In vitro evaluation of paddy straw based complete feed pellets as livestock feed

M P S BAKSHI $^{1\boxtimes}$ and M WADHWA 1

Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141 004 India

Received: 10 December 2021; Accepted: 11 April 2023

Keywords: Complete feed pellets, In vitro evaluation, Paddy straw

Wheat and paddy are the traditional crops cultivated in northern India for producing cereal grains besides yielding equal or higher quantity of straws of respective crops. The dairy animals in Punjab and Haryana are fed wheat straw to meet the basal DM requirements. Even after meeting their requirements, the wheat straw is surplus in these states. Only landless, marginal and lower middle-class farmers feed paddy straw (PS) to their livestock in these states (Bakshi and Wadhwa 2011). Therefore, almost entire quantity of PS available after harvesting is surplus. Efforts are afoot to manage the lose bulky PS. Primary objective of the present investigation was the provision of an innovative system-based approach to pelletize PS with other feedstuffs so as to prepare pellets with required density for effective transportation, handling and for utilization as livestock feed. It will fill critical missing links in the biomass value and supply chain. Agricultural waste biomass is critical to livestock feeding, especially when there is shortage of feedstuffs and natural calamities worsens it further. This study will have a positive impact on air and soil quality as well as reduction of hazardous/toxic substances and air emissions. The PS based complete feed pellets (CFPs) can easily be stored and transported to vulnerable areas.

The PS available after harvesting with combine was collected from the field using reapers, rakers and baled by tractor driven fully automatic stationery balers (Kaur et al. 2007). The baled PS is shredded/ground, mixed with other feedstuffs and densified as pellets. The CFPs containing roughage to concentrate ratio of 55:45 were prepared in a pelletizing plant fitted with 8 mm stationary dye in the Department of Animal Nutrition, GADVASU, Ludhiana. The CFPs were 8 mm in diameter and 2 to 4 cm in length. The roughage portion in the CFPs was made up of PS and alfalfa hay. With the increase in PS level from 15 to 30%, the level of alfalfa hay was reduced from 40 to 25%. The level of concentrate mixture was fixed at 45% in all the groups. The sundried PS and alfalfa hay were ground in a hammer mill. The ground material was taken in

Present address: ¹Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab. [™]Corresponding author email: bakshimps2@gmail.com

to the mixer via bucket elevator. The ground PS and alfalfa hay were mixed with concentrate mixture (Maize 13, wheat 13, deoiled mustard cake 8, mustard cake 13, soybean meal 9, rice bran 13, deoiled rice bran 14, molasses 10, guar gum 4, mineral mixture 2 and common salt 1% each) and pelletized. Unlike earlier studies, where molasses was used as a binder (Bakshi and Wadhwa 2021, Wadhwa *et al.* 2021b), guar gum was used as a binder in the present study. The pellets were made by dry pelleting process without steaming the material. The bulk density of different pellets was calculated as the ratio of the material mass to the container volume (Liu *et al.* 2013).

The nutritional value of PS-based pellets was evaluated by in vitro gas production technique (IVGPT; Menke et al. 1979, Menke and Steingass 1988). Three rumen fistulated male buffalo calves used as donor for rumen liquor were maintained on 2 kg conventional concentrate mixture (Maize 32, barley 20, soybean meal 15, groundnut extraction 15, paddy bran 15, mineral mixture 2 and common salt 1% each), 2 kg green fodder and ad lib. wheat straw. About 375±5 mg finely ground pellets were incubated with buffered rumen fluid in triplicate in a water bath at 39°C for 24 h in 100 ml calibrated glass syringes (Haberle Labortechnik, Germany). After 24 h, the volume of gas produced in each syringe was recorded and 5 ml aliquot of fluid from each syringe was taken and mixed with 1 ml of 25% meta-phosphoric and kept for 1 h at ambient temperature. Then it was centrifuged at 5500 rpm for 10 min, and the clear supernatant was collected and stored at -20°C until analyzed. The volatile fatty acids were estimated (Cottyn and Boucque 1968) using Netchrom 9100 gas chromatograph. The contents of syringes were transferred to spout-less beaker, boiled with neutral detergent solution for assessing the true OM digestibility. The fermentation attributes related to hydrogen recovery, VFA utilization index and microbial biomass synthesis, efficiency of conversion of fermented hexose energy to VFA and efficiency of conversion of fermented hexose energy to methane energy were calculated adopting procedures described in an earlier publication (Wadhwa et al. 2021a). The finely ground samples of CFPs were analyzed for DM, N and total ash (AOAC 2007), cellulose (Crampton

Table 1. Ingredients and	l chemical	composition	of PS h	ased com	nlete feed	nellets
Table 1. Higheulellis all	i chemicai	COMPOSITION	01130	ascu com	Dicte reed	Denets

Parameter		Complete feed pellets				p value
	PS-15*	PS-20	PS-25	PS-30		
Ingredient composition, %						
PS	15	20	25	30		
Alfalfa hay	40	35	30	25		
Concentrate mixture	45	45	45	45		
Chemical composition, %						
Ash	13.80	13.95	14.18	14.35	0.10	0.258
OM	86.21	86.05	85.82	85.65	0.10	0.258
CP	17.40°	16.85°	15.76 ^b	14.35a	0.63	< 0.001
EE	3.31	3.20	3.10	2.99	0.10	0.135
NDF	49.30a	49.93ª	50.55a	53.60 ^b	0.81	0.001
Cellulose	16.00^{a}	16.70^{ab}	17.60 ^b	20.00°	0.58	0.001

PS-15*, complete feed pellets containing 15% PS; PS-20, complete feed pellets containing 20% PS; PS-25, complete feed pellets containing 25% PS; PS-30, complete feed pellets containing 30% PS.

and Maynard 1938) and other cell wall constituents (Van Soest *et al.* 1991). Hemicellulose was determined by the difference in NDF and ADF. The data were analyzed by one way ANOVA (Snedecor and Cochran 1994) using SPSS (2009) version 16.0 and the means were tested for the significant difference by Tukey's-b test.

The bulk density of PS varies depending on the physical form, it may take. The bulk density of loose PS varied between 13 to 18 kg/m³ on DM basis (Migo 2019), while in case of baled (3ft Length × 1.5ft Width × 1.25ft Height) PS, it varied between 175-230 kg/m³ depending on the moisture content in PS at the time of baling (Kaur *et al.* 2007). In the present study, the bulk density of CFPs containing 15 to 30% PS varied between 580.28 to 603.57 kg/m³. Earlier studies revealed that it varied between 560.33 to 655.35 kg/m³ depending on the level of PS (Bakshi and Wadhwa 2021). Nguyen *et al.* (2018) also reported that the density of rice straw pellets with an 8 mm diameter is 600–700 kg/m³ dry matter basis.

The CFPs were prepared successfully and contained 14.35 to 17.4% CP and 2.99 to 3.31% EE. With the increase in PS in the CFPs, the total ash (P>0.05), NDF and cellulose content increased (P<0.01) linearly, while that of OM, EE (P>0.05) and CP content decreased (P<0.01) linearly (Table 1). Similar trend was observed in an earlier study, where PS was increased linearly up to 60% with the decrease in alfalfa hay in the PS based pellets (Bakshi and Wadhwa 2021). These pellets can be fed exclusively to any category of ruminants as these meet the recommended levels of CP and EE along with other nutrients in the complete feed of low to medium yielders (NRC 1989, 2001).

The net gas production (NGP), true OM digestibility and partitioning factor (PF) were not affected (P>0.05) by the level of PS in the CFPs (Table 2). However, Bakshi and Wadhwa (2021) observed significant decrease in these parameters. The NDF digestibility increased (P<0.01), while ammonia production (P<0.01) and ME content decreased (P<0.05) with the increase in PS level in CFPs.

The decline in the ME content in the CFPs was mainly low ME and high silica content in PS (Van Hung *et al.* 2020). The total and individual VFAs concentration decreased (P<0.01) with the increase in PS in CFPs, confirming the earlier report (Bakshi and Wadhwa 2021). Amongst different groups, the best acetate to propionate ratio was observed in CFPs containing 25 and 30% PS. The relative proportion of acetate and butyrate was not affected by the level of PS in CFPs, but relative proportion of propionate (P<0.01) and that of isovalerate (P<0.05) were improved with the increase in PS in CFPs.

The hydrogen consumption declined, while the hydrogen recovery improved non-significantly with the increase in level of PS in the CFPs. The efficiency of rumen fermentation (P<0.05), efficiency of conversion of fermented hexose energy to VFA energy and efficiency of conversion of fermented hexose energy to methane energy declined (P<0.01) with the increase in the level of PS in CFPs, resulting in depressed (P<0.01) microbial biomass production (Table 2). Wadhwa et al. (2021b) observed that feeding of iso-nitrogenous and iso-caloric CFPs containing 35% PS can be utilized effectively without affecting the health, nutrient utilization and performance of buffalo calves. It was concluded that CFPs containing graded levels of PS can be developed successfully. However, the efficiency of nutrient utilization, VFA production and microbial biomass production declined at higher levels of PS in CFPs.

SUMMARY

This study was taken up to find out if paddy straw (PS) based complete feed pellets (CFPs) could be prepared by using guar gum as a binder in place of molasses and to assess *in vitro* nutritional worth as livestock feed. The 8 mm CFPs contained roughage to concentrate ratio of 55:45. The roughage portion was made up of PS and alfalfa hay. With the increase in PS level from 15 to 30%, the level of alfalfa hay was reduced from 40 to 25%. The CFPs were prepared successfully and contained 14.35 to

Table 2. Effect of level of PS in complete feed pellets on the *in vitro* net gas production, digestibility of nutrients, VFA production and efficiency of rumen fermentation

Parameter		Complete feed pellets				p value
	PS-15*	PS-20	PS-25	PS-30		_
In vitro studies						
NGP	120.44	115.55	114.02	112.22	1.57	0.327
NDFD	26.87^{ab}	23.57ª	25.47a	30.85^{b}	1.06	0.015
TOMD	60.69	59.71	59.23	58.89	-	0.339
PF	3.19	2.94	2.29	2.13	-	0.186
NH,	0.025°	0.023^{b}	0.023^{b}	0.021a	0.01	0.005
ME	6.98 ^b	6.74^{ab}	6.63ab	6.55a	0.07	0.040
Volatile fatty acid production	n, mM/dL					
TVFA	6.15 ^b	6.39 ^b	4.17ª	4.27ª	0.39	< 0.001
Acetate (A)	3.68 ^b	3.80^{b}	2.42ª	2.48 ^a	0.25	0.001
Propionate (P)	1.42 ^b	1.54 ^b	1.05 ^a	1.09 ^a	0.08	0.001
Butyrate	0.67^{b}	0.71 ^b	0.45a	0.47^{a}	0.04	< 001
Isovalerate	0.244	0.237	0.243	0.237	0.002	0.586
A:P	2.59b	2.47 ^b	2.29a	2.27ª	-	0.035
Relative proportion, %						
Acetate	59.84	59.47	58.03	58.08	0.70	0.146
Propionate	23.09 ^a	24.10^{ab}	25.18 ^b	25.53 ^b	0.50	0.015
Butyrate	10.89	11.11	10.79	11.01	-	0.512
Isovalerate	3.97^{a}	3.71a	5.83 ^b	5.55 ^b	0.50	0.002
Energetic efficiency of ferme	ntation in the rumen					
E, %	76.88 ^b	76.22^{ab}	76.80^{ab}	75.86a	-	0.040
E ₁ , %	64.73 ^b	64.85 ^b	64.04ª	63.87 ^a	-	0.002
E ₂ , %	26.18 ^b	26.02 ^b	25.15 ^a	25.26a	-	0.001
HR	39.36	41.87	40.34	42.13	0.65	0.050
НС	0.077	0.069	0.074	0.068	-	0.047
VFA UI	3.42	3.15	3.29	3.13	-	0.051
MBM	162.12 ^b	154.94 ^b	105.22ª	108.35a	9.90	0.001

PS-15*, complete feed pellets containing 15% PS; PS-20, complete feed pellets containing 20% PS; PS-25, complete feed pellets containing 25% PS; PS-30, complete feed pellets containing 30% PS; NGP, Net gas production ml/g DM/24h; NDFD, Neutral detergent fibre digestibility %; TOMD, True OM digestibility %; PF, Partitioning factor; ME, Metabolizable energy MJ/kg DM; TVFA, Total volatile fatty acids mM/dL; E, Efficiency of rumen fermentation; E1, efficiency of conversion of fermented hexose energy to VFA energy; E2, efficiency of conversion of fermented hexose energy to methane energy; HR, hydrogen recovery; HC, hydrogen consumed; VFAUI, volatile fatty acid utilization index; MBM, microbial biomass g/day. Figures with different superscripts in a row differ significantly.

17.4% CP and 2.99 to 3.31% EE. The bulk density varied between 580.28 to 603.57 kg/m³. With the increase in PS in the CFPs, the NDF and cellulose content increased and CP content decreased linearly. The NGP, true OM digestibility and partitioning factor were not affected by the level of PS in the CFPs. The NDF digestibility increased, while ammonia production and ME availability decreased with the increase in PS level in CFPs. The total and individual VFAs concentration decreased with the increase in PS in CFPs. The relative proportion of propionate and that of isovalerate were improved with the increase in PS in CFPs. The efficiency of rumen fermentation, efficiency of conversion of fermented hexose energy to VFA energy and efficiency of conversion of fermented hexose energy to methane energy declined with the increase in the level of PS in CFPs, resulting in depressed microbial biomass production. It was concluded that CFPs containing graded levels of PS can be developed successfully. However,

the efficiency of nutrient utilization, VFA production and microbial biomass production declined at higher levels of PS in CFPs.

ACKNOWLEDGEMENT

This work was conducted under the project entitled 'Conversion of paddy straw to nutrient-enriched complete feed pellets' sponsored by Neway Renewable energy Systems Pvt Ltd., Chennai, India.

REFERENCES

AOAC. 2007. Official Methods of Analysis, 7th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. Bakshi M P S and Wadhwa M. 2011. Nutritional status of dairy animals in different regions of punjab state in India. Indian Journal of Animal Sciences 81: 52–58.

Bakshi M P S and Wadhwa M. 2021. Paddy straw pelletization with other feedstuffs and its *in vitro* evaluation as livestock feed. *Animal Nutrition and Feed Technology* **21**: 595–604.

- Cottyn B G and Boucque C V. 1968. Rapid method for the gas—chromatographic determination of volatile fatty acids in rumen fluid. *Journal of Agricultural and Food Chemistry* **16:** 105–107.
- Crampton E W and Maynard L A. 1938. The relation of cellulose and lignin content to the nutritive value of animal feeds. *Journal of Nutrition* **15**: 383–95.
- Kaur K, Kaur J, Wadhwa M and Bakshi M P S. 2007. Natural fermentation of PS in bales and stack and its evaluation as livestock feed. *Indian Journal of Animal Nutrition* 24: 88-91.
- Liu Z, Liu X, Fei B, Jiang Z, Cai Z and Yu Y. 2013. The properties of pellets from mixing bamboo and PS. *Renewable Energy* **55**: 1–5.
- Menke K H and Steingass H. 1988. Estimation of the energetic feed value obtained by chemical analysis and *in vitro* gas production using rumen fluid. *Animal Research and Development* 28: 7–55.
- Menke K H, Rabb L, Salewski A, Steingass H, Fritz D and Schneider W. 1979. The estimation of the digestibility and ME content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor *in vitro*. *Journal of Agricultural Science Cambridge* 93: 217–22.
- Migo M V P. 2019. 'Optimization and life cycle assessment of the direct combustion of PS using a small scale, stationary grate furnace for heat generation.' Masters thesis. University of the Philippines, Los Baños.
- Nguyen V H, Nguyen T N, Le Q V, Le M A, Nguyen V H and Gummert M. 2018. Developing densified products to reduce

- transportation costs and improve the quality of rice straw feedstocks for cattle feeding. *Journal of Vietnam Environment*, 10.
- NRC. 1989. Nutrient Requirements of Dairy Cattle. 6th revised edition. National Research Council, National Academic Press, Washington, DC, USA.
- NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th revised edition. National Research Council, National Academy of Sciences, Washington, DC, USA.
- Snedecor G W and Crochan W G. 1994. *Statistical Methods*. 7th Edn. Oxford and IBH Publications, New Delhi.
- S P S S. 2009. Statistical Packages for Social Sciences. Version 16, SPSS Inc., Illinois, USA.
- Van Hung N, Maguyon-Detras M C, Migo M V, Quilloy R, Balingbing C, Chivenge P and Gummert M. 2020. Rice straw overview: Availability, properties and management practices. (Eds) Gummert M, Hung N, Chivenge P and Douthwaite B. Sustainable Rice Straw Management, Springer, Cham.
- Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. *Journal of Dairy Science* 74: 3583–97.
- Wadhwa M, Hira Singh, Balwinder Kumar and Bakshi M P S. 2021a. In vitro evaluation of short duration cassava varieties as livestock feed. Indian Journal of Animal Sciences 91: 965-70.
- Wadhwa M, Hundal J S and Bakshi M P S. 2021b. Preparation of PS based complete feed pellets and their impact on the performance of buffalo calves. *Indian Journal of Animal Sciences* **91**: 860–63.