscript in a row differ significantly (P<0.05).

groups as basal diet supplemented with no oil (CON), 3% of DMI soybean oil (SBO), 3% of DMI of rice bran oil (RBO) and equi-proportional blend of 1.5% of DMI of soybean oil and rice bran oil each (SRBO). DM, CP, NDF and ADF intake (g/d) and their digestibility (%) remained statistically similar amongst dietary treatments groups, except EE which was significantly improved in all the oil supplemented groups as compared to control. Nitrogen balance of experimental groups remained unaffected and all the animals were under positive nitrogen balance. Rumen metabolites like pH and total nitrogen and its fractions (ammonia N, TCA precipitable N and soluble N) remained similar amongst treatment except TVFA. Thus, soybean oils and/or rice bran oils at level of 3% of DMI can be effectively incorporated in ration of lactating Surti goats without affecting nutrient utilization and rumen fermentation.

ACKNOWLEDGEMENTS

The authors are thankful to authorities and Vice chancellor of Navsari Agricultural University, Gujarat for providing necessary facilities and funding.

REFERENCES

- Adeyemi K D, Sabow A B, Aghwan Z A, Ebrahimi M, Samsuddin A A, Alimon A R and Sazili A Q. 2016. Serum fatty acids, blood biochemical indices and antioxidant status in goats fed with canola oil and palm oil blend. *Journal of Animal Feed Science and Technology* **58**: 1–6.
- Adeyemi K D, Sazili A Q, Ebrahimi M, Samsuddin A A, Alimon A R, Karim R, Karsani S A and Sabow A B. 2015. Effects of blend of canola oil and palm oil on nutrient intake and digestibility, growth performance, rumen fermentation and fatty acids in goats. *Animal Science Journal* **86**: 270–78.
- Almeida O C, Ferraz M V, Susin I, Gentil R S, Polizel D M, Evandro M, Ferreira E M, Barroso J P and Pires A V. 2019. Plasma and milk fatty acid profiles in goats fed diets supplemented with oils from soybean, linseed or fish. Small Ruminant Research 170: 125–30.
- AOAC. 2005. *Official Methods of Analysis*. Association of Official Analytical Chemist, 18th ed. Washington, DC.
- Barnett J G and Reid R L. 1956. Studies on the production of volatile fatty acids from the grass by rumen liquor in an artificial rumen. *The Journal of Agricultural Sciences* **48**: 315–21.
- Bernard L, Leroux C, Rouel J, Delavaud C, Shingfield K J and Chilliard Y. 2015. Effect of extruded linseeds alone or in combination with fish oil on intake, milk production, plasma metabolite concentrations and milk fatty acid composition in lactating goats. *Animal* 9(5): 810–21.
- Bouattour M A, Casals R, Albanell E, Such X and Caja G. 2008. Feeding soybean oil to dairy goats increases conjugated linoleic acid in milk. *Journal of Dairy Science* **91**: 2399–2407.
- De Veth M and Kolver E. 2001. Diurnal variation in *pH* reduces digestion and synthesis of microbial protein when pasture is fermented in continuous culture. *Journal of Dairy Science* **84**: 2066–72.
- Dewhurst R J, Scollan N, Lee M, Ougham H and Humphreys M. 2003. Forage breeding and management to increase the beneficial fatty acid content of ruminant products. *Proceedings*

- of the Nutritional Society 62: 329–36.
- Doreau M and Ferlay A. 1995. Effect of dietary lipids on nitrogen metabolism in the rumen: A review. *Livestock Production Science* 43: 97–110.
- Ferreira E M, Ferraz M V, Polizel D M, Urano F S, Susin I, Gentil R S, Biehl M V, Biava J S and Pires A V. 2018. Milk yield and composition from ewes fed raw soybeans and their lamb's performance. *Animal Feed Science and Technology* **238**: 1–8.
- Harfoot C G and Hazlewood G P. 1997. Lipid metabolism in the rumen, pp. 382–426. (Eds) Hobson P N and Stewart C S. *The Rumen Microbial Ecosystem*. Chapman and Hall, London, UK.
- ICAR. 2013. *Nutrient Requirements of Sheep, Goat and Rabbit*. Indian Council of Agricultural Research, New Delhi.
- Kholif A E, Morsy T A and Abdo M M. 2018. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effects on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. *Animal Feed Science and Technology* **244**: 66–75.
- Kitessa S M, Gulati S K, Ashes J R, Fleck E, Scott T W and Nichols P D. 2001. Utilisation of fish oil in ruminants-I. Fish oil metabolism in sheep. *Animal Feed Science and Technology* 89: 189–99.
- Li X Z, Yan C G, Long R J, Jin G L, Shine Khuu J, Ji B J, Choi S H, Lee H G and Song M K. 2009. Conjugated linoleic acid in rumen fluid and milk fat and methane emission of lactating goats fed a soybean oil-based diet supplemented with sodium bicarbonate and monensin. *Asian Australasian Journal of Animal Sciences* 11: 1521–30.
- Lunsin R, Wanapat M, Yuangklang C and Rowlinson P. 2012.
 Effect of rice bran oil supplementation on rumen fermentation, milk yield and milk composition in lactating dairy cows.
 Livestock Science 145: 167–73.
- Maia J B, Branco A F, Mouro G F, Coneglian S M, Santos G T, Minella T F and Guimaraes K C. 2006. Feeding vegetable oil to lactating goats: Milk production and composition and milk fatty acids profile. *Brazilian Journal of Animal Science* 35(4): 1–13.
- Messana J D, Berchielli T T, Arcuri P B, Reis R A, Canesin R C and Ribeiro A F. 2013. Rumen fermentation and rumen microbes in Nellore steers receiving diets with different lipid contents. *Revista Brasileira De Zootecnia* **42**: 204–12.
- Morsy T A, Kholif S M, Kholif A E, Matloup O H, Salem A Z and Abu Elella A. 2015. Influence of sunflower whole seeds or oil on ruminal fermentation, milk production, composition and fatty acid profile in lactating goats. *Asian Australasian Journal of Animal Sciences* 28: 1116–22.
- Nudda A, Battacone G, Neto O B, Cannas A, Francesconi A H, Atzori A A and Pulina G. 2014. Feeding strategies to design the fatty acid profile of sheep milk and cheese. *Revista Brasileira de Zootecnia* 43(8): 445–56.
- Orskov E. 1994. Recent advances in understanding of microbial transformation in ruminants. *Livestock Production Science* **39**: 53–60
- Titi H H and Rahman A A. 2013. Effect of supplementation with vegetable oil on performance of lactating Awassi ewes, growth of their lambs and on fatty acid profile of milk and blood of lambs. *Archives Animal Breeding* **56**: 467–79.
- Van Soest P J, Robertson J B and Lewis B A 1991. Methods of dietary fibre, neutral detergent fibre and non-starch polysaccharide in relation to animal nutrition. *Journal of Dairy Science* 74: 3583–97.