Genetic study of important economic traits in Hariana cattle

MAHANTESH SHETKAR $^{1\boxtimes}$, VIJAY KUMAR 1 , S P SINGH 1 , YAJUVENDRA SINGH 1 , MUNEENDRA KUMAR 1 and AVNEESH KUMAR 1

DUVASU, Mathura, Uttar Pradesh 281 001 India

Received: 11 January 2022; Accepted: 24 November 2022

ABSTRACT

The present investigation was undertaken to access first lactation total milk yield, first lactation length, productive life, herd life and total life. Breeding information were used from the history sheet registers and herd inventory registers of Hariana cattle maintained at DUVASU farm, Mathura and Babugarh farm, Hapur. The data of productive animals with date of calving from 1966 to 2018 and date of birth from 1962 to 2013 were collected for the study. The overall averages for FLTMY, FLL, PL, HL and TL were estimated as 971.2±16.9 litres, 328.2±3.8 days, 2019.1±42.1 days, 2251.8±43.9 days and 3915.7±44.2 days, respectively. The overall least-squares mean of 961.3±24.1 litres, 331.6±5.9 days, 2285.2±64.9 days, 2489.9±69.1 days and 4219.4±70.0 days was observed respectively for the above traits. Season of calving had significant effect on first lactation length and period of calving had significant effect on first lactation total milk. Farm, period of birth and AFC age group had significant effect on PL, HL and TL of Hariana cattle. The heritability for FLTMY and FLL was moderate to high in Hariana cattle.

Keywords: First lactation length, Heritability, Herd life, Productive life, Total life

India is the largest producer of milk in the world with the highest cattle population. These cattle are playing an important role in strengthening India's economy (Shetkar et al. 2021a). Animal husbandry sector of India has a cattle population of 193.46 million in total among which indigenous cattle population is 142.11 million (20th Livestock Census 2019) which adds up to 73.46% of total cattle population of India with 53 recognized breeds of cattle (ICAR-NBAGR 2022) spread across the country and providing livelihood sustenance to millions of rural livestock keepers. The per-capita availability of milk in India is 394 g/day (Basic Animal Husbandry Statistics 2019) and India has the fastest growing market for milk and its products. Among indigenous cattle breeds, Hariana is the well-known dual-purpose indigenous breed of Haryana state (Shetkar et al. 2021b).

Lifetime performance of the dairy cattle determines the profitability of dairy enterprise because the overall productivity of dairy animals depends on their lifetime performance rather than single lactation performance. Dry period (DP) is an important economic trait which has the direct effect on lifetime milk production (Kumar 2015). Decrease in age at first calving decreases the cost of raising the animals to productive life, increases the annual genetic gain and raises the average productive

Present address: ¹College of Veterinary Science and Animal Husbandry, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go-Anusandhan Sansthan, Mathura, Uttar Pradesh. ™Corresponding author email: mantushetkar@gmail.com

life of the animal (Kumar et al. 2015). Arthur et al. (1992) reported that longer lifespan in dairy cows allows producers to be more selective in choosing replacement heifers because only a few have to be chosen each year. Higher longevity also reduces the cost of herd replacements, increases the number of animals available for marketing, and increases the proportion of the high producing, mature animals in the breeding herd (Arthur et al. 1992). The present study aimed at estimating the average and nongenetic factors affecting first lactation total milk yield, first lactation length, productive life, herd life and total life of Hariana cattle.

MATERIALS AND METHODS

Source of data: In the present study, the breeding information were used from the history sheet registers and herd inventory registers of Hariana cattle. The data of productive animals with date of calving from 1966 to 2018 and date of birth from 1962 to 2013 were collected from DUVASU farm, Mathura and Babugarh farm, Hapur. To ensure the normal distribution, the outliers were removed and data within the range of mean±3SD were considered for the study. The records of animals with equal or more than 400 litres of milk production and equal or more than 100 days of lactation length were considered for the study.

Statistical analysis: Means, standard deviations, standard errors and coefficients of variations of the traits were estimated as per statistical procedures given by Snedecor and Cochran (1994).

Least-Squares analysis for adjustment of data: The

non-genetic factor effects such as period of birth/calving, season of birth/calving, AFC age group and farms on various traits were studied by least-squares analysis (mixed model least-squares and maximum likelihood computer program) using the technique suggested by Harvey (1987).

The model used was as follows:

Lifetime traits:
$$Y_{iiklm} = \mu + P_i + S_i + A_k + F_l + e_{iiklm}$$

 $\label{eq:linear_line$ of i^{th} period of birth (i = 1 to 5); S₁, effect of j^{th} season of birth (j = 1 to 4); A_k , effect of k^{th} age group (k = 1 to 2); F_{l} , effect of l^{th} farm (l = 1 to 2); e_{iiklm} , random error, NID $(0, \sigma^2_{e}).$

First lactation traits: $Y_{ijklm} = \mu + P_i + S_j + A_k + F_l + e_{ijklm}$ Where Y_{ijklm} , m^{th} observation in l^{th} farm, k^{th} age group, j^{th} season and i^{th} period of calving; μ , overall mean; P_j , effect of i^{th} period of calving (i = 1 to 6); S_i effect of j^{th} season of calving (j = 1 to 4); A_k , effect of k^{th} age group (k = 1 to 2);

 F_{l} , effect of l^{th} farm (l = 1 to 2); e_{ijklm} , random error, NID $(0, \sigma^2)$.

Mean comparison: Least-squares means were compared using Duncan's multiple range test (DMRT) as modified by Kramer (1957).

Estimation of heritability: Heritability was estimated by paternal half-sib (PHS) correlation method as suggested by Becker (1975). The following model was used to estimate the heritability.

$$Y_{ij} = \mu + s_i + e_{ij}$$

 $Y_{ij} = \mu + s_i + e_{ij}$ Where $Y_{ij},$ observation of the j^{th} progeny of the i^{th} sire; μ, overall mean; s_i, effect of the ith sire; e_{ii}, random error, NID $(0, \sigma^2)$.

RESULTS AND DISCUSSION

In the present study, first lactation total milk yield was estimated as 971.2±16.9 litres. The higher estimates of FLTMY were observed by Gautam et al. (1966), Gehlon and Singh (1966), Chandiramani and Dadlani (1967), Dadlani and Prabhu (1968), Johar and Tylor (1973), Yadav and Balaine (1980), Sharma et al. (1980), Jegam and Tomar (1983), Rana (1985), Vinayak (1989), Kumar (1991) and Dalal et al. (2002). Whereas Sharma et al. (1951), Kohli and Acharya (1961), Kohli et al. (1961), Singh et al. (1964), Yadav and Rawat (1967), Bhasin and Desai (1967), Singh et al. (1967), Balaine (1971), Gill and Balaine (1971), Dutt and Singh (1971), Tomar and Balaine (1973), Mishra et al. (1980) and Arora (1980) observed lower FLTMY estimates than the present study. Chhikara (1974) observed similar FLTMY as of the present study. The variation in the results may be due to the environmental variation and management practices followed in the farm.

The means for FLL of Hariana cows was estimated as 328.2±3.8 days. Soof and Singh (1970), Dhoke and Johar (1977) and Kumar (1991) observed similar first lactation length as that of present study. The higher estimates were observed in PDC-Annual report (1991-92), whereas Kohli and Acharya (1961), Gehlon and Sekhon (1969), Sharda and Lohia (1966), Chandiramani and Dadlani (1967), Dadlani and Chandiramani (1968), Tomar et al. (1972), Tomar (1975), Das (1978), Hingane (1980), Rana (1985), Vinayak (1989) and Dalal et al. (2002) observed lower estimates of first lactation length. The environmental variations and management practices followed in the farms may vary the average performance of FLL.

The means for productive life was estimated as 2019.1±42.1 days. Kohli and Suri (1957) and Kumar (1991) observed higher productive life than the present study. Singh et al. (1964) and Dalal et al. (2002) observed lower productive life in Hariana cattle. The means for herd life of Hariana cows were estimated as 2251.8±43.9 days. The higher HL was observed by Kohli and Suri (1957) and Kumar (1991) in Hariana cattle. Vinayak (1989) and Dalal et al. (2002) observed lower HL than our observation in Hariana cattle. Bhattacharjya et al. (2000) observed higher HL in Tharparkar cattle; in Jersey crossbreed, Raut et al. (2003) observed the higher values for HL. The means for total life of Hariana cows was estimated as 3915.7±44.2 days. Singh et al. (1964) observed lower total life in Hariana cattle, whereas Kohli and Suri (1957) observed higher total life in Hariana cattle.

The overall least-squares means for first lactation total milk yield (FLTMY) was estimated as 961.3±24.1 litres. Period of calving had significant effect. Swami et al. (2005) observed similar estimates for FLTMY. Doharey (2012) had observed similar estimates with significant effect of farm and period of calving and non-significant effect of AFC age group and season of calving. Kaushik (2000) observed higher estimates with significant effect of period of calving. Ashraf et al. (2000) observed higher estimates for first lactation total milk yield. Pandey et al. (2001) observed higher estimates with non-significant effect of period of calving and season of calving. Singh (2001) observed higher estimates with significant effect of period of calving and season of calving. Dahiya (2002) observed higher estimates with significant effect of AFC age group and non-significant effect of season of calving. Singh (2002) observed higher estimates with significant effect of AFC age group and non-significant effect of season of calving. Singh et al. (2004) observed higher estimates for FLTMY. Singh et al. (2005) observed higher estimates with significant effect of farm and period of calving and nonsignificant effect of AFC age group and season of calving. Kumar (2006) observed lower estimates with significant effect of farm and non-significant effect of AFC age group, period of calving and season of calving. Singh et al. (2008) observed lower estimates with non-significant effect of farm and significant effect of period of calving and season of calving. Kumar (2009) observed higher estimates with significant effect of farm, period of calving and season of calving. Singh et al. (2010) observed lower estimates with significant effect of period of calving. Singh et al. (2011) observed higher estimates with significant effect of farm and period of calving and non-significant effect of season

of calving.

The overall least-squares mean for first lactation length (FLL) was estimated as 331.6±5.9 days. Season of calving had significant effect. Singh et al. (2004) observed similar estimates for FLTMY. Singh et al. (2005) observed similar estimates with significant effect of farm, period of calving and season of calving and non-significant effect of AFC age group. Kaushik (2000) observed lower estimates with significant effect of AFC age group. Ashraf et al. (2000) observed lower estimates for first lactation length. Pandey et al. (2001) observed higher estimates for first lactation length. Dahiya (2002) observed lower estimates with significant effect of AFC age group and season of calving and non-significant effect of period of calving. Singh (2002) observed lower estimates with significant effect of AFC age group. Swami et al. (2005) observed lower estimates with non-significant effect of season of calving. Kumar (2006) observed lower estimates with significant effect of farm and non-significant effect of AFC age group, period of calving and season of calving. Kumar (2009) observed lower estimates with significant effect of farm and non-significant effect of period of calving and season of calving. Pal (2009) observed lower estimates for FLL with significant effect of farm and non-significant effect of season of calving. Singh et al. (2011) observed lower estimates with significant effect of farm and non-significant effect of period of calving and season of calving. Doharey (2012) had observed lower estimates for FLL with significant effect of farm.

The overall least-squares means for PL was 2285.2±64.9 days. Farm, period of birth and AFC age group had significant effect on PL. Singh (2002) observed lower estimates for productive life with non-significant effect of AFC age group, period of birth and season of birth in Hariana cattle. Kumar (2007) observed lower estimates for productive life with significant effect of AFC age group and period of birth in Hariana cattle. Jakhar et al. (2010) observed lower estimates for productive life with significant effect of AFC age group and period of birth in Hariana cattle. Doharey (2012) had observed lower estimates for productive life with significant effect of farm and period of birth in Hariana cattle. Dubey and Singh (2005), Abbas and Sachdev (2008) and Singh et al. (2011) had observed lower estimates for productive life in Sahiwal cattle. Ambhore et al. (2017) observed lower estimates for productive life in Phule Triveni cattle and had significant effects in period of birth. Vinothraj et al. (2016) observed lower estimates for productive life with significant effect of period of birth in Jersey × Red Sindhi crossbred cows.

The overall least-squares means for HL was 2489.9±69.1 days. Farm, period of birth and AFC age group had significant effect on HL. Doharey (2012) had observed lower estimates of HL with significant effect of farm and period of birth. Singh (2002) observed similar estimates for herd life in Hariana cattle with period of birth and season of birth had non-significant effect on herd life. Jakhar *et al.* (2010) observed higher estimates for herd life with significant effect of period of birth and non-

significant effect of AFC age group on herd life in Hariana cattle. Dubey and Singh (2005) observed lower estimates for herd life in Sahiwal cattle. Abbas and Sachdev (2008) observed similar estimates for herd life in Sahiwal cattle. Singh *et al.* (2011) observed higher estimates for herd life in Sahiwal cattle. Singh *et al.* (2008) observed lower estimates for HL with significant effect of period of birth and season of birth in crossbred cattle. Vinothraj *et al.* (2016) observed lower estimates for herd life with significant effect of period of birth and non-significant effect of season of birth in Jersey × Red Sindhi crossbred cows.

The overall least-squares means for TL was 4219.4±70.0 days. Farm, period of birth and AFC age group had significant effect on TL. Kumar (2007) observed lower estimates with significant effect of age at first calving and period of birth on longevity (total life) in Hariana cattle. Kathiravan (2009) had observed lower estimates with significant effect of farm and period of birth on total life in Sahiwal cattle. Ankuya et al. (2017) observed lower estimates for total life in Kankrej cattle. Ambhore et al. (2017) observed lower estimates for total life in Phule Triveni cattle and had significant effects in period of birth and AFC age groups. Effa et al. (2013) had observed relatively similar estimate of total life in Boran crossbred cows. Dash et al. (2018) observed lower estimates for total life and reported significant effect only in AFC groups of Karan Fries cattle. Vinothraj et al. (2016) observed lower estimates of total life in Jersey × Red Sindhi crossbred cows. Thiruvenkadan et al. (2015) had observed lower estimates of total life in Murrah buffalo.

The heritability estimates for first lactation total milk yield was observed as 0.5. The similar estimates of heritability for first lactation total milk yield were reported by Kohli et al. (1961) and Soof and Singh (1970). The higher estimates of heritability were reported by Singh et al. (1969). The values indicate that the additive genetic variance has important role in governing the expression of the FLTMY. The lower estimates of heritability for first lactation total milk yield was reported by Singh and Desai (1961), Ahmed (1961), Acharya (1966), Tiwana (1967), Singh and Prasad (1967), Chandiramani and Dadlani (1967), Singh (1970), Bhasin Desai (1967), Dadlani et al. (1969), Balaine et al. (1971), Gill et al. (1971), Johar and Taylor (1973), Chhikara (1974), Lal (1975), Khanna (1977), Narayankhedker (1978), Arora (1980), Hingane (1980), Mishra et al. (1980), Arora and Sharma (1981), Singh and Tomar (1983), Kumar (1991), Dhaka et al. (2002) and Doharey (2012). Chander et al. (2008) observed lower estimates of heritability for FLTMY in Sahiwal cattle. The lower estimates indicate that the environmental variance had greater role than additive genetic variance.

The heritability for first lactation length was observed as 0.224. Doharey (2012) observed similar estimates of heritability for first lactation length in Hariana cattle. Girimal *et al.* (2020) observed similar estimates of heritability for first lactation length in Sahiwal and

Crossbred cattle. Chander *et al.* (2008) observed higher heritability estimates for FLL in Sahiwal cattle. The values indicate that the additive genetic variance has important role in governing the expression of the FLTMY. Whereas, Kathiravan (2009) observed lower heritability estimate for FLL in Sahiwal cattle indicating that the environmental variance had greater role than additive genetic variance.

REFERENCES

- 20th Livestock Census. 2019. Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India. Krishi Bhawan, New Delhi.
- Abbas M and Sachdeva G K. 2008. Effect of genetic and non genetic factors on productive herd life and longevity in a herd of Sahiwal cows. *Indian Journal of Animal Research* **42**(2): 136–38.
- Acharya R M. 1966. 'Genetic analysis of a closed herd of Indian cattle.' PhD thesis, Lowa State University of Science and Technology, Lowa.
- Ahmed A. 1961. 'Genetic estimates of some characters of economic importance in Hariana cows at Izatnagar and construction of selection index.' MVSc thesis, Agra University, Agra, Uttar Pradesh, India.
- Ambhore G S, Singh A, Deokar D K, Singh M and Sahoo S K. 2017. Lifetime performance of Phule Triveni synthetic cows at an organized farm. *Indian Journal of Animal Sciences* **87**(11): 1406–09.
- Ankuya K J, Prajapati K B, Ashwar B K, Tyagi and Pareek N K. 2017. Study on herd life traits of culled and disposed Kankrej cattle at organized farms. *Journal of Livestock Biodiversity* 7(2): 81–85.
- Arora D N and Sharma J S. 1981. Genetic analysis of some of the economic traits in Hariana cattle. *Livestock Adviser* **6**: 31–37.
- Arora K C. 1980. 'Relative efficiency of different methods of indexing the breeding work of dairy bulls.' PhD thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Arthur P F, Makarechian M, Beng R J and Weingardt R. 1992. Longevity and lifetime productivity of cows in a purebred Hereford and two multibred systematic groups under range conditions. *Journal of Dairy Science* 71: 1142–47.
- Ashraf A, Islam S S, Islam A B M M and Ali S Z. 2000. A study of some economic traits of indigenous cattle and their crossbreds in Southern Bangladesh. *Asian Australasian Journal of Animal Science* **13**(9): 1189–92.
- Balaine D S. 1971. Phenotypic and genetic parameters of some economic traits in Hariana cattle. *Indian Journal of Dairy Science* **24**: 25–31.
- Balaine D S, Acharya R M and Aggarwal S C. 1971. Effect of weaning on production and reproduction efficiency in Hariana cows. *Indian Journal of Dairy Science* 24: 181–84.
- Basic Animal Husbandry Statistics. 2019. Department of Animal Husbandry and Dairying, Ministry of Fisheries, Animal Husbandry and Dairying, Government of India. Krishi Bhawan, New Delhi.
- Becker W A. 1975. Manual of Quantitative Genetics. 3rd Edition. Pub. Program in Genetics, Washington State University, Washington, USA.
- Bhasin N R and Desai R N. 1967. Effect of age at first calving and first lactation yield on lifetime production in Hariana cattle. *Indian Veterinary Journal* **44**: 684.
- Bhattacharjya T K, Kumar P and Joshi J D. 2000. Lifetime traits

- in Tharparkar cattle. *Indian Journal of Animal Sciences* **70**(5): 535–36.
- Chander R, Singh D, Dalal D S, Malik Z S and Dixit S P. 2008. Genetic studies on components of first lactation and lifetime traits in Sahiwal cattle. *Indian Journal of Animal Research* **42**(1): 44–48.
- Chandiramani S V and Dadlani H V. 1967. Genetic studies of first lactation age period and milk yield in a herd of Hariana cattle. *Indian Journal of Dairy Science* **20**: 1–4.
- Chhikara B S. 1974. 'Culling patterns and levels in some Indian dairy herds.' MSc thesis. Haryana Agricultural University, Hisar, Haryana, India.
- Dadlani H V and Chandiramani S V. 1968. Genetic studies on first calving interval and second lactation yield in a Hariana herd. *Indian Journal of Dairy Science* **21**: 244–48.
- Dadlani H V, Chandiramani S V and Prabhu S S. 1969.
 Quantitative genetic studies in Indian cattle. 1. Milk yield in Hariana. *Journal of Animal Morphology and Physiology* 16: 61–70
- Dadlani H V and Prabhu S S. 1968. Heritability and genetic correlation of dry period of proceeding lactation and milk yield in succeeding lactation in Hariana cattle. *Indian Journal of Dairy Science* 21: 126–28.
- Dahiya D S. 2002. 'Relative efficiency of sire evaluation procedures for milk production incorporating auxiliary traits in Hariana cattle.' PhD thesis, Choudhary Charan Singh Haryana Agricultural University, Hisar, Haryana.
- Dalal D S, Rathi S S and Raheja K L. 2002. Estimates of genetic and phenotypic parameters of first lactation and lifetime performance traits in Hariana cattle. *Indian Journal of Animal Sciences* 72(5): 398–401.
- Das D. 1978. 'Age and weight effects and life time performance of Hariana cattle and buffaloes.' PhD thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Dash S K, Gupta A K, Manoj M, Kumar V, Shivhre P R and Valsalan J. 2018. Analysis of lifetime performance in Karan Fries cattle. *Indian Journal of Animal Research* 52: 761–67.
- Dhaka S S, Chaudhary S R, Pander B L, Yadav A S and Singh S. 2002. Genetic studies on production efficiency traits in Hariana cattle. *Asian Australasian Journal of Animal Science* **15**(4): 466–69.
- Dhoke M V and Johar K S. 1977. Genetic variability in the lactation and dry period of Hariana cows. *Indian Veterinary Journal* **54**: 547–52.
- Doharey M. 2012. 'Evaluation of projection of lifetime performance traits in Hariana cattle.' MVSc thesis, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, Haryana, India.
- Dubey P P and Singh C V. 2005. Estimates of genetic and phenotypic parameters considering first lactation and lifetime performance traits in Sahiwal and crossbred cattle. *Indian Journal of Animal Sciences* **75**(11): 1289–94.
- Dutt M and Singh B P. 1971. Some phenotypic aspects of butterfat yield of Hariana cattle. *Indian Veterinary Journal* 48: 153–59
- Effa K, Hunde D, Shumiye M and Silasie R H. 2013. Analysis of longevity traits and lifetime productivity of crossbred dairy cows in the Tropical Highlands of Ethiopia. *Journal of Cell and Animal Biology* 7: 138–43.
- Gautam J P, Tomar N S and Aggarwal P C. 1966. Milk producing ability and breeding efficiency in relation to the age at first calving in Hariana cows. *Indian Veterinary Journal* 43: 61–67.
- Gehlon M S and Sekhon G S. 1969. Practicability of weaning of

- calves in Hariana cattle. Indian Veterinary Journal 46: 1062.
- Gehlon M S and Singh G. 1966. Effect of the age at first calving on first lactation yield, first lactation length, first dry period and first inter-calving period of Hariana cows. *Indian Journal of Dairy Science* **19**: 128–31.
- Gill G S and Balaine D S. 1971. Effect of genetic and non-genetic factors on lactation yield and lactation length in Hariana cattle. *PAU Agricultural Research Journal* 8: 263–69.
- Gill G S, Balaine D S and Acharya R M. 1971. Persistency and peak yield in Hariana cattle. 2. Phenotypic and genetic parameters. *Indian Journal of Animal Sciences* 41: 215–22.
- Girimal D G, Kumar D, Shahi B N, Ghosh A K and Kumar S. 2020. Genetic evaluation of Sahiwal and crossbred cattle for some economic traits. *Pantnagar Journal of Research* 18(2): 153–57.
- Harvey W R. 1987. Least squares analysis of data with unequal subclass numbers. ARS H-4, USDA, Washington D.C.
- Hingane V R. 1980. 'Estimation of genetic and environmental trends for economic traits in Haryana cattle.' PhD thesis, Haryana Agricultural University, Hisar, Haryana, India.
- ICAR-NBAGR. 2022. New Breeds/Chicken Line Registered. Retrieved from https://nbagr.icar.gov.in 2022.
- Jakhar G S, Singh R, Malik C P and Kumar R. 2010. Factors affecting productive herd life, longevity and lifetime calf production traits in Hariana cattle. *Indian Journal of Animal Sciences* 80(12): 1251–53.
- Jegam M D S and Tomar N S. 1983. Age and weight at first calving in relation to milk yield in Hariana cows. *Indian Veterinary Journal* 60: 210–14.
- Johar K S and Taylor C M. 1973. Variation in lactation yield of Tharparkar, Hariana and Malvi cows. *Indian Veterinary Journal* **50**: 1099–1102.
- Kathiravan P. 2009. 'Genetic evaluation of lifetime performance of Sahiwal cattle'. PhD thesis, National Dairy Research Institute, Karnal, Haryana.
- Kaushik R. 2000. 'Genetic studies on reproduction, production and reproductive health of Hariana cattle.' MVSc thesis, Choudhary Charan Singh Haryana Agricultural University, Hisar, Haryana.
- Khanna A S. 1977. 'Inbreeding and its effects in closed herd of Sahiwal and Hariana cattle.' MSc thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Kohli M L and Acharya R M. 1961. Relationship between service period and lactation in Hariana cows. *Indian Journal of Veterinary Science* 31: 319–24.
- Kohli M L and Suri K R. 1957. Longevity and reproductivity in Hariana cattle. *Indian Journal of Veterinary Science* 27: 105–10.
- Kohli M L, Suri K R, Bhatnagar V K and Lohia K L. 1961. Studies on some economic characters in relation to age at first calving in Hariana cattle. *Indian Journal of Dairy Science* 14: 154–60.
- Kramer C Y. 1957. Extension of multiple range tests to group correlated adjust W means. *Biometrics* 13: 13–18.
- Kumar A. 2007. Longevity and productive herd life of Hariana cattle. *Indian Veterinary Journal* **84**: 51–53.
- Kumar N. 2009. 'Age adjustment factors for milk production in Hariana cattle.' MVSc thesis, CCS Haryana Agricultural University, Hisar, Haryana, India.
- Kumar R. 1991. 'Genetic studies on the components of lifetime traits in Sahiwal and Hariana cattle.' PhD thesis, Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India.
- Kumar S. 2006. 'Genetic studies on performance traits of Hariana cattle under progeny testing.' MVSc thesis, CCS Haryana

- Agricultural University, Hisar, Haryana, India.
- Kumar V. 2015. Factors affecting performance of Indian murrah buffalo: A review. *Journal of Buffalo Science* 4: 21–27.
- Kumar V, Chakravarty A K, Patil C S, Valsalan J and Mahajan A. 2015. Estimate of genetic and non-genetic parameters for age at first calving in Murrah buffalo. *Indian Journal of Animal Science* 85: 84–85.
- Lal K. 1975. 'Studies on the components of lactation curve in Hariana purebreds and their crosses with some elite exotic breeds.' MSc thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Mishra A K, Singh B and Singh B P. 1980. Genetic studies on economic characters of Hariana cattle. *Indian Veterinary Journal* 57: 566–72.
- Narayankhedkar S G. 1978. 'Genetic and environmental factors in dairy sire evaluation.' PhD thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Pal A. 2009. 'Genetic evaluation of sires of Hariana cattle.' MVSc thesis, CCS Haryana Agricultural University Hisar, Haryana, India.
- Pandey S K, Arora V K, Goel R and Singh R. 2001. Genetic and phenotypic studies of some production traits of Hariana cattle. *Indian Journal of Animal Research* **35**(2): 129–31.
- PDC Annual Report. 1991-92. Project Directorate on Cattle, Meerut, U.P.
- Rana M S. 1985. 'Performance profiles of efficiency attributes in some zebu herds.' MVSc thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Raut A V, Murkute J S and Upadhye S V. 2003. Productive herd life and longevity in a crosbred jersey herd. *Indian Veterinary Journal* **80**: 218–21.
- Sharda D P and Lohia K L. 1966. Incidence of abortions and abnormal calvings in Hariana cattle. *PAU Agricultural Research Journal* **3**: 449–55.
- Sharma B D, Singh R N and Singh C S P. 1980. Part lactation, rate of decline and persistency of milk yield in Hariana cattle. *Indian Journal of Dairy Science* **33**: 336–40.
- Sharma G P, Vali K N and Suri K R. 1951. Studies on the Hariana breed of cattle. *Research Bulletin of the Punjab University* **18**: 57–68
- Shetkar M, Kumar V, Singh S P, Singh Y, Kumar M and Nath S. 2021a. Age at first calving and lifetime performance of Hariana cattle at organized farms. *Indian Journal of Animal Sciences* **91**(12): 1106–08.
- Shetkar M, Kumar V, Singh S P, Singh Y, Kumar M and Singh K. 2021b. Genetic analysis of first dry period and lifetime performance in Hariana cattle. *Indian Journal of Animal Sciences* 91(12): 1103–05.
- Singh B B, Dutt M and Kumar J. 1967. Estimates of genetic parameters of part lactation records. *Indian Veterinary Journal* **44**: 579–84.
- Singh D, Acharya R M and Sundaresan D. 1969. Effectiveness of different selection indexes for genetic advancement in Hariana cattle. *Indian Journal of Animal Sciences* 39: 473–87.
- Singh M M and Tomar N S. 1983. Genetic studies on milk production in different lactations of Hariana cows. *Indian Veterinary Journal* **60**: 815–19.
- Singh M P, Singh P K and Yadav M C. 2004. Reproductive performance of Hariana cattle at organized herds in Uttar Pradesh. *Indian Veterinary Medical Journal* 28: 1–6.
- Singh M P, Singh P K and Yadav M C. 2005. Study of lifetime performance traits of Hariana cattle at organized herds in U.P. *Indian Veterinary Medical Journal* **29**: 9–15.

- Singh R. 2001. 'Genetic studies in closed population on Hariana cattle.' MVSc thesis, CCS Haryana Agricultural University, Hisar, Haryana, India.
- Singh R N. 1970. Genetic and phenotypic study of age at first calving in Hariana cattle of Bihar. *Indian Journal of Dairy Science* 23: 229–32.
- Singh R N and Prasad R B. 1967. A genetic and phenotypic study of milk yield of Hariana cattle in Bihar. *Indian Veterinary Journal* 44: 584–88.
- Singh S. 2002. 'Genetic studies on lifetime performance traits in Hariana cattle.' PhD thesis, CCS Haryana Agricultural University, Hisar, Haryana, India.
- Singh S B and Desai R N. 1961. Inheritance of some economic characters in Hariana cattle. 1. Age at first calving. *Indian Journal of Dairy Science* **14**: 81–88.
- Singh S B, Singh S P and Desai R N. 1964. Effect of the age at first calving and first lactation milk production on longevity and life time milk production in Hariana cattle. *Indian Journal of Veterinary Science* **34**: 202–13.
- Singh U, Kumar A, Beniwal B K and Khanna A S. 2008. Evaluation of breeding values of Hariana bulls under organized farms. *Indian Journal of Animal Sciences* **78**(4): 388–90.
- Singh U, Kumar A and Khanna A S. 2010. Non genetics factors affecting age at first calving and first lactation traits in Hariana Cows. *Indian Veterinary Journal* 87: 91–93.
- Singh U, Kumar A and Khanna A S. 2011. Performance of Hariana cattle in its native tract. *Indian Veterinary Journal* **88**(2): 40–42.
- Snedecor G W and Cochran W G. 1994. *Statistical Methods* (8th edition). Oxford and IBH Publishing Co., Calcutta, India.
- Soof M S A and Singh B P. 1970. Inheritance of economic traits in Hariana cattle. *Indian Journal of Animal Sciences* **40**: 484–88. Swami P D, Kumar V, Murdia C K, Barhat N K, Joshi R K and

- Kumar P. 2005. Effect of non-genetic factors on production traits in Hariana cattle. *Indian Journal of Dairy Science* **58**: 299–301.
- Thiruvenkadan A K, Panneerselvam S and Rajendran R. 2015. Lifetime performance of Murrah buffaloes hot and humid climate of Tamil Nadu, India. *Buffalo Bulletin* **34**(1): 92–99.
- Tiwana M S. 1967. 'Inheritance of reproductive efficiency and its relationship with milk yield in Hariana cattle.' MSc thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Tomar S S. 1975. The influence of the sex of the calf on the productive traits of Hariana dams. *Indian Veterinary Journal* **52**: 907–10.
- Tomar S S, Arora K L and Aneja D V. 1972. Studies on the reproductive efficiency of Hariana cattle-the influence of the season on the occurrence of oestrus and conception rates. *Indian Veterinary Journal* **49**: 477–82.
- Tomar S S and Balaine D S. 1973. Effect of the length of service period and proceeding dry period on the milk yield of Hariana cattle. *Indian Journal of Dairy Science* **26**: 20–24.
- Vinayak A K. 1989. 'Association on linear sized type scores with the age at first calving and milk production in Indian cattle and buffaloes.' PhD thesis, Haryana Agricultural University, Hisar, Haryana, India.
- Vinothraj S, Subramanian A, Venkataramanan R, Joseph C and Sivaselvam S N. 2016. Lifetime production performance of Jersey × Red Sindhi crossbred cows. *Livestock Research International* 4(1): 59–62.
- Yadav R K and Rawat R S. 1967. Studies on the relation between the level of production in first and in the subsequent lactations in Hariana cows. *Indian Journal of Dairy Science* **20**: 201–04.
- Yadav S B S and Balaine D S. 1980. Comparative performance of Hariana purebreds and halfbreds with some elite exotic breeds. *Livestock Adviser* **5**: 33–37.