Indian Journal of Animal Sciences **92** (2): 153–165, February 2022/Review Article https://doi.org/10.56093/ijans.v92i2.122071

Recent development in freezing strategies of pig semen—A review

S K BAISHYA $^{1 \square}$ and R K BISWAS 2

ICAR-Krishi Vigyan Kendra Goalpara, Dudhnoi, Goalpara, Assam 783 124 India

Received: 25 July 2020; Accepted: 22 November 2021

ABSTRACT

Of late studies on frozen thawed boar semen have dramatically improved boar semen cryopreservation technique, albeit the commercial application of cryopreserved boar semen has not yet been popular. Some studies claimed successful fertility/ fertilization with frozen boar semen. Multiple researches are being carried out to evolve a suitable freezing protocol for cryopreservation of boar semen. In general, freezing protocol adopts freezing rates of either 20°, 40° or 60°C/min in lactose egg yolk extender with 2-3% glycerol using medium straw (0.5 ml) for freezing of boar semen. The supplementation of vitamin E or its analogues Trolox, butylated hydroxytoluene, reduced glutathione, catalase, superoxide dismutase, ascorbic acid, and alpha-lipoic acid to the freezing media of boar semen increase the cryosurvival of frozen-thawed boar spermatozoa. Treating sperm with cholesterol-loaded methyl-β-cyclodextrin increases sperm cryosurvival rates and sperm quality after thawing by partly decreasing membrane damage induced during phase transition from fluid to the crystalline-gel state. High fertility rates with cooled, frozen-thawed or sex-sorted boar semen are feasible to achieve by using appropriate insemination procedures. Post-cervical intra-uterine insemination allowed a three-fold reduction of spermatozoa to be inseminated, whereas deep uterine insemination allowed a substantial reduction in the number of cooled (5-20 folds) or frozen-thawed (6-folds) spermatozoa. With combination of different approaches, acceptable fertility with cryopreserved boar semen can be achieved facilitating its use in routine and commercial application. This review depicts best ways possible to adopt suitable freezing strategies for cryopreservation of boar semen.

Keywords: Cryopreservation, Freezing strategies, Pig, Semen

The first successful attempt of boar semen cryopreservation was reported in 1956 (Polge 1956). Although fertility with frozen boar semen appeared in the literature before 1970, the results could not be repeated. Polge et al. (1970) first described a method for successful fertilization with frozen-thawed boar semen through oviductal insemination. Fertility with frozen-thawed boar semen by cervical insemination was reported in 1971 separately by Crabo and Einarsson, Graham et al. and Pursel and Johnson. In 1975, two different boar sperm cryopreservation methods were developed: the German or Hulsenberger method (Westerndorf et al. 1975) and the American or Beltsville method (Pursel and Johnson 1975). In Hulsenberger method, freezing was done in straws over vapour of liquid nitrogen while in Beltsville method freezing was performed in pellet form in carbonic ice. Both the methods were based on the use of freezing extenders containing egg yolk and glycerol as cryoprotectant. However, the two methods differed in the type of sugars used in the freezing extender. While Beltsville method

Present address: ¹ICAR-Krishi Vigyan Kendra Goalpara, ICAR-National Research Centre on Pig, Goalpara, Assam. ²College of Veterinary Science, Assam Agricultural University, Khanapara, Guwahati, Assam. [™]Corresponding author email: santosh_baishya@rediffmail.com

involved the addition of glucose, Hulsenberger method utilized lactose. These two methods or their modifications are commonly used hitherto (Eriksson 2000). Research efforts in recent times have been directed toward optimization of cryopreservation protocols and artificial insemination (AI) methods using frozen boar semen. Cryopreservation success has increased after introduction of programmable freezing machine and controlled cooling and freezing rate (Hammit and Martin 1989).

Frozen boar semen provides many benefits to the swine industry, namely long-range distribution of high quality genetic material, establishing genetic resource banks for conservation of genetic diversity, improvement in biosecurity and even for reserve supplies in response to sudden disease outbreak. Up-gradation of indigenous pigs through artificial insemination (AI) with semen of improved breed of boar is one of the handful biotechnological tools as it yields most often farrowing rates and litter sizes close to natural mating. The mere advantages of AI could be maximized with accomplishment of cryopreservation of boar spermatozoa having optimum fertility. However, the practice of cryopreservation of boar semen in commercial fields is sparse due to lower freezability of boar sperm as compared to other animals (Johnson et al. 2000, Mazur et al. 2008) and less than 1% of all inseminations in pig are

done using frozen-thawed semen (Rodriguez-Gil and Estrada 2013), most often after export from one country to another and primarily for the purpose of upgrading the genetic base of the herd. Several factors constrain commercial application of boar semen frozen in liquid nitrogen especially lower sperm survival post-thaw (Thurston *et al.* 2001, Roca *et al.* 2006a, Hernandez *et al.* 2007a), which yields low farrowing rates and litter sizes (Roca *et al.* 2006b, Baishya *et al.* 2016) because of impaired fertilizing ability and reproductive performance after AI (Johnson *et al.* 2000) thus making such technology not a commercially viable option for pig producers, despite its breeding relevance (Martinez *et al.* 2005).

In India, very few attempts (Nath 1992, Khan 2009, Baishya *et al.* 2014a, b; Baishya *et al.* 2015, 2016; Baishya *et al.* 2018a, b, c) have been reported to develop and assess freezing protocols for boar semen cryopreservation. This review depicts the recent developments in freezing strategies for cryopreservation of boar semen.

Freezing strategies for cryopreservation of boar semen

Current research on cryopreservation of boar semen lays emphasis on various strategies to improve the quality of post thawed spermatozoa, increase the number of spermatozoa available for fertilization and reduce the sperm damage. Various strategies adopted to improve the post thaw quality and availability of boar sperm are discussed below.

Optimum freezing protocol: An optimum freezing protocol depends mainly on freezing medium, concentration of the cryoprotectant, freezing packages, cooling, freezing and thawing rates for maximum sperm cryosurvival.

Diluent and cryoprotectant for freezing of boar semen: During the past few decades, many diluents have been evolved by different researchers for cryopreservation of semen with varying degree of success. Effective freezing media offer membrane protection during cooling, while proper concentrations of cryoprotectant reduce intracellular ice crystal formations and osmotic stress during freezing. Furthermore, cooling and freezing rates allow spermatozoa to adjust to temperature changes while limiting exposure to cryoprotectant and formation of large ice crystals (Fiser et al. 1993).

Many diluents such as glucose-egg yolk, lactose-egg yolk EDTA-Tris diluent glucose + sodium citrate + egg yolk + glycerol, Lactose-egg yolk-glycerol, Tris-egg yolk-dextrose-EDTA-citric acid-glycerol, Tes-tris-glucose-egg yolk-glycerol, lactose-egg yolk-glycerol with or without detergents and emulsifying agents have been tested by various scientists (Nath 1992, Errikson *et al.* 2002, Gadea *et al.* 2004, Maldjian *et al.* 2005, Roca *et al.* 2006a, Corcuera *et al.* 2007, Flores *et al.* 2008, Hu *et al.* 2008, Roca *et al.* 2008, Casa *et al.* 2009, Jeong *et al.* 2009, Khan 2009, Zhang *et al.* 2009, Saravia *et al.* 2010) and reported varying success rate. Cryopreservation extenders contain hen egg yolk (EY) because it protects the cell against cold shock. As the protective effect is mainly due to the presence of low-density lipoproteins (LDL) in the EY plasma, beneficial effects have

been reported (Jiang et al. 2007a) by replacing the EY plasma with LDL fraction on sperm quality and DNA integrity following freeze-thawing of boar semen. It was demonstrated that LDL isolated from ostrich EY rather than from hen rendered acceptable fertility rates and litter sizes after AI (Fraser et al. 2007) and sperm quality parameters including DNA integrity (Fraser and Strzezek 2007). The optimal concentration of LDL fraction was found to be 9% of the freezing extender (Jian et al. 2007b) and the highest cryoprotective effects were conferred by the extract obtained from pigeon EY (Wang et al. 2014). The effect of different types of sugars used in egg yolk based extender on the post-thawed boar semen quality revealed that the lactose-based extender resulted in a higher percentage of post-thawed sperm motility, viability, intact acrosome and functional plasma membrane than sorbitol-based extender and fructose-based extender yielded a higher post-thawed sperm motility and viability than sorbitol-based extender (Chanapiwat et al. 2012). Lactose-egg yolk was found suitable for cryopreservation of boar semen and hence it is used extensively for boar semen freezing protocol. The addition of 5% seminal plasma from good freezability ejaculates to the freezing extender improved the sperm motility and membrane integrity at post-thawing and in vitro penetration rates after in vitro fertilization (Hernandez et al. 2007). This improvement could be mediated through inhibition of in vitro capacitation and cooling-induced capacitation-like changes via heparin-binding seminal plasma proteins (Vadnais and Roberts 2010).

Cryoprotectant is added to the freezing medium to reduce and control intracellular ice crystal formation. Cryoprotectant aids in the freezing process by causing a hypertonic cellular environment and by modifying the sperm membrane to encourage water to leave the cell (Corcuera et al. 2007). Many cyroprotectants have been tested while freezing swine sperm including Dimethyl Sulfoxide (DMSO), Polyvinylpyrrolidone (PVP), and Ethylenediaminetetraacetic acid (EDTA), however none provided the same level of protection as glycerol (Johnson et al. 2000). A number of studies utilizing glycerol, the most common cryoprotectant for swine, determined that boar sperm had the highest percentage of motile (52.5%) and acrosome intact sperm (56%) when concentrations of 2 to 4% were used in the final volume of freezing medium (Corcuera et al. 2007, Hernandez et al. 2007b). However, concentrations greater than this caused decreased survivability post-thaw and compromised acrosomes, resulting in reduced fertility (Holt 2000). Improved postthaw sperm motility was reported (De Mercado et al. 2009) on using 2% glycerol with 80 mM L-glutamine. A study indicated that replacing lactose and glycerol in extender by powdered coconut water plus dimethylformamide yielded higher post-thaw sperm quality, however fertility test was required for confirmation (Silva et al. 2015). The effects of different concentrations of glycerol (0, 1, 2, 3 and 5%) and dimethylacetamide (DMA: 0, 1, 3 and 5%) on post-sperm quality characteristics following semen freezing in dry ice or liquid nitrogen indicated that the freezing extender containing 3% glycerol in combination with the straw-freezing method using dry ice produced the best post-thaw quality parameters of boar semen and combinations of glycerol and DMA did not enhance the cryosurvival of boar spermatozoa (Yang *et al.* 2016). Hitherto, glycerol is the main cryoprotectant, as no cryoprotectant has been found to yield better results than its optimal concentration ranging from 2 to 3%.

Semen packages for freezing: Semen packaging system has a great influence on the cryosurvival of boar spermatozoa. Researchers used different freezing packaging materials for freezing of boar semen, viz. 5 ml Maxi straws (Westerndorf et al. 1975), 0.50 ml medium straws (Baron 1986 and Fazano 1986), 1.70-2.00 ml flattened Maxi straws (Leps 1988 and Simmet 1993), and 0.25 ml and 5 ml plastic bags (Larsson and Einarsson 1976b and Rodriguez-Martinez et al. 1996). All the packaging systems have their advantages and disadvantages. Small and medium straw offer large surface to volume ratio and provide cryobiologically suitable shape, these require thawing 10-20 straws per insemination. Weitze et al. (1987) reported that though 5 ml maxi straw contains one insemination dose, it has a relatively small surface to volume ratio, which constrains optimum freezing and thawing. However, Cordova et al. (2001) found no differences between 0.5 and 5 ml straws in terms of post-thaw sperm quality, total penetration, monospermy and polyspermy rates. Flat packs (5 ml) are considered cryobiologically convenient (very thin and with a large surface to dissipate heat during cooling and warm rapidly during thawing) with high post-thaw sperm motility (Eriksson et al. 2001). Flat packs that allowed more homogenous dehydration than 0.5 ml straws during boar sperm cryopreservation on electron microscopic cryoscanning (Ekwall et al. 2007), proved successful when fertility was tested, with acceptable farrowing rates and litter sizes (Eriksson et al. 2002) and can obviate pooling of several small or medium straws for a single dose of AI. However, doses with such large sperm numbers conspire against the best use of the ejaculates, but with the introduction of intrauterine deposition of semen, a new vista was opened for the use of smaller containers with high numbers of spermatozoa to contain a single AI-dose (Rodriguez-Martinez and Wallgren 2011).

Boar spermatozoa were frozen in small volumes (0.5–0.7 ml) with high concentration in novel containers, the so-called 'MiniFlatPack' (MFP) that contained 1–2 billion spermatozoa/ml (Bwanga *et al.* 1991). The freezing was more homogeneous with more cryosurvivability MFP than in medium straws (Ekwall *et al.* 2007) and fertility using deep-intrauterine AI was equal or higher than that for 0.5 ml plastic straws (Saravia *et al.* 2005, Wongtawan *et al.* 2006). However, there is no consensus among the scientists about the freezing packaging system suitable for commercial application of frozen boar semen.

Cooling and freezing rate: Sperm damages emanated during cryopreservation procedures could be mitigated to

some extent through the improvement in freezing strategies developed by various scientists.

The optimum cooling/freezing rate for cryopreservation of boar semen should be generally in the range of 30–50°C as adopted by various workers (Bwanga et al. 1991, Johnson et al. 2000, Roca et al. 2006, Saravia et al. 2010) for cryopreservation of boar semen. Cooling down of boar semen from 15–17°C to 4°C was also conducted at –0.1°C/ min (Casa et al. 2009), however, higher cooling rates (0.4 and -1.5°C/min) did not cause higher cryodamage to boar semen and could shorten the whole protocol (Juarez et al. 2011). Uniform cooling and freezing in the range of 20°C to 60°C/min from -6 to -140°C with controlled rate of freezing method resulted in substantial improvement of post-thaw sperm qualities as compared to that of uncontrolled and rapid freezing with conventional method (Baishya et al. 2014). Freezing of boar semen in medium straw between the cooling rates of 10, 40 and 60°C/min showed no significant difference in post-thaw sperm motility (Hernandez et al. 2007). Eriksson and Rodriguez-Martinez (2000) while studying the effect of three different freezing rates (20, 50 and 80°C/min) using Maxi-straws and flat packs recorded higher sperm motility (54.6%) post thaw at freezing rate of 50°C/min than at 20°C/min (51.5%) or at 80°C/min (50%).

Saravia et al. (2010) carried out the freezing of spermrich fraction (SRF) of boar semen by a simplified shorter procedure in mini flat packaging using cooling rate of 3°C/ min from 5 to -5°C, 1 min holding for crystallisation, and thereafter 50°C/min from -5°C to -140°C in lactose-egg yolk-glycerol-Equex STM extender and recorded the mean percentage of post-thaw sperm motility as 70.60±2.60. Siqueira et al. (2011) conducted freezing of boar semen by dividing each semen ejaculates into two portions, i.e. sperm peak portion (first 10 ml of ejaculate) and the remaining spermatozoa of the sperm-rich fraction of the ejaculate using the cooling rate of 3°C/min from 5 to -5°C; 1 min holding for crystallization, and thereafter froze at 50°C/min from – 5°C to −140°C in mini flat pack. The post-thaw sperm motility was recorded to be 50% for both the portions, and plasma membrane and acrosome integrity did not differ between the two fractions.

It could be inferred from the above studies that the optimum freezing procedure could consist of a cooling rate 3° C/min from 5 to -6° C, 1 min holding at -6° C and then freezing at the rate of 20°C to 60°C/min from -6° C to -140° C with or without Equex-STM.

Thawing rate: Thawing rate is one of the important aspects of a freezing protocol and response of spermatozoa to thawing depends on the cooling rate used. Many researches were conducted to find out a suitable thawing rate. It is widely accepted that thawing rate at 37°C for 20 sec is the best. However, Tomas et al. (2014) showed that faster thawing rates at 70°C for 8 sec yielded better post-thaw boar sperm motility and membrane integrity. For improvement of post-thaw boar sperm quality thawing medium Beltsville Thawing Solution was supplemented

with seminal plasma for its beneficial effect on sperm motility and membrane integrity as it could prevent the destabilization of plasma membrane and other capacitationlike changes (Vadnais and Althouse 2011, Gomez-Fernandez et al. 2012). While, some authors reported no effects on sow fertility after supplementing the thawing extenders with seminal plasma (Abad et al. 2007), others observed an increase in the reproductive performance not only when added to frozen-thawed ejaculated but also when added to frozen-thawed epididymal sperm (Okazaki et al. 2009, 2012; Garcia et al. 2010). Certain additives were also included only in the thawing extender with positive effects. The combined addition of Ca²⁺- chelating agents, 6 mM EDTA and 6 mM EGTA to the thawing extender increased sperm motility, acrosomal status, IVF outcomes and pregnancy rates following AI (Okazaki et al. 2011). However, supplementing thawing solution with caffeine and β-mercaptoethanol increased reproductive performance indirectly because caffeine inhibited the migration of polymorphonuclear leucocytes into the uterine lumen (Yamaguchi et al. 2009) and β-mercaptoethanol prevented sperm capacitation and degenerative acrosome exocytosis (Yamaguchi and Funahashi 2012).

Addition of antioxidants to freezing medium: Antioxidants have been used to protect spermatozoa from the deleterious effects of cryopreservation. During cryopreservation, reactive oxygen species (ROS) are produced due to oxidative stresses resulting from cooling, freezing and thawing processes. ROS exerts influence on different sperm functions, viz. hyperactivation, capacitation, acrosome reaction, and zona binding (Kodama et al. 1996, Lamirande et al.1997). When there is imbalance between ROS production and detoxification by antioxidants, an excess of ROS creates oxidative stress. ROS such as hydrogen peroxide (H₂O₂) is known to arrest motility and block oxidative metabolism in spermatozoa (Tosic 1947). ROS molecules are formed from the incomplete reduction of molecular oxygen and are toxic to cells because of their high reactivity. The ROS toxicity is related to the ionization and subsequent inactivation of proteins and peroxidation of unsaturated lipids (Medeiros et al. 2002). It also causes sperm DNA damage and consequently could affect embryo development (Aitken et al. 1998). Boar spermatozoa are particularly susceptible to lipid peroxidation because of high level of polyunsaturated phospholipids in the plasma membrane since unsaturated fatty acids readily undergo peroxidation (Halliwell and Gutterridge 1984). Relatively low antioxidant capacity of boar seminal plasma (Brezezinska-Slevbodzinska et al. 1995) also favours the excess production of ROS.

Numerous studies have been conducted on different antioxidants to diminish the toxic effect of ROS in boar semen preservation and to improve the post-thaw survival of boar spermatozoa (Gadea *et al.* 2004, Roca *et al.* 2004, Kaeoket 2008, Jeong *et al.* 2009, Trzcinska *et al.* 2015, Varu-Ghiuru *et al.* 2015, Trzcinska and Bryla 2016, Baishya *et al.* 2018a). Pena *et al.* (2003) also observed that, during

cryopreservation vitamin E analogoue Trolox at 200 µg/ml had positive effects on sperm motility, mitochondrial membrane potential and membrane integrity of cryopreserved porcine spermatozoa. It was found that addition of 200 µg/ml alpha-tocopherol to the freezing extender could protect the sperm membrane from oxidative damage (Breininger et al. 2005), and reduce both tyrosine phophorylation and capacitation-like status of sperm in boar (Satorre et al. 2007). Jeong et al. (2009) evaluated the influence of α-tocopherol supplementation at various concentrations in Lactose Egg yolk Glycerol extender during boar semen cryopreservation. They found the highest post-thaw sperm motility (45.4%) with supplementation of 200 μ M α -tocopherol in extender and the lowest (29.5%) in extender containing no α -tocopherol. They also observed that α-tocopherol supplementation at 200 µg/ml might protect boar sperm against excessive ROS generation by reducing lipid peroxidation and lowering the expression of apoptosis genes by reducing DNA fragmentation. Satorre et al. (2012) also observed that quality of frozen boar semen was improved with addition of α-tocopherol in both freezing and thawing media. Kaeoket et al. (2008) recorded that the supplementation of *L*-cysteine (5 mM), glutathione (1 mM), and water soluble Vitamin E (200 µM) to the freezing media resulted in an improvement of boar sperm motility, viability, and acrosome integrity of thawed spermatozoa. L-cysteine plays a role in the intracellular protective mechanisms against oxidative stress, and as a membrane stabilizer and inhibitor of sperm capacitation (Zhang et al. 2012). Chanapiwat et al. (2009) observed that the supplementation of anti-oxidant L-cysteine alone or in combination with docosahexaenoic acid-enriched hen egg yolk significantly improved the post-thaw progressive motility and acrosome activity. The addition of 5 or 10 mM L-cysteine in lactoseegg yolk extender was optimal for improving the quality of frozen-thawed boar spermatozoa (Kaeoket et al. 2010). Gadea et al. (2004) reported that the addition of reduced glutathione (GSH) that protected spermatozoa against oxidative damage (Alvarez and Storey1989), to the freezing media resulted in an improvement in per cent motility of boar sperm and motion parameters of thawed spermatozoa and a decrease in the number of spermatozoa with changes in the sulfhydryl groups in membrane proteins. The addition of GSH to both freezing and thawing extenders was found to increase boar sperm quality at post-thawing, stabilize the nucleoprotein structure (Gadea et al. 2005a) and improve fertilizing ability (Estrada et al. 2014) both in vivo and in vitro. When added to the freezing extender, the protective effect of GSH on sperm function was dosedependent and it was more pronounced with 1 mM GSH than with 5 mM GSH (Gadea et al. 2005b) and exogenous supplementation of GSH was effective only when its endogenous level was low in semen. The highest improvement in post-thaw boar sperm quality was recorded when both freezing and thawing media were supplemented with 5 mM of GSH plus 100 μM of L-ascorbic acid (Giaretta et al. 2015). Bailey et al. (2000) recorded that when 0.2,

0.4 or 0.8 mM butylated hydroxytoluene (BHT) was added to the freezing media, post-thaw boar sperm survival was higher, lipid oxidation was reduced and embryo development after IVF was improved. Roca et al. (2004) examined the potential protective effect of BHT on cryopreservation injuries to boar spermatozoa and recorded the post-thaw sperm motility as 32.16, 45.44, 44.07, 44.52 and 37.73% in extender containing 0, 0.2, 0.4, 0.8 and 1.6 mM BHT respectively. The addition of 1.0 mM BHT to the freezing extender efficiently improved the fertilizing ability of post-thaw boar spermatozoa (Trzcinska et al. 2015). The other antioxidants namely catalase and superoxide dismutase (SOD) (Pursel et al. 1978), L-glutamine (De Mercado et al. 2009) were used in the freezing media to enhance the quality of post-thaw boar spermatozoa. The addition of SOD or catalase to boar spermatozoa freezing extender reduced post-thaw ROS generation and improved sperm motility, viability and in vitro fertilizing potential of thawed spermatozoa (Roca et al. 2005). De Mercado et al. (2009) reported that L-glutamine had the ability to cryoprotect boar sperm based on enhancement of post-thaw sperm motility and it could be used as a partial glycerol substitute in the freezing extender. Addition of catalase, pyruvate and mer-captoethanol to cooling and freezing media significantly improved boar sperm motility after thawing without affecting sperm morphology or viability (Thurston et al. 2002). Better boar sperm motility after thawing could be obtained with the supplementation of 10 μM lutein, 200 μM Trolox, 200 μM ascorbic acid and 200-400 μM Trolox and ascorbic acid in lactose-egg yolk extender containing a final concentration of 3% glycerol and 0.5% Equex-STM (Varo-Ghiuru et al. 2015). It was reported that addition of ascorbic acid had a protective effect on metabolic activity and viability of cryopreserved porcine spermatozoa (Pena et al. 2003, 2004). Alpha-lipoic acid (ALA) a natural antioxidant, conferred a cryoprotective capacity to the extender used for boar semen during the process of freezing-thawing, and the optimal concentration of ALA for the frozen extender is 6 mg/ml (Shen et al. 2016). Baishya et al. (2018b) revealed that supplementation of GSH (1 mM), vitamin E (0.2 mM), and BHT (0.2 mM) in freezing medium resulted in an improvement of sperm motility, acrosomal status and plasma membrane integrity along with reduction of lipid peroxidation after freezing. The magnitude of these protective effects exhibited by GSH, vitamin E and BHT on cryopreserved boar spermatozoa were similar, and thus any one of them could be incorporated in porcine semen for better freezability. The highest improvement in post-thaw boar sperm quality was recorded when both freezing and thawing media were supplemented with 5 mM of GSH + 100 µM of L-ascorbic acid (Giaretta et al. 2015).

It could be concluded that the supplementation of vitamin E (or its analogue Trolox), BHT, GSH, catalase, SOD, ascorbic acid, and ALA to the freezing media of boar semen could increase the cryosurvival of frozen-thawed boar spermatozoa.

Addition of cholesterol loaded cyclodextrin in holding medium: Supplementation of cholesterol to the holding medium is a new technique to improve the quality of frozen semen. Cholesterol has multiple effects on sperm membrane, which stabilize the membrane during cooling and freezing processes, reduce membrane permeability, facilitate morphological membrane characteristics and serves as a membrane antioxidant (Crockett 1998). The cholesterol to phospholipid ratio is an important determinant of membrane fluidity and stability at low temperature. Rapid depletion of sperm cholesterol content during freezing process could cause lowering of cholesterol to phospholipid ratio making the sperm more vulnerable to cold shock (Watson 1981). Incubation of spermatozoa with cholesterol was found to increase the cholesterol content in sperm plasma membrane by two to three folds as compared to control in bull (Purdy and Graham 2004), stallion (Moore et al. 2005) and ram (Moce et al. 2010) which could increase the cholesterol:phospholipid ratio as found in cold-shock resistant sperm. Watson (1981) reported that treating sperm with cholesterol before cryopreservation could reduce the sensitivity of sperm membranes to cooling damage, by eliminating or at least minimizing the lateral phase separation of the lipids. Cholesterol modulates the fluidity of membranes by interacting with the fatty acyl chains of the phospholipids. Attempts have been made to make cholesterol soluble by incorporating it into liposomes and adding these liposome-cholesterol complexes to sperm. Results have been variable using this technique (from no response to moderate improvement after cooling at 4°C or after cryopreservation), depending on species (Wilhelm et al. 1996).

Cyclodextrins have been used to insert or remove cholesterol from cell membranes. Cyclodextrins, cyclic oligomers of glucose that form water soluble complexes with other organic molecules that may not be water soluble, can be used to deliver cholesterol to the sperm plasma membrane (Purdy and Graham 2004). It has been demonstrated (Tomas et al. 2011, Blanch et al. 2012, Lee et al. 2015) that the supplementation of cyclodextrin preloaded with cholesterol to the cooling media could improve the resistance of sperm to cryodamage due to cold shock and freezing damage. Methyl-β-cyclodextrin is the most commonly utilized cyclodextrin to preload cholesterol for treating sperm, although 2-hydroxypropyl-βcyclodextrin was effective for treating ram sperm (Moce et al. 2010). Addition of cholesterol-loaded methyl-βcyclodextrin (CLC) to semen modifies membrane permeability to water and cryoprotectants (Li et al. 2006). CLC molecules could improve post-thaw sperm quality and in vitro fertilizing ability without affecting capacitation status and DNA integrity (Tomas et al. 2011, 2013, Blanch et al. 2012). Further, CLC could efficiently eliminate p32 tyrosine phosphoprotein, a quantifiable bio-chemical marker of cold shock damage, reduce spontaneous acrosome reactions and improve viability in cold-shocked sperm (Galantino-Homer et al. 2006). However, adding CLC to cryopreservation extenders might need to increase glycerol concentration from 3 to 5% (Blanch et al. 2014) which could have detrimental effects on the perinuclear theca in boar sperm (Arenas-Nunez et al. 2013). Bailey et al. (2008) reported that treating of boar sperm in cholesterol loaded Methyl-β cyclodextrin improved the resistance of sperm to cryodamage. They also reported that higher level of cholesterol loaded methyl-cyclodextrin was not more effective than 5 mg/ml. Cryosurvival of boar spermatozoa is enhanced by exposure to methyl beta cyclodextrin (MBCD) before freezing due to its protective effect (Zeng and Terada 2001). Bailey et al. (2008) could not find appreciable difference in the efficacy of 2hydroxypropyl-β-cyclodextrin when compared with commercial methyl-β-cyclodextrin loaded with cholesterol. Methyl-β-cyclodextrin without cholesterol did not alter the response of sperm to cold shock, indicating that the beneficial effect was mediated via cholesterol. Also, cholesterol alone was not as effective as the CLC demonstrating the utility of cyclodextrin as a delivery molecule (Bailey et al. 2008). Baishya et al. (2018b) found that treating sperm with BHT (0.2 mM), CLC (5 mg/200- 240×10^6 sperm), and BHT (0.2 mM) + CLC (5 mg/ 200– 240×10^6 sperm) before freezing resulted in an improvement of sperm motility, enhancement of plasma membrane integrity, increment of acrosomal integrity and reduction of spermatozoa susceptible to lipid peroxidation after freeze-thawing, however, had no influence on the postthaw mitochondrial membrane potential and DNA integrity. The beneficial effects on post-thaw sperm quality were more pronounced with BHT plus CLC than with BHT or CLC alone and thus BHT in combination with CLC could be a superior additive for cryopreservation of boar semen.

Finally it could be stated that treating sperm with CLC increased sperm cryosurvival rates and sperm quality after thawing by partly decreasing membrane damage induced during phase transition from fluid to the crystalline-gel state.

Additional factors

Selection of season: Ejaculates of boar, irrespective of breed, collected during winter and spring were reported to have higher freezability than those obtained during autumn and summer (Barranco *et al.* 2013) indicating the relevancy of temperature and photoperiod on the production of sperm cell, i.e. spermatogenesis (Sancho *et al.* 2004, Yeste *et al.* 2010).

Fraction of ejaculate: The first 10 ml of the sperm-rich fraction (SRF) of ejaculate that contained about 25% spermatozoa of SRF was found to be more resilient to handling and freezing as compared to rest of the ejaculate (Saravia et al. 2009). This could be due to beneficial effect to the spermatozoa of the SRF portion because of higher contents of cauda epididymal fluid and specific proteins or lower amounts of seminal plasma sperm adhesins, bicarbonate or zine levels when compared with other fractions of the ejaculate (Rodriguez-Martinez et al. 2009, Saravia et al. 2010). Freezing of the first part of SRF could

be done in a relatively shorter time (about 3.5 h) without compromising freezability as compared to conventional freezing (about 8 h). The portion of the SRF was found to contain fertility-associated proteins (Rodriguez-Martinez *et al.* 2009) and could be frozen using mini flat packs and used for intra uterine insemination while the rest of the ejaculate might be utilized for conventional liquid semen doses for AI.

Holding time: Holding time, i.e. the period of storage at 15–18°C from semen collection to initiation of freezing was found to have beneficial influence in boar semen cryopreservation, and allowing 10–24 h is better than 3 h (Eriksson et al. 2001, Juarez et al. 2011, Alkmin et al. 2014) while other worker (Gale et al. 2014) reported no effect of holding time on post-thaw sperm quality. Holding time could increase sperm cryotolerance by maintaining the lipid architecture of plasma membrane (Casa and Althouse 2013) through a process involving phosphorylation of some proteins, such as HPSYO (Yeste et al. 2014).

Centrifugation: Centrifugation of boar semen before freezing removed seminal plasma and increased sperm concentration which could be re-diluted using extenders. Carvajal et al. (2004) observed that short-time centrifugation at a relatively high g-force (2400×g for 3 min) minimized damage to boar spermatozoa and yielded higher percentage of viable sperm with an intact acrosome having higher cryosurvivability relative to the initial sperm population after centrifugation. Use of iodixanol, a nonionic, polysucrose-based gradient @ 60% W/V iodixanol at the bottom of the centrifuge tubes during centrifugation as a cushion for recovery of sperm from sperm-rich fraction could increase the percentage of viable spermatozoa with lower lipid membrane disorder after freezing (Matas et al. 2007). Use of single-layer centrifugation through porcinespecific colloids such as Androcoll-P (Martinez-Alborcia et al. 2012a) would allow removal of cholesterol and seminal plasma proteins from sperm surface without affecting sperm membrane integrity that could improve post-thaw sperm quality and in vitro fertilizing ability (Kruse et al. 2011). The process resulted in removal of nonfunctional, dead boar spermatozoa as their presence before and during cryopreservation was detrimental for sperm freezability (Martinez-Alborcia et al. 2012b, Roca et al. 2013).

Boar semen freezability and fertility markers: There was considerable variation in cryopreservation of semen among boars (Medrano 1998). Though there was variability among ejaculates from the same boar, the inter-ejaculate difference was considerably lower than the inter-boar difference. Roca et al. (2006a) observed that 70% of total variability in cryosurvival of boar semen could be due to boar effects. Thus pre-selection of boars for freezability using standard protocols could be a reliable way of identifying potential candidates for production of frozen/thawed semen with an acceptable quality. Modifications of the cryopreservation conditions for individual boars could further improve the cryosurvival of semen of sub-optimal freezers. Thurston et

al. (2002) used Amplified Fragment Length Polymorphism (AFLP) technique to compare 'bad' and 'good' freezer Landrace boars. This technique detects and evaluates differences in DNA sequences that correspond with phenotypic variability such as coat colour and also semen freezability. They found distinct differences in AFLP profiles, indicating the existence of markers for semen freezability. It was concluded that these markers might be related to variations in seminal plasma composition or accessory sexual gland functions rather than to diversity in sperm bio-chemistry and physiology.

The differences in freezability of boar ejaculates could be due to variations in the expression of genes involved in cell resistance of the ejaculates against damages by freeze-thawing procedures (Yeste 2015). Sperm proteins, viz. heat shock protein 90, acrosin-binding protein, triosophosphate isomerise, voltage-dependent anion channel 2 and seminal plasma protein fibronectin 1 that are involved in the response to osmotic and thermal stress, could predict ejaculates freezability in extended semen and serve as fertility markers (Casas *et al.* 2010, Vilagran *et al.* 2015).

Bacteria in ejaculate: The bacteria in collected boar ejaculates are present owing to contamination released lipopolysaccharide (LPS), a component of bacterial cell walls, on bacteriolysis due to conventional antibiotic treatment which stimulated Toll-Like-Receptor (TLR) that led to expression and secretion of cytokines or chemokines or induced apoptotic pathway (Kenny and O'Neill 2008). Thus activation of TLRs induced sperm membrane abnormality and apoptosis which resulted in a reduction of both sperm motility and fertilizing ability. Hence high population of gram-positive and gram-negative bacteria in boar ejaculates could impair sperm functionality before the cooling or freezing process.

Insemination strategy: In conjugation with evolving improved freezing methodologies, efforts have been made for consolidation of the procedures of breeding with frozen boar sperm since the post thaw quality of boar sperm is very poor with shorter life span (2–8 h) than fresh liquid spermatozoa. Works have been conducted to determine the proper sperm number required in an AI dose for frozen boar semen, number of inseminations needed, timing relative to ovulation, and method of semen deposition.

Boar deposits more than 50×10⁹ spermatozoa in the cervical canal during natural mating, which helps to overcome the female's hostile uterine environment where only the strongest, fastest and lucky spermatozoa are able to reach the site of fertilization. The AI procedure in pigs deposits the semen dose within the posterior portion of the cervical canal (approximately 15 cm deep into the cervix) by means of a catheter that engages the folds of the cervix. The standard protocol recommends the deposition of a high number of spermatozoa (generally more than 2,500×10⁶ cells) in a large volume of extender (80–100 ml) two or three times during oestrus. This protocol limits the number of doses that can be prepared from one ejaculate to approximately 20–25 (Vazquez *et al.* 2008). Various

workers reported that by using AI doses of nearly 5×10^9 cells, the highest pregnancy rate in gilts at day 30 was 65%, while pregnancy rate in sows at day 30 was 79%, and the highest farrowing rates in sows ranged from 76 to 82% (Eriksson and Rodriguez-Martinez 2000, Eriksson et al. 2002, Okazaki et al. 2009). Well-managed herds, optimum timing of insemination and less backflow of semen during deposition resulted in good fertility using standard AI with only 1000–2000×10⁶ spermatozoa per insemination (Steverink et al. 1997, Watson and Behan 2002). Various studies indicated that double insemination resulted in better farrowing rate and litter size as compared to single insemination (Kemp et al. 1996). Breeding method with $5-6 \times 10^9$ frozen-thawed sperm in spontaneously ovulating females that yielded the best pregnancy rates in gilts (65%) and farrowing rates in sows (>72%) utilized two inseminations, one at 24 h and the other at 36 h following oestrus (Eriksson and Rodriguez-Martinez 2000, Eriksson et al. 2002). This system seems to allow the best chance for fertilization to occur despite the decreased lifespan of frozen-thawed sperm. This along with the damage that occur to sperm during the cooling and freezing phases of cryopreservation and the capacitated-like state that results might accentuate the critical importance of interval from AI to ovulation for frozen boar semen than liquid semen (Waberski et al. 1994, Bailey et al. 2008). Bolarin et al. (2006) found that insemination close to the time of ovulation was the most important factor to achieve high fertility with low numbers of spermatozoa. Using frozen sperm doses of 1×10^9 twice per estrus, they obtained higher pregnancy rate and litter size in sows inseminated peri-ovulatory compared with inseminations pre-or post-ovulation (84.0% and 9.45±0.23, 48% and 8.67±0.54, and 48.8% and 7.54±0.62, respectively). Spencer et al. (2010) found that a longer interval between insemination with frozen boar semen and ovulation reduced pregnancy rates, number of normal foetuses and embryo survival.

New sperm technologies which include frozen-thawed semen, sex-sorted semen, sperm mediated gene transfer, encapsulated sperm necessitate the development of new strategies to achieve successful fertilization using lesser number of motile spermatozoa. New insemination procedures have been evolved based on the deposition site of the insemination to reduce the number of spermatozoa. The new procedures deposit the spermatozoa in the uterine body (post cervical insemination or intrauterine insemination, IUI), or deep in the uterine horn (deep intrauterine insemination, DUI), or in the oviduct (laparoscopic intra-oviductal insemination). Transcervical insemination allowed the reduction of a fresh semen dose by one third without significantly compromising the fertility of weaned sows (Watson and Behan 2002). Sumransap et al. (2007) reported good fertility with 1,000×10⁶ spermatozoa directly deposited into the uterine body (IUI). Bathgate et al. (2008) used a double DUI 24 h and 36 h after detection of oestrus with 1×10⁹ frozen-thawed boar spermatozoa, achieving results that were low but not significantly different than the control group with 1×109 fresh spermatozoa inseminated cervically (farrowing rates 34.7±6.8 vs 43.6±7.3%, respectively). Wongtawan et al. (2006) did DUI in sows with 1×10^9 spermatozoa frozen in 0.7 ml Flat Pack or medium straws that were not extended after thawing. Spermatozoa frozen in 0.7 ml Flat Packs achieved a pregnancy rate of 31.8%, compared with 40% after AI of sperm frozen in medium straws. Application of IUI and DUI resulted in higher fertility using decreased sperm numbers or damaged sperm cells with both fresh-chilled and frozen-thawed sperm (Rozeboom et al. 2004, Vazquez et al. 2005). Doses of 5×10^9 total frozen-thawed sperm have resulted in 70% pregnancy rates utilizing IUI (Bielas et al. 2008), while a DUI dose of 1×10^9 sperm yielded pregnancy rates of ~78% and litter sizes of >9 (Roca et al. 2003). The technology of IUI and DUI could improve the usefulness of frozen-thawed sperm, despite the difficulty during the breeding process as it allowed for reduction in sperm number per dose and thus decreased the expenses.

Didion *et al.* (2013) reported high rates of approximately 75 to 80% following AI with frozen-thawed sperm. In India, an incipient attempt was made by Baishya *et al.* (2016) to record the fertility status of frozen boar semen on cervical AI. They reckoned the farrowing rate as 44% with mean litter size at birth 5.91±0.69 numbers. Although the fertility rate was moderate, yet it would help in further improvement and utilization of frozen boar semen for AI in India.

Therefore high fertility rates with cooled, frozen-thawed or sex-sorted boar semen were feasible to achieve by using appropriate insemination procedures. Post-cervical IUI allowed a threefold reduction of spermatozoa to be inseminated, whereas DUI allowed a substantial reduction in the number of cooled (5–20 folds) or frozen-thawed (6-folds) spermatozoa.

Future strategy for improvement of cryopreservation technique of boar semen

Although cryopreserved boar semen has been available since 1975, still there is a continuous need for further improvement of cryopreservation strategy to obtain optimum fertility outcome of frozen boar semen. Some factors like freezing medium, cryoprotectant concentration, cooling, freezing and thawing rates, and freezing package which could influence the success of cryopreservation of boar semen should be worked out for maximum sperm cryosurvival. Supplementation of antioxidant and additive to the pre-freezing and freezing media of boar semen can reduce sperm damage and increase the cryosurvival of frozen-thawed boar spermatozoa. Future study would be required to improve the fertility parameters of frozen boar semen involving larger number of females using varying sperm concentrations, performing AI closer to the time of ovulation and adopting new insemination technique.

Conclusion

To conclude, it may be stated that vigorous research works have been conducted by many researchers to establish

a commercially viable freezing protocol for boar semen with optimum fertility and the goal has been achieved to some extent as revealed by the consequence of findings of many scientist. Today the niche for cryopreserved boar sperm is limited only to semen bank; however, days are not too far when it will be used extensively in AI like that in cattle.

REFERENCES

- Abad M, Garcia J C, Sprecher D J, Cassar G, Friendship R M, Buhr M M and Kirkwood R N. 2007. Effect of inseminationovulation interval and addition of seminal plasma on sow fertility to insemination of cryopreserved sperm. *Reproduction* in *Domestic Animal* 42: 418–22.
- Aitken R J, Gordon E, Harkiss D, Twigg J P, Milne P and Jennings Z. 1998. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. *Biology of Reproduction* **59**: 1037–46.
- Alkmin D V, Perez-Patino C, Barranco I, Parrilla I, Vazquez J M, Martinez E A, Rodriguez-Martinez H and Roca J. 2014. Boar sperm cryosurvival is better after exposure to seminal plasma from selected fractions than to those from entire ejaculate. *Cryobiology* **69**: 203–10.
- Alvarez J G and Storey B T. 1989. Role of glutathione peroxidise in protecting mammalian spermatozoa from loss of motility caused by spontaneous lipid peroxidation. *Gamete Research* **23**: 77–90.
- Arenas-Nunez M A, Juarez-Mosqueda M de L, Gutierrez-Perez O, Anzaldua Aree S R, Izquierdo A C, Rodriguez R M and Trujillo Ortega M E. 2013. Glycerol decreases the integrity of the perinuclear theca in boar sperm. *Zygote* 21: 172–77.
- Bailey J L, Bilodeau J F and Cormier N. 2000. Semen cryopreservation in domestic animals: A damaging and capacitating phenomenon. *Journal of Andrology* 21: 1–7.
- Bailey J L, Morrier A and Cormier N. 2003. Semen cryopreservation in farm species: An update. *Canadian Journal* of Animal Science 83: 393–401.
- Bailey L J, Lessard C, Jacques J, Breque C, Dobrinski I, Zeng W and Homer G H L. 2008. Cryopreservation of boar semen and its future importance to the industry. *Theriogenology* **70**: 1251–59.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C, Suresh Kumar and Ngachan S V. 2016. First report on *in vivo* fertility trial of frozen thawed boar semen in India. *Indian Journal of Animal Research* **50**(2): 181–84.
- Baishya S K, Biswas R K, Kadirvel G and Thakuria D R. 2015. Effect of additives in semen extender on post thaw sperm quality and plasma membrane protein profile of boar semen. *Indian Journal of Animal Sciences* **85**(6): 570–74.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C, Sinha S and Singh M. 2018c. Pre-freezing treatment with butylated hydroxytoluene and cholesterol-loaded methyl-β-cyclodextrin improves quality of cryopreserved boar semen. *CryoLetters* **39**(5): 336–44.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C and Suresh Kumar. 2018a. A comparative study of effects of different freezing methods on sperm quality, DNA integrity and membrane protein of cryopreserved boar semen. *Indian Journal of Animal Sciences* 88 (3): 285–89.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C, Kumar Suresh, Sinha S, Dutta D J and Saikia G K. 2014a. Effect of conventional and controlled freezing method on the post thaw characteristics of boar spermatozoa. Animal Reproduction

- Science 149: 231-37.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C, Sinha S and Singh M. 2018b. Effect of reduced glutathione, water soluble vitamin e analogue and butylated hydroxytoluene on the post thaw characteristics of boar spermatozoa. *CryoLetters* **39**(4): 227–34.
- Baishya S K, Biswas R K, Kadirvel G, Deka B C, Suresh Kumar and Thakuria D R. 2014b. A comparative study of cryodamages of boar spermatozoa frozen with conventional liquid nitrogen vapour freezing method. *Indian Journal of Animal Sciences* **84**(9): 954–57.
- Baron G. 1986. 'Tiefgefrierung von Ebersamen in Kunststoffrohren: "in-vitro" Untersuchungen zum Einfluss zweier Konfektionierungsformen und verschiedener Einfrier-und Auftaugeschwindigkeiten.' Thesis, Tierarztliche Hochschule, Hannover, Germany.
- Barranco I, Ortega M D, Martinez-Alborcia M J, Vazquez J M, Martinez E A and Roca J. 2013. Season of ejaculate collection influences the freezability of boar spermatozoa. *Cryobiology* **67**: 299–304.
- Bathgate R, Eriksson B M, Thomson P C, Maxwell W M and Evans G. 2008. Field fertility of frozen-thawed boar sperm at low doses using non-surgical, deep uterine insemination. *Animal Reproduction Science* **103**: 323–35.
- Bielas W, Rzasa A and Dubiel A. 2008. The effect of packaging forms and freezing methods of boar semen on reproductive performance of sows and gilts. *Theriogenology* **70**: 1396–97.
- Blanch E, Tomas C, Graham J K and Moce E. 2012. Response of boar sperm to the treatment with cholesterol-loaded cyclodextrins added prior to cryopreservation. *Reproduction in Domestic Animal* **47**: 959–64.
- Blanch E, Tomas C, Hernandez M, Roca J, Martinez E A, Vazquez J M and Moce E. 2014. Egg yolk and glycerol requirements for freezing boar spermatozoa treated with methyl β-cyclodextrin or cholesterol-loaded cyclodextrin. *Journal of Reproduction Development* 60: 143–49.
- Bolarin A, Roca J, Rodriguez-Martinez H, Hernandez M, Vazquez J M and Martinez E A. 2006. Dissimilarities in sows ovarian status at the insemination time could explain differences in fertility between farms when frozen-thawed semen is used. *Theriogenology* **65**: 669–80.
- Breininger E, Beorlegui B N, O'Flaherty M C and Beconi T M. 2005. Alpha-tocopherol improves biochemical and dynamic parameters in cryopreserved boar semen. *Theriogenology* **63**: 2126–35.
- Brezezinska-Slebodzinska E, Slebodzinski A B, Pietras B and Wieczorek G. 1995. Antioxidant effect of vitamin E and glutathione on lipid peroxidation in boar semen plasma. *Biology of Trace Element Research* **47**:69–74.
- Bwanga C O, Einarsson S and Rodriguez-Martinez H. 1991. Deep freezing of boar semen in plastic bags and straws. *Reproduction in Domestic Animal* **26**: 117–25.
- Carvajal G, Cuello C, Vazquez J M, Martinez E A and Roca J. 2004. Effects of centrifugation before freezing on boar sperm cryopreservation. *Journal of Andrology* **25**: 389–96.
- Casas I and Althouse G C. 2013. The protective effect of a 17°C holding time on boar sperm plasma membrane fluidity after exposure to 5°C. *Cryobiology* **66**: 69–75.
- Casas I, Sancho S, Ballester J, Briz M, Pinart E, Bussallen E, Yeste M, Fabrega A, Rodriguez-Gil J E and Bonet S. 2010. The HS P90AAI sperm content and the prediction of the boar ejaculate freezability. *Theriogenology* 74: 940–50.
- Casas I, Sancho S, Briz M, Pinart E, Bussalleu E, Yeste M and

- Bonet S. 2009. Freezability prediction of boar ejaculates assessed by functional sperm parameters and sperm proteins. *Theriogenology* **72**: 930–48.
- Chanapiwat P, Kaeoket K and Tummaruk P. 2012. Cryopreservation of boar semen by egg yolk-based extenders containing lactose or fructose is better than sorbitol. *Journal of Veterinary Medicine Science* **74**(3): 351–54.
- Chanpiwat P, Kaeoket K and Tummaruk P. 2009. Effect of DHAenriched hen egg yolk and l-cysteine supplementation on quality of cryopreserved boar semen. *Asian Journal of Andrology* 11: 600–08.
- Corcuera B D, Marigorta P, Sagues A, Saiz-Cidoncha F and Perez-Gutierrez J F. 2007. Effect of lactose and glycerol on the motility, normal apical ridge, chromatin condensation and chromatin stability of frozen boar spermatozoa. *Theriogenology* **67**: 1150–57.
- Cordova A, Perez J F, Lleo B, Gorcia Artiga C and Martin Rillo S. 2001. *In vitro* fertilizing capacity of deep frozen boar semen packaged in 0.5 and 5 ml straws. *Reproduction in Domestic Animals* 36: 199–202.
- Crabo B G and Einarsson S. 1971. Fertility of deep frozen boar spermatozoa. *Acta Veterinaria Scandinavia* 12: 125–27.
- Crockett E L. 1998. Cholesterol functions in plasma membranes from ectotherms: membrane-specific roles in adaptation to temperature. *Animal Zoology* **38**: 291–304.
- De Mercado E , Hernandez M, Sanz E, Rodriguez A, Gomez E, Vazquez J M, Martinez E A and Roca J. 2009. Evaluation of l-glutamine for cryopreservation of boar spermatozoa. *Animal Reproduction Science* **115**:149–57.
- Didion B A, Braun G D and Duggan M V. 2013. Field fertility of frozen boar semen: a retrospective report comprising over 2600 AI services spanning a four year period. *Animal Reproduction Science* 137: 189–96.
- Ekwall H, Hernandez M, Saravia F and Rodriguez-Martinez H. 2007. Cryo-scanning electron microscopy (Cryo-SEM) of boar semen frozen in medium-straws and Mini FlatPacks. *Theriogenology* **67**(9): 1463–72.
- Eriksson B M and Rodriguez-Martinez H. 2000. Effect of freezing and thawing rate on the post-thaw viability of boar spermatozoa frozen in Flat Pack and Maxi-straws. *Animal Reproduction Science* **63**: 205–20.
- Eriksson B M, Petersson H and Rodriguez-Martinez H. 2002. Field fertility with exported boar semen frozen in the new flat pack container. *Theriogenology* **58**: 1065–79.
- Eriksson B M, Vazquez J M, Martinez E A, Roca J, Lucas X and Rodriguez-Martinez H. 2001. Effects of holding time during cooling and of type of package on plasma membrane integrity, motility and *in vitro* oocyte penetration ability of frozenthawed boar spermatozoa. *Theriogenology* **55**: 1593–1605.
- Eriksson B. 2000. 'Cryopreservation of boar semen.' PhD Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Eriksson B M, Petersson H and Rodriguez-Martinez H. 2002. Field fertility with exported boar semen frozen in the new flat pack container. *Theriogenology* **58**: 1065–79.
- Estrada E, Rodriguez-Gil J E, Rocha L G, Balasch S, Bonet S and Yeste M. 2014. Supplementing cryopreservation media with reduced glutathione increases fertility and prolificacy of sows inseminated with frozen-thawed boar semen. *Andrology* 2: 88–99.
- Fazano F A T. 1986. 'Zur Kryokonservierung von Ebersperma; verschiedene Verfahren zur Samenbehandlung und unterschiedliche Konfektio-nierungsmethoden unter

- besonderer Beriicksichtigung der Einfrier-geschwindigkeit.' Thesis, Tierarztliche Hochschule, Hannover, Germany.
- Fiser P S, Fairfull R W, Hansen C, Painch P L Shrestha J N B and Underhill L. 1993. The effect of warming velocity on motility and acrosomal integrity of boar sperm as influenced by the rate of freezing and glycerol level. *Molecular Reproduction and Development* **34**: 190–95.
- Flores E, Taberner E, Rivera M M, Pena A, Rigau T, Miro J and Rodrýguez-Gil J E. 2008. Effects of freezing/thawing on motile sperm subpopulations of boar and donkey ejaculates. *Theriogenology* **70**: 936–45.
- Fraser L, Strzezek J and Kordan W. 2014. Post-thaw sperm characteristics following long-term storage of boar semen in liquid nitrogen. *Animal Reproduction Science* **147**: 119–27.
- Fraser L, Strzezek R and Strzezek J. 2007. Fertilizing capacity of boar semen frozen in an extender supplemented with ostrich egg yolk lipoprotein fractions—A pilot study. *Pol Journal of Veterinary Science* 10: 131–35.
- Fraser L and Strzezek J. 2007. Effect of different procedures of ejaculate collection, extenders and packages on DNA integrity of boar spermatozoa following freezing-thawing. *Animal Reproduction Science* **99**(3–4): 317–29.
- Gadea J, Selles E, Marco M A, Coy P, Matas C, Romar R and Ruiz S. 2004. Effect of the addition of reduced glutathione to the freezing and thawing extenders. *Theriogenology* 62: 690– 701.
- Gadea J F, Garcia-Vazquez C, Matas J C, Gardon S, Canovas and Gumbao D. 2005. Cooling and freezing of boar spermatozoa: supplementation of the freezing media with reduced glutathione preserves sperm function. *Journal of Andrology* **26**: 396–404.
- Gadea J, Gumba D, Matas C and Romar R. 2005b. Supplementation of the thawing media with reduced glutathione improves function and the *in vitro* fertilizing ability of boar spermatozoa after cryopreservation. *Journal of Andrology* 26: 749–56.
- Galantino-Homer H L, Zeng W X, Megee S O, Dallmeyer M, Voelkl D and Dobrinski I. 2006. Effects of 2-hydroxypropylbeta-cyclodextrin and cholesterol on porcine sperm viability and capacitation status following cold shock or incubation. *Molecular Reproduction Development* 73: 638–50.
- Gale I, Gil L, Malo C, Gonzalez N and Martinez F. 2014. Effect of *Camellia sinensis* supplementation and increasing holding time on quality of cryopreserved boar semen. *Andrologia* 47: 505–12.
- Garcia J C, Dominguez J C, Pena F J, Alegre B, Gonzalez R, Castro M J, Habing G G and Kirkwood R N. 2010. Thawing boar semen in the presence of seminal plasma: Effects on sperm quality and fertility. *Animal Reproduction Science* 119: 160– 65
- Giaretta E, Estrada E, Bucci D, Spinaci M, Rodriguez-Gil J E and Yeste M. 2015. Combining reduced glutathione and ascorbic acid has supplementary beneficial effects on boar sperm cryotolerance. *Theriogenology* 83: 399–407.
- Gomez-Fernandez J, Gomez-Izquierdo E, Tomas C, Gonzalez-Bulnes A, Sanchez Sanchez R and de Mercado E. 2012. Inclusion of seminal plasma in sperm cryopreservation of Iberian pig. *Animal Reproduction Science* **130**: 82–90.
- Graham E, Rajamannan A and Schmehl M. 1971. Preliminary report on procedure and rational for freezing boar semen. *Artificial Insemination Digest* **19**: 12–14.
- Halliwell B and Gutteridge J M. 1984. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. *Lancet* 1: 1396– 97.

- Hammit D G and Martin P A. 1989. Fertility of frozen-thawed porcine semen following controlled-rate freezing in straws. *Theriogenology* **32**(3): 359–68.
- Hernandez M, Roca J, Calvete J J, Sanz L, Muino-Blanco T, Cebrian-Perez J A, Vazquez J M and Martinez E A. 2007a. Cryosurvival and *in vitro* fertilizing capacity post-thaw is improved when boar spermatozoa are frozen in the presence of seminal plasma from good freezer boars. *Journal of Andrology* 28: 689–97.
- Hernandez M, Roca J, Gil M A, Vazquez J M and Martinez E A. 2007b. Adjustments on the cryopreservation conditions reduce the incidence of boar ejaculates with poor sperm freezability. *Theriogenology* **67**: 1436–45.
- Holt W V. 2000. Fundamental aspects of sperm cryobiology: The importance of species and individual differences. *Theriogenology* **53**: 47–58.
- Hu H J, Li Q W, Jiang Z L and Li W Y. 2008. Effects of different extenders on DNA integrity of boar spermatozoa following freezing-thawing. *Cryobiology* **57**: 257–62.
- Jeong Y J, Kim M, Song H J, Kang E J, Ock S A, Kumar B M, Balasubramanian B M and Rho S. 2009. Effect of α tocopherol supplementation during boar semen cryopreservation of sperm characteristics and expression of apoptosis related genes. *Cryobiology* **58**(2): 181–89.
- Jiang Z L, Li Q W, Hu J H, Li W Y, Zhao H W and Zhang S S. 2007b. Improvement of the quality of boar cryopreservation semen by supplementing with low density lipoprotein in diluents. *Cryobiology* 54: 301–04.
- Jiang Z L, Li Q W, Li W Y, Hu J H, Zhao H W and Zhang S S. 2007a. Effect of low density lipoprotein on DNA integrity of freezing-thawing boar sperm by neutral comet assay. *Animal Reproduction Science* 99: 401–07.
- Johnson L A, Weitze K F, Fiser P and Maxwell W M C. 2000. Storage of boar semen. Animal Reproduction Science 61: 143–72.
- Juarez J D, Parrilla I, Vazquez J M, Martinez E A and Roca J. 2011. Boar semen can tolerate rapid cooling rates prior to freezing. *Reproduction Fertility Development* 23: 681–90.
- Kaeoket K, Chanapiwat P, Tummaruk P and Techakumphu M. 2010. Supplemental effect of varying L-cysteine concentration on the quality of cryopreserved boar semen. *Asian Journal of Andrology* **12**: 760–65.
- Kaeoket K, Tantiparinyakul K, Kladkaew W, Chanapiwat P and Techakumphu M. 2008. Effect of different antioxidants on quality of cryopreserved boar semen in different breeds. *Thai Journal of Agricultural Science* 41(1–2): 1–9.
- Kemp B, Soede N M, Hazeleger W and Wetzels C C H. 1996. The effects of a second insemination after ovulation-as determined with ultrasonography-on fertilization rate and accessory sperm count in sows. *Reproduction in Domestic Animal* 31: 297–98.
- Kenny E F and O'Neill L A. 2008. Signalling adaptors used by Toll-like receptors: An update. *Cytokine* **43**: 342–49.
- Khan M H. 2009. 'Studies on freezing of boar semen.' Ph.D. Thesis, Assam Agricultural University, Khanapara, Guwahati-22
- Kodama H, Kuribayashi Y and Gagnon C. 1996. Effect of sperm lipid peroxidation on fertilization. *Journal of Andrology* 17: 151–57.
- Kruse R, Dutta P C and Morrell J M. 2011. Colloid centrifugation removes seminal plasma and cholesterol from boar spermatozoa. Reproduction Fertility Development 23: 858– 65

- Lamirande E D, Jiang H, Zini A, Kodama H and Gagnon C. 1997.
 Reactive oxygen species and sperm physiology. *Review of Reproduction* 2: 48–54.
- Larsson K and Einarsson S. 1976. Fertility of deep frozen boar spermatozoa. Influence of thawing diluents and of boars. *Acta Veterinaria Scandinavia* 17: 43–62.
- Lee Y, Lee S, Lee S, Yang B and Park C. 2015. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation. *Animal Reproduction Science* **159**: 124–30.
- Leps H J. 1988. 'Zur Kryokonservierung von Ebersperma; EinfluB verschiedener Konfektionierungsarten, insbesondere von Flachbehaltnissen auf Gefrier-und Auftauvorgange sowie Auftauqualitat.' Thesis, Tierarztliche Hochschule, Hannover, Germany.
- Li G, Saenz J, Godke R A and Devireddy R V. 2006. Effect of glycerol and cholesterol-loaded cyclodextrin on freezinginduced water loss in bovine spermatozoa. *Reproduction* 131: 875–86.
- Maldjiana A, Pizzic F, Gliozzic T, Cerolini S, Pennya P and Noble R. 2005. Changes in sperm quality and lipid composition during cryopreservation of boar semen. *Theriogenology* 63: 411–21.
- Martinez E A, Vazquez J M, Roca J, Cuello C, Gil M A, Parrilla I and Vazquez J L. 2005. An update on reproduction technologies with potential short-term application in pig production. *Reproduction in Domestic Animal* **40**: 300–09.
- Martinez-Alborcia M J, Morrell J M, Parrilla I, Barranco I, Vazquez J M, Martinez E A and Roca J. 2012a. Improvement of boar sperm cryosurvival by using single-layer colloid centrifugation prior freezing. *Theriogenology* **78**: 1117–25.
- Martinez-Alborcia M J, Valverde A, Parrilla I, Vazquez J M, Martinez E A and Roca J. 2012b. Detrimental effects of nonfunctional spermatozoa on the freezability of functional spermatozoa from boar ejaculate. *PLoS ONE* 7: C36550.
- Matas C, Decuadro G, Martinez-Miro S and Gadea J. 2007. Evaluation of a cushioned method for centrifugation and processing for freezing boar semen. *Theriogenology* **67**: 1087–91.
- Mazur P, Leibo S P and Seidel G E Jr. 2008. Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. *Biology of Reproduction* **78**: 2–12.
- Medeiros C M O, Forell F, Oliveira A T D and Rodrigues J L. 2002. Current status of sperm cryopreservation: Why isn't it better? *Theriogenology* **57**: 327–44.
- Medrano A. 1998. 'The importance of individual variation in boar semen cryopreservation.' Ph.D. Thesis, University of London.
- Moce E, Blanch E, Tomas C and Graham J K. 2010. Use of cholesterol in sperm cryopreservation: Present moment and perspectives to future. *Reproduction in Domestic Animal* **45**(Suppl. 2): 57–66.
- Moore I A, Squires L E, James K and Graham K J. 2005. Adding cholesterol to the stallion sperm plasma membrane improves cryosurvival. *Cryobiology* **51**(3): 241–49.
- Muldrew K and McGann L E. 1994. The osmotic rupture hypothesis of intracellular freezing injury. *Biophysical Journal* **66**: 532–41.
- Nath M C. 1992. 'Studies on semen characteristics and freezing of boar semen.' PhD Thesis, Assam Agricultural University, Khanapara, Guwahati-22.
- Okazaki T, Abe S, Yoshida S and Shimada M. 2009. Seminal plasma damages sperm during cryopreservation, but its

- presence during thawing improves semen quality and conception rates in boars with poor post-thaw semen quality. *Theriogenology* **71**: 491–98.
- Okazaki T, Yoshida S, Teshima H and Shimada M. 2011. The addition of calcium ion chelator, EGTA to thawing solution improves fertilizing ability in frozen thawed boar sperm. *Animal Science Journal* **82**: 412–19.
- Okazaki T, Akiyoshi T, Kan M, Mori M, Teshima H and Shimada M. 2012. Artificial insemination with seminal plasma improves the reproductive performance of frozen-thawed boar epididymal spermatozoa. *Journal of Andrology* 33: 990–98.
- Pena F J, Johannisson A, Wallgren M and Rodriguez Martinez H. 2003. Antioxidant supplementation *in vitro* improves boar sperm motility and mitochondrial membrane potential after cryopreservation of different fractions of the ejaculate. *Animal Reproduction Science* **78**: 85–98.
- Polge C. 1956. Artificial insemination in pigs. *Veterinary Research* 68: 62-76
- Polge C, Salamon S and Wilmut I. 1970. Fertilizing capacity of frozen boar semen following surgical insemination. *Veterinary Research* 87: 424–29.
- Purdy P H and Graham J K. 2004. Effect of cholesterol-loaded cyclodextrin on the cryosurvival of bull sperm. *Cryobiology* 48: 36–45.
- Pursel V G and Johnson L A. 1971. Fertility with frozen boar semen. *Journal of Animal Science* 33: 265–71.
- Pursel V G and Johnson L A. 1975. Freezing of boar spermatozoa: Fertilizing capacity with concentrated semen and a new thawing procedure. *Journal of Animal Science* **40**: 99–102.
- Pursel V G, Schulman L L and Johnson L A. 1978. Effect of Orvus ES paste on acrosome morphology, motility and fertilizing capacity of frozen-thawed boar sperm. *Journal of Animal Science* 47: 198–202.
- Roca J, Gil M A, Hernandez M, Parrilla I, Vazquez J M and Martinez E A. 2004. Survival and fertility of boar spermatozoa after freeze thawing in extender supplemented with butylated hydroxytoluene. *Journal of Andrology* **25**: 397–405.
- Roca J, Rodriguez J M, Gil M A, Carvajal G, Garcia E M, Cuello C, Vazquez J M and Martinez E A. 2005. Survival and in vitro fertility of boar spermatozoa frozen in the presence of superoxide dismutase and/or catalase. *Journal of Andrology* 26:15–24
- Roca J, Hernandez M, Carvajal G, Vazquez J M and Martinez E A. 2006a. Factors influencing boar sperm cryosurvival. *Journal of Animal Science* **84**: 2692–99.
- Roca J, Vazquez J M, Gil M A, Cuello C, Parrilla I and Martinez E A. 2006b. Challenges in pig artificial insemination. *Reproduction in Domestic Animal* **41**(Suppl. 2): 43–53.
- Roca J, Hernandez M, Cremades T, Vazquez J and Martinez E. 2008. Sugar concentration of the freezing extender modulates the motility pattern of frozen-thawed boar spermatozoa. *Biology of Reproduction* **78**: 225–725.
- Rocal J, Martinez-Alborcia M J, Gil M A, Parrilla I and Martinez E A. 2013. Dead spermatozoa in raw semen samplez impair in vitro fertilization outcomes of frozen-thawed spermatozoa. Fertility Sterility 100: 875–81.
- Rodriguez-Gil J E and Estrada E. 2013. Artificial insemination in boar reproduction, pp. 589–608. Boar Reproduction. (Eds) Bonet S, Casas I, Holt W V and Yeste M. Springer, Berling.
- Rodriguez-Martinez H, Eriksson B and Lundeheim N. 1996. Freezing boar semen in flat plastic bags membrane integrity and fertility. *Reproduction in Domestic Animal* **31**: 161–68.

- Rodriguez-Martinez Heriberto and Wallgren Margareta. 2011. Advances in boar semen cryopreservation. *Veterinary Medicine International* 1–5.
- Rodriguez-Matinez H, Kvist U and Saravia F. 2009. The physiological roles of the boar ejaculate, pp. 1–21. *Control of Pig Reproduction*. Volume VIII. (Eds) Rodriguez-Martinez H, Vallet J L and Ziecik A J. Nottingham University Press, Nottingham, UK.
- Rozeboom K J, Reicks D L and Wilson M E. 2004. The reproductive performance and factors affecting on-farm application of low-dose intrauterine deposit of semen in sows. *Journal of Animal Science* **82**: 2164–68.
- Sancho S, Pinart E, Briz M, Garcia-Gil N, Badia E, Bassols J, Kadar E, Pruneda A, Bussallen E, Yeste M, Coll M G and Bonet S. 2004. Semen quality of postpubertal boars during increasing and decreasing natural photoperiods. *Theriogenology* **62**:1271–82.
- Saravia F, Wallgren M and Rodriguez-Martinez H. 2010. Freezing of boar semen can be simplified by handling a specific portion of the ejaculate with a shorter procedure and Mini Flat Pack packaging. *Animal Reproduction Science* **117**: 279–87.
- Saravia F, Wallgren M and Johannisson A. 2009. Exposure to the seminal plasma of different portions of the boar ejaculate modulates the survival of spermatozoa cryopreserved in Mini flat packs. *Theriogenology* **71**: 662–75.
- Saravia F, Wallgren M, Nagy S, Johannisson A and Rodriguez-Martinez H. 2005. Deep freezing of concentrated boar semen for intrauterine insemination: effects on sperm viability. *Theriogenology* **63**: 1320–33.
- Satorre M M, Breininger E, Beconi M T and Beorlequi N B. 2007. Alpha-tocopherol modifies tyrosine phophorylation and capacitation-like state of cryopreserved porcine sperm. *Theriogenology* **68**: 958–65.
- Satorre M M, Breininger E and Beconi M T. 2012. Crypreservation with á-tocopherol and Sephadex filtration improved the quality of boar sperm. *Theriogenology* **78**: 1548–56.
- Shen T, Jiang Z L, Li C J, Hu X C and Li Q W. 2016. Effect of alpha-lipoic acid on boar spermatozoa quality during freezing-thawing. *Zygote* **24**(2): 259–65.
- Silva C G, Cunha E R, Blume G R, Malaquias J V, Bao S N and Martins C F. 2015. Cryopreservation of boar sperm comparing different cryoprotectants associated in media based on powdered coconut water, lactose and trehalose. *Cryobiology* **70**: 90–94.
- Simmet C. 1993. 'Kaltephysikalische Aspekte der Gefrierkonservierung von Ebersperma in ihrer Auswirkung auf Samenqualitat und Befruchtungsrate.' Thesis, Tierarztliche Hochschule, Hannover, Germany.
- Siqueira A P, Wallgren M, Hossain M S, Johannisson A, Sanz L, Calvete J J and Rodriguez-Martinez H. 2011. Quality of boar spermatozoa from the sperm-peak portion of the ejaculate after simplified freezing in Mini Flat packs compared to the remaining spermatozoa of the sperm-rich fraction. *Theriogenology* **72**(7): 1175–84.
- Spencer K W, Purdy P H, Blackburn H D, Spiller S F, Stewart T S and Knox R V. 2010. Effect of number of motile, frozen-thawed boar sperm and number of fixed-time inseminations on fertility in estrous-synchronized gilts. *Animal Reproduction Science* 121: 259–66.
- Sumransap P, Tummaruk P and Kunavongkrit A. 2007. Sperm distribution in the reproductive tract of sows after intrauterine insemination. *Reproduction in Domestic Animal* **42**: 113–17.
- Thurston L M, Watson P F, Mileham A J and Holt W V. 2001.

- Morphologically distinct sperm subpopulations defined by fourier shape descriptors in fresh ejaculates correlate with variation in boar semen quality following cryopreservation. *Journal of Andrology* **22**: 382–94.
- Thurston L M, Siggins K, Milcham A J, Watson P F and Molt W V. 2002. Identification of amplified restriction fragment length polymorphism markers linked to genes controlling boar sperm viability following cryopreservation. *Biology of Reproduction* 66: 545–54.
- Tomas C, Blanch E, Fazchi A and Moce E. 2013. Effect of a prefreezing treatment with cholesterol-loaded cyclodextrins on boar sperm longevity, capacitation dynamics, ability to adhere to porcine oviductal epithelial cells in-vitro and DNA fragmentation dynamics. *Reproduction Fertility and Development* 25: 935–46.
- Tomas C, Blanch E, Hernanadez M, Gil M A, Roca J, Vazquez J M, Martinez E A and Moce E. 2011. Treating boar sperm with cholesterol-loaded cyclodextrins widens the sperm osmotic tolerance limits and enhances the *in vitro* sperm fertilizing ability. *Animal Reproduction Science* 129: 209–20.
- Tomas C, Gomez-Fernandez J, Gomez-Izquiendo E and de Mercado E. 2014. Effect of the holding time at 15°C prior to cryopreservation, the thawing rate and the post-thaw incubation temperature on the boar sperm quality after cryopreservation. *Animal Reproduction Science* **144**: 115–21.
- Tosic J. 1947. Mechanism of hydrogen peroxide formation by spermatozoa and the role of amino-acids in sperm motility. *Nature* **159**: 544.
- Trzcinska M, Bryla M, Gajda B and Gogol P. 2015. Fertility of boar semen cryopreserved in extender supplemented with butylated hydroxytoluene. *Theriogenology* **83**: 307–13.
- Trzcinska M and Bryla M. 2016. Apoptotic-like changes of boar spermatozoa in freezing media supplemented with different antioxidants. Scientific Annals of Polish Society of Animal Production 12(2): 21–28.
- Vadnais M L and Althouse G C. 2011. Characterization of capacitation, cryoinjury, and the role of seminal plasma in porcine sperm. *Theriogenology* **76**: 1508–16.
- Varo-Ghiuru F, Miclea I, Hettig A, Ladoºi I, Miclea V, Egerszegi I and Zāhan M. 2015. Lutein, trolox, ascorbic acid and combination of trolox with ascorbic acid can improve boar semen quality during cryopreservation. Cryo Letters 36(1): 1-7
- Vazquez J M, Roca J, Gil M A, Cuello C, Parrilla I, Vazquez J L and Martýnez E A. 2008. New developments in low-dose insemination technology. *Theriogenology* **70**: 1216–24.
- Vilagran I, Yeste M, Sancho S, Castillo J, Oliva R and Bonet S. 2015. Comparative analysis of boar seminal plasma proteome from different freezability ejaculates and identification of fibronectin I as sperm freezability marker. *Andrology* 3: 345–56.
- Wang P, Wang Y F, Wang C W, Bu S H, Hu J H, Li Q W, Pang W J and Yang G S. 2014. Effects of low-density lipoproteins extracted from different avian yolks on boar spermatozoa quality following freezing-thawing. *Zygote* 22: 175–81.
- Watson P F and Behan J R. 2002. Intrauterine insemination of sows with reduced sperm numbers: Results of a commercially based field trial. *Theriogenology* **57**: 1683–93.
- Watson P F. 1981. The effect of cold shock on sperm cell membrane, pp. 189–218. *Effect of low Temperature on Biological Membranes*. (Eds) Morris G J and Clarke A. Academic Press, Orlando, FL.
- Weitze K F, Rath D and Baron G. 1987. Neue Aspecten der Tiefgefrierkonservierung von Ebersperma in Plastikrohren.

- Dtsch. Tierarztl. Wschr 94: 485-88.
- Westendorf P, Richter L and Treu H. 1975. Zur Tiefgefrierung von Ebersperma. Labor-und Besamungsergebnisse mit dem Hillsenberger Pailletten-verfahren. *Dtsch Tierarztl Wschr* **82**: 261–67.
- Wilhelm K H, Graham J K and Squires E L. 1996. Effects of phosphatidylserine and cholesterol liposomes on the viability, motility, and acrosomal integrity of stallion spermatozoa prior to and after cryopreservation. *Cryobiology* **33**: 320–29.
- Wongtawan T, Saravia F, Wallgren M, Caballero I and Rodriguez-Martínez H. 2006. Fertility after deep intra-uterine artificial insemination of concentrated low-volume boar semen doses. *Theriogenology* **65**(4): 773–87.
- Yamaguchi S, Funahashi H and Murakami T. 2009. Improved fertility in gilts and sows after artificial insemination of frozen thawed boar semen by supplementation of semen extender with caffeine and CaCl₂. *Journal of Reproduction and Development* **55**: 645–49.
- Yamaguchi S and Funahashi H. 2012. Effects of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination. *Theriogenology* 77: 926–32.
- Yang C H, Wu T W, Cheng F P, Wang J H and Wu J T. 2016. Effects of different cryoprotectants and freezing methods on post-thaw boar semen quality. *Reproduction Biology* **16**(1): 41–

- 46.
- Yeste M, Estrada E, Rivera Del Alamo M M, Bonet S, Rigan T and Rodriguez-Gil J E. 2014. The increase in phosphorylation levels of serine residues of protein HSP70 during holding time 17°C is concomitant with a higher cryotolerence of boar spermatozoa. *PLoS ONE* **9**: C90887.
- Yeste M, Sancho S, Briz M, Pinart E, Bussallen E and Bonet S. 2010. A diet supplemented with L-carnitine improves the sperm quality of Pictrain but not of Duroc and Large white boars when photoperiod and temperature increase. *Theriogenology* 73: 577–86.
- Yeste M. 2015. Recent advances in boar sperm cryopreservation: state of the art and current perspectives. *Reproduction in Domestic Animals* **50**(Suppl 2): 71–79.
- Zeng W and Terada T. 2000. Freezability of boar spermatozoa is improved by exposure to 2-hydroxypropyl-beta-cyclodextrin. *Reproduction Fertility and Development* 12: 223–28.
- Zeng W X and Terada T. 2001. Effects of methyl-beta-cyclodextrin on cryosurvival of boar spermatozoa. *Journal of Andrology* **22**(1): 111–18.
- Zhang S S, Hu J H, Li Q W, Jiang J L and Zhang X Y. 2009. The cryoprotective effects of soybean lecithin on boar spermatozoa quality. *African Journal Biotechnology* **8**(22): 6476–80.
- Zhang W, Yik, Chen C, Hou X and Zhou X. 2012. Application of antioxidants and centrifugation for cryopreservation of boar spermatozoa. *Animal Reproduction Science* **132**: 123–28.