Leucaena leucocephala leaves and prickly pear (Opuntia ficus-indica) as substitutes for alfalfa hay (Medicago sativa L.) and their effects on the gas and methane production, prevalence of methanogens and patterns of ruminal fermentation in vitro

JESUS BERNARDO PÁEZ LERMA 1 , MANUEL MURILLO ORTIZ 2 , KARINA AIDE ARAIZA PONCE 2 , SANDRA CONSUELO MARTINEZ ESTRADA 3 , NICOLAS OSCAR SOTO CRUZ 1 and J NATIVIDAD GURROLA REYES 3

Instituto Politécnico Nacional, CIIDIR-Unidad Durango. Sigma 119. Durango, México. 34220

Received: 23 February 2021; Accepted: 12 September 2021

Keywords: In vitro fermentation, Leucaena leucocephala, Methane, Prickly pear

Alfalfa hay has been shown to be rich in crude protein (CP) as well as rapidly degradable protein in the rumen and high inclusion in the diet usually reduces nitrogen (N) utilization and increases urine N excretion (Phelan et al. 2015). The use of extracts of various plants from their leaves, fruits or roots has recently been recognized for their antimicrobial and anti-methanogenic properties attributed to secondary metabolites (Malik and Singhal 2008a). Plants with bioactive contents (saponins and tannins) to modify fermentation and ruminal inhibition of methanogenesis, are an option and are generally safe, cheap, and easily available in a wide range of vegetables (Srinivas and Krishnamoorthy 2013). In this way, some plants such as *Leucaena* leaves and prickly pear may be used as alternative forage sources. Leucaena leucocephala is a legume species that is highly available and commonly used as forage for ruminants feeding (Montoya-Flores et al. 2020). Likewise, prickly pear has recently been introduced into ruminants feeding. Therefore, the aim of this study was to evaluate the effect of replacing alfalfa hay with Leucaena leaves and prickly pear as an alternative forage, on gas and methane production, ruminal fermentation patterns and amount total of methanogens during in vitro fermentation.

Four treatments were evaluated: (T1) alfalfa hay + concentrate, (50: 50%, DM); (T2) alfalfa hay + *Leucaena* leaves + concentrate, (30: 20: 50%, DM); (T3) alfalfa hay + prickly pear + concentrate, (30: 20: 50%, DM); (T4) alfalfa hay + *Leucaena* leaves + prickly pear + concentrate (30: 10: 10: 50%, DM). The gas accumulative production was recorded after 2, 4, 6, 8, 12, 16, 24, 36, 48, 72 and 96 h of incubation and the data were adjusted to the model proposed by France *et al.* (2002). The methane production measurement was carried out with a GEMTM5000

Present address: ¹National Technological Institute of Mexico. ³National Polytechnic Institute, Mexico. ²Faculty of Veterinary Medicine and Zootechnics, Juarez University of the State of Durango. [™]Corresponding author email: natigre1@hotmail.com

equipment. The analysis of NH₃-N and volatile fatty acids was performed by ultraviolet spectrophotometry and gas chromatography, respectively (Galyean 2010). The deoxyribonucleic acid extraction was carried out using the method described by Rojas *et al.* (2008). The primers used for the detection of bacteria and total methanogens were 16S rRNA and mcrA, respectively (Denman *et al.* 2007), while the absolute quantification was obtained with the equation proposed by Angarita *et al.* (2015). Obtained data were analyzed according to a completely randomized design using GLM procedures of SAS (2012).

With respect to in vitro gas parameters and methane production, the higher A and Kd values were found in T1 and the lower in T2 (p<0.05) (Table 1). The A and Kd values obtained with T1, are consistent with those reported by Torres et al. (2020), who fermented under in vitro conditions, alfalfa hay plus concentrate in a range 50:50, respectively. The methane production was affected significantly by treatments (p< 0.05). The highest methane productions were recorded in T3 and the lowest in T2 ($p \le 0.05$). In the present study, the reduction in the methane production registered in T1 could be attributed to the increase in propionate concentration, because propionate formation consumes reducing equivalents that promote the methanogenesis (Moos et al. 2000), whereas the reduction in the methane production registered in T2 and T3 could be explained by the CT content in diet.

Results reported here are in agreement with that of Rira *et al.* (2015) who found under *in vitro* conditions, a reduction of 63% in methane production when they included in the diets various levels of *L. leucocephala*.

According to the data of the ruminal fermentation patterns, the highest ammonia-N concentration and propionate concentration were recorded in T1 and the lowest in T2 (p<0.05). The concentration of butyrate increased (p<0.05) in T4 compared to the other treatments (p<0.05). The observed ammonia-N values in this study are within

Table 1. Gas production parameters and methane production of experimental treatments.

Parameter	Treatment						
	T1	T2	Т3	T4	p<		
A ml/g DM	116.2±1.28a	102.1±1.12 ^d	114.4±1.11 ^b	106.7±1.32°	0.001		
Kd/ml h	0.18 ± 0.03^{a}	0.11 ± 0.08^{d}	0.15 ± 0.02^{b}	0.13 ± 0.05^{c}	0.004		
Lag h	3.0 ± 0.12	3.3±0.16	3.1±0.22	3.1±0.39	0.412		
CH ₄ ml/g DM	13.7 ± 0.19^{b}	12.2±0.17 ^c	15.8±0.12a	12.8±0.11 ^c	0.050		
Ammonia-N, mg d/L	12.6±0.81a	9.7 ± 0.77^{c}	12.3±0.54a	10.5±0.31 ^b	0.024		
Total, VFA, mM	106.8±1.11a	68.5±1.42 ^d	79.3±2.11 ^b	75.6±1.16 ^c	0.048		
Propionate, mol 100/mol	24.4 ± 0.35^{a}	18.2±0.47 ^d	22.3±0.93b	19.3±0.75°	0.033		
Butyrate mol 100/mol	5.7±0.22 ^c	9.1±0.91 ^b	9.3 ± 0.15^{b}	10.1±0.48a	0.027		

Row bearing different superscripts differ significantly (p<0.05).

the optimum range to maximize the dry matter intake and organic matter utilization in the rumen which is reported between 5 and 10 mg/dl (Chandrasekharaiah *et al.* 2011). In this study, changes in propionate and butyrate concentrations could probably be explained by NFC content supplied particularly for the alfalfa hay (Wang *et al.* 2020). The results are consistent with the findings in previous studies in which alfalfa hay, *Leucaena leucocephala* and *Opuntia ficus-indica* were evaluated as forage sources in ruminant diets (Yuan *et al.* 2020).

The ruminal microorganism populations are summarized in Table 2. The total bacteria and total methanogens were not affected by treatments (p>0.05). Results obtained in total bacteria and total methanogens are higher to those reported by Angarita *et al.* (2015) and Montoya-Flores *et al.* (2020) who evaluated star grass hay, Guinea grass hay and different levels of *L. leucocephala* under *in vivo* conditions.

McSweeney *et al.* (2001) suggested that the size of the population is not the sole factor associated with methane production, and that methane emissions may be more influenced by metabolic activity and community composition of methanogens.

The results of this research showed that the replacement in the diet of alfalfa hay by *L. leucocephala* and *O. ficusindica* did not improve *in vitro* gas production and ruminal fermentation patterns. Nevertheless, the inclusion of *L. leucocephala* in the diet decreased the methane production

Table 2. Ruminal microbial population of the experimental treatments after *in vitro* incubation with rumen fluid

Poblation	Treatment						
	T1	T2	Т3	T4	p<		
Total, bacteria	14.7±	14.9±	15.2±	15.4±	0.22		
Log [ngDNA/g RC]	1.23a	1.45 ^a	1.10 ^a	2.13a			
Total methanogens	14.1±	$13.7 \pm$	13.9±	13.6±	0.35		
Log [ngDNA/gRC]	2.22a	1.25a	1.14 ^a	1.17a			
Methanogen:	$0.95 \pm$	$0.91 \pm$	$0.91 \pm$	$0.88 \pm$	0.88		
bacteria	0.09^{a}	0.01^{a}	0.04^{a}	0.05^{a}			

Row bearing different superscripts differ significantly (p<0.05).

and did not affect the total of methanogen microorganisms.

SUMMARY

The aim of the study was to evaluate the replacement of alfalfa hay with Leucaena leucocephala leaves and prickly pear (Opuntia ficus-indica) as an alternative forage, on gas and methane production, ruminal fermentation patterns and total amount of methanogens during in vitro fermentation. Four treatments were evaluated: (T1) alfalfa hay + concentrate (50:50%, DM); (T2) alfalfa hay + Leucaena leaves + concentrate (30 : 20 : 50%, DM); (T3) alfalfa hay + prickly pear + concentrate (30 : 20 : 50%, DM) and (T4) alfalfa hay + Leucaena leaves + prickly pear + concentrate (30:10:10:50%, DM). The higher gas production from of soluble fraction (A) and rate gas production (Kd) values, ammonia-N (NH3-N) concentrations and propionate were found in T1 and lower in T2 (p<0.05). Nevertheless, the inclusion of Leucaena leucocephala in the diet decreased the methane production and did not affect the total of methanogens. Results showed that the replacement of alfalfa hay by Leucaena leucocephala and Opuntia ficus-indica in a diet do not affect the main variables of in vitro gas production, ruminal fermentation patterns and methanogenic microorganisms populations.

REFERENCES

Angarita E, Molina I, Villegas G, Mayorga J and Barahona R. 2015. Quantitative analysis of rumen microbial populations by qPCR in heifers fed on *Leucaena leucocephala* in the Colombian Tropical Dry Forest. *Acta Scientiarum. Animal Sciences* 37: 135–42.

Chandrasekharaiah M, Thulasi A, Suresh P and Sampath K T. 2011. Rumen degradable nitrogen requirements for optimum microbial protein synthesis and nutrient utilization in sheep fed on finger millet straw (*Eleucine coracana*) based diet. *Animal Feed Science and Technology* **163**: 130–35.

Denman S E, Tomkins N W and McSweeney C S. 2007. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. *Microbiology Ecology* **62**: 313–22.

France J, Dijkstra J, Dhanoa M S, López S and Bannink A. 2002. Estimating the extent of degradation of ruminant feeds from a description of their gas production profiles observed *in vitro*: Derivation of models and other mathematical considerations. *British Journal of Nutrition* 83: 143–50.

- Galyean M L. 2010. *Laboratory Procedures in Animal Nutrition Research*. Department of Animal and Food Sciences Texas Tech. University, Lubbock. USA.
- Malik P K and Singhal K K. 2008a. Influence of lucerne fodder supplementation on enteric methane emission in crossbred calves. *Indian Journal of Animal Sciences* **78**(3): 293–97.
- McSweeney C S, Palmer B, Bunch R and Krause D O. 2001. Effect of tropical forage Calliandra on microbial protein synthesis and ecology in the rumen. *Journal of Applied Microbiology* **90**: 78–88.
- Montoya-Flores M D, Molina-Botero I S, Arango J, Romano-Muñoz J L, Solorio-Sanchez F J, Aguilar-Perez C F and Ku-Vera J C. 2020. Effect of dried leaves of *Leucaena leucocephala* on rumen fermentation, rumen microbial population, and enteric methane production in crossbred heifer. *Animals* 10: 2–17.
- Moss A R, Jouany J P and Newbold J. 2000. Methane production by ruminants: its contribution to global warming. *Annales de Zootechnie* **49**: 231–53.
- Phelan P, Moloney A P, McGeough E J, Humphreys J, Bertilsson J, O'Riordan E G and O'Kiely P. 2015. Forage legumes for grazing and conserving in ruminant production systems. Critical Reviews in Plant Sciences 34: 281–326.
- Rira M, Morgavi D P, Archimède H, Marie-Magdeleine C, Popova

- M, Bousseboua H and Doreau M. 2015. Potential of tanninrich plants for modulating ruminal microbes and ruminal fermentation in sheep. *Journal of Animal Science* **93**: 334– 47
- Rojas H R, Narváez-Zapata J, Zamudio-Maya M and Mena-Martínez M. E. 2008. A simple silica-based method for metagenomic DNA extraction from soil and sediments. *Molecular Biotechnology* 40: 13–17.
- SAS 2012. Institute Inc., SAS Online Doc 9. 4 ed. SAS Institute Inc., Cary.
- Srinivas B and Krishnamoorthy U. 2013. Panoply of microbial protein production in ruminants—A review. *Indian Journal of Animal Sciences* **83**(4): 331–46.
- Torres F K, Páez L J, Pàmanes C G, Herrera T E, Carrete C F and Murillo O M. 2020. Substitution of garlic leaves to alfalfa hay and its effect *in vitro* ruminal fermentation. *Abanico Veterinario* 10: 1–11.
- Wang L, Zhang G, Li Y and Zhang Y. 2020. Effects of high forage/ concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. *Animals* 10: 2–12.
- Yuan J Y, Xinjie W and Guoshun C. 2020. Methane production of different forages in *in vitro* ruminal fermentation. *Czech Journal of Animal Science* 65: 389–401.