Localization and characterization of SSCs from pre-pubertal bovine testes

MOHAMMAD KAZIM WARDAK¹, KAUSHALYA KULATHUNGA² and CHATHURA PRIYADARSHANA³™

University of Tsukuba, Tsukuba, Ibaraki 305 8577, Japan

Received: 8 June 2022; Accepted: 14 September 2022

ABSTRACT

Self renewal and proliferation ability of spermatogonial stem cells (SSCs) support spermatogenesis during adult life. Theoretically, these stem cells can be utilized for transmission of genetic information to descendants via testicular transplantation. However, lack of knowledge in methodologies for identification of SSCs limits the application of SSCs transplantation in domestic animals. Accumulated studies have shown that SSCs specific markers (DBA, UCHL1) and stem cell marker (Sox2, Oct4) are useful to screen SSCs that able to be used for transplantation. However, in cattle, less information is available on the expression status of these markers till date. Therefore, a study was carried out in 2019 at Tsukuba University, Japan where testes from 3, 5 and 7 months old calves were utilized to examine testicular localization and *in vitro* propogation of stem cell markers. SSCs were isolated by enzymatic digestion combined with centrifugal separation on discontinuous Percoll density gradient. Cell propagation and SSCs marker expression were determined at 5, 10 and 15 days post-culture. Immunostaining in conjunction with Western Blot analysis of cultured cells showed that stem cell markers (UCHL1, Oct4 and Sox2) were expressed in SSCs suggesting that differentiation of gonocyte started by 3 months and SSCs differentiation begins after 5 months of age. Taken together, these results demonstrated marker expression and localization of bull SSCs and showed that *in vitro* culturing of bull SSCs is implementable.

Keywords: Bovine, Characterization, Localization, Pre-pubertal, SSCs, Testis

The feature of SSCs of being multipotent cells in vitro without any genetic manipulation, have attracted attention in several different fields like regenerative medicine and assisted reproductive technology. Shortly after birth, gonocyte enter the phase of cell division and gives rise to type A Spermatogonia, considered as the first generation of spermatogonial stem cells (Aponte et al. 2005). Specific germ cell markers have been expressed in different species. One such is DBA used for classifying and identifying spermatogonia from neonatal calves' testes (Herrid et al. 2007) and also expressed by bull gonocytes (Fujihara et al. 2011). Beside this, expression of transcription factors Sox2 and Oct4, which are critical for maintaining the pluripotency of stem cells (Shi and Jin 2010) and the transplantation assay (Brinster and Zimmermann 1994) are the other ways to determine characteristics of SSCs.

Functional proliferation of long term cultured SSCs in infertile recipient testis has been reported in rodents (Kanatsu-Shinohara *et al.* 2003) and porcine (Kim *et al.* 2008). However, in bovine, attemps to characterize SSCs

Present address: ¹Department of Animal Science, Faculty of Agricultural Science, Shaikhzayed University, Khost 2501, Afghanistan. ²Department of Physiology, Faculty of Medicine, Sabaragamuwa University of Sri Lanka, No. 01, Hidallena, Ratnapura, Sri Lanka. ³Animal Health Division, Hayleys Agriculture Holdings Limited, No. 25, Foster Lane, Colombo 10, Sri Lanka. ™Corresponding author email: chathura. priyadarshana@agro.hayleys.com

by transplantation have not been successful (Izadyar *et al.* 2002). Further, the previously reported attempts to culture male germ cells for long term in cattle have not been successful (Izadyar *et al.* 2003, Oatley *et al.* 2004).

We aimed to understand physiological and biochemical characters of bovine SSCs, to build a practical system to generate progeny of SSCs by investigating expression of stem cell markers in *in vitro* cultured SSCs. To this end, we examined expression of different markers specific for stem cells, further we cultured SSCs from prepubertal testis. SSCs were evaluated by expression of markers and ability of proliferation after culture.

MATERIALS AND METHODS

Sample collection: Testes from 3, 5 and 7 months old calves (3 animals in each age category) were utilized for this experiment. The testes were collected in the Agriculture and Forestry Research Center at University of Tsukuba, Japan and National Institute of Livestock and Grassland Science, Tsukuba, Japan. All animal work was performed under the approval of the Institutional Animal Care and Use Committee of the University of Tsukuba (approval no. 18-397). Immediately after castration, the testicles were transferred to RNase free 10% PBS (pH 7.4), and transported to the laboratory within 1–2 h, in order to study the development of spermatogenic cells. Approximately 20 g of the testicular tissue was used for each cell isolation process. Subset of the sample were taken

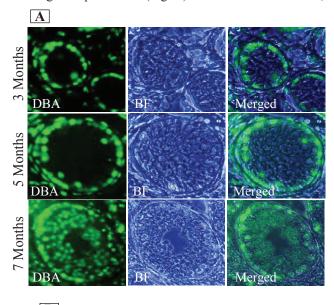
for immunohistological investigation followed by fixation with Bouin's solution.

Isolation and culture of germ cells: Individual tubular cells were isolated using a two-step enzymatic isolation process as previously described (Herrid et al. 2007) with minor modifications. Soon after removing testes capsule, 20 g of testicular tissues were minced in DMEM-F12 supplemented with 10% FBS, 50 IU/ml penicillin-streptomycine, 40 IU/ml gentamycin, 1.5 mg/ml collagenase 4, 2 mg/ml hyaluronidase type 2, 1.5 mg/ml trypsin and 30 μg/ml DNase 1. For semeniferous epithelial dispersion, the suspention containing minced testicular tissues were enzymatically digested at 37°C for 60 min in a shaking waterbath operated at 122 cycles/min. After centrifugation at $80 \times g$ for 5 min, and removal of most of the interstitial cells, seminiferous cord fragments were re-suspended in 20 ml DMEM-F12 containing collagenase, hyaluronidase and DNase and incubated at 37°C for 45 min as above. Germ cells were separated from the remaining tubule fragments by centrifugation at $30 \times g$ for 2 min followed by filtration through 70 µm nylon cell strainer. Then the suspension containing germ cells was centrifuged at 1500 × g for 5 min to pellet the germ cells. Cells were resuspended in 4 ml DMEM containing 10% FBS and 50 IU/ml penicillinstreptomycine and 40 IU/ml gentamycin. For further purificaiton, germ cells were subjected to discontinous percoll grandient layer (Izadyar et al. 2002) and the viability of cells was determined using live/dead staining. The identity of type A spermatogonia during isolation and purification was determined under a light microscope equipped with a Nomarski lens. Isolated cells were characterized further by using specific markers for type A spermatogonia, including Dolichos biflorus agglutinin (DBA). Cell purification was assessed by immunocytochemistry for SSCs markers and were incubated for 15 min with DBA-biotin (1:200) and UCHL1 antibody (1:300) diluted in PBS. Positive cells were counted under fluorescent microscope. About 1 × 10⁵ cells/ml were seeded in DMEM-F12 supplemented with 10% FBS (v/v), 10 ng/ml EGF, 40 IU/ml gentamicin and 50 IU/ml penicillin - streptomycin and the medium was changed every two days.

Localization of germ cells in seminiferous tubules: SSCs were identified by evaluation under fluorescence microscope using DBA immunohistochemistry. Paraffin blocks of testis tissue were sectioned, deparaffinized, and antigen retrieval was performed as stated previously by Herrid et al. (2007). Slides were twice rinsed in PBS, incubated for 1 h at room temperature (RT) in 10% goat serum (v/v made in PBS) to block non–specific binding sites, consequently rinsed in PBS. The slides were then incubated in DBA biotin 1:200 (v/v) at 4°C overnight in moist chamber. After overnight incubation in DBA, the sections were rinsed 3 times in PBS. Staining of Fluorecence FITC – conjugated was performed by treating sections for 90 min in FITC (1:500 in PBS). The slides were then rinsed in PBS and nucleus was stained with

DAPI. After overnight incubation, the slides were analyzed under fluorescence microscope. Further, the slides were double stained for Oct4, UCHL1 and Sox2 as described for cultured cells.

of cultured Characterization SSCs: Cultured spermatogonial stem cells were cytochemically analysed after 5, 10 and 15 days of culture as previously used by Fujihara et al. (2011) in large domestic animals, the physiological and biochemical characteristics of germ cells during the developmental processes remain largely unknown. In this study, we characterized bovine germ cells in the developing testis from the neonatal stage to the adult stage. The binding of the lectin Dolichos biflorus agglutinin (DBA) with modification. Briefly, cultured spermatogonial stem cells were cytochemically analysed after 5, 10 and 15 days of culture. The spermatogonial stem cells were stained with biotin DBA, Oct4, UCHL1 and Sox2. After washing two times with PBS, cells were fixed in 4% paraformaldehyde and incubated for 30 min at room temperature. Cells were washed with PBS twice, incubated in 10% (v/v) goat serum made in PBS for 60 min at room temperature, consequently washed twice with PBS and incubated for 90 min with primary antibodies viz. DBA-biotin (conjugate biotinylated, vectorlab; B-1035-5), UCHL1 antibody (Mouse Monoclonal; Am1959B Abgent), Oct4 antibody (AB3209 Millipore Sigma) and Sox2 (D6D9, Rabbit mAb, Cell Signaling) with concentrations of 1:200, 1:300, 1:200 and 1:400 (v/v) respectively diluted in PBS, followed by storage at 4°C overnight. After washing twice with PBS, cells were incubated with corresponding secondary antibodies viz. Neutra Avidin Fluorecence FITC – conjugated (1:500), fluorescence goat anti mouse IgG (173667) (1:300) and Texas red anti mouse IgG (H+L) (vector, made in horse 1:300) for 90 min at room temperature. Then the slides were washed again with PBS, incubated in DAPI nuclear staining and the cells were analyzed under fluorescence microscope.


Western blot analysis of cultured SSCs: Cells attached to the surface of culture wells were collected, washed with PBS and were supernatant, the sample was diluted with 10% Protease inhibitor EDTA free solution (made in PBS), followed by homogenization. Immediately, 10% Triton X – 100 (0.5% of the initial volume of sample) was added and mixed well. Later, cells were sonicated around 20 times (1-2 sec each), protein quantity was measured and Western blot was performed as described previously (Priyadarshana et al. 2018). The membrane was incubated overnight at 4°C with respective primary antibody, UCHL1, Anti-Oct4 and Sox2. All were diluted in TBS (1:1500 v/v). Following 3 washes, those were incubated with respective anti-mouse and anti-rabbit HRP conjugated secondary antibodies (1:10,000 dilution) for 1 h at room temperature and immunoreactivity was detected with Molecular Imager Chemi Doc [™] XRS + with Image lab[™] (Bio – Rad Laboratories, Inc. USA).

Statistical analysis: The results are presented as mean±SEM and statistical analysis was performed by one

way ANOVA followed by Tukey HSD Test for multiple comparisons. Differences were considered significant when the P value was <0.05.

RESULTS AND DISCUSSION

To localize spermatogonial stem cells, DBA biotin staining was performed (Fig. 1). In 3 months old testes,

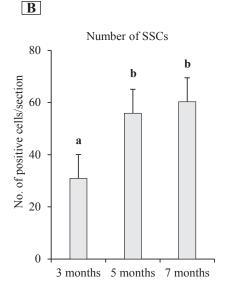


Fig. 1. Histological sections of bovine testes at 3, 5 and 7 months of age were immunolocalized with DBA, a specific marker for SSCs. Images are representative of three independent experiments. (A) Number of DBA positive cells were counted. (B) Data are presented as mean \pm SEM (n=10). ^{a-b}P<0.05.

few DBA positive cells were localized in the middle of tubes having large size, round shape and one spherical nucleus stationed at the center of cell. While in the basement membrane, the number was high, the cells were small in size and had 1 or 2 unorganized nuclei. This observation is consistent with evidences that cells in the middle proportion were gonocytes (Fujihara *et al.* 2011) and cells located in the basement membrane were

type A spermatogonia (Zhao et al. 2016). In 5 months old testis, DBA positive cells were located both in basement membrane and just next to the basement membrane. The cells were large in size, round shape and had dense nucleus. Therefore, in bovine testis, differentiation of gonocyte to spermatogonial stem cells may begin at 3 months of age, but may not be completed until 6 months of age (Herrid et al. 2007). Likely, in 7 months, positive cells were located in both topographical locations. The number of cells in basal membrane was not significantly different than 5 months but was significantly different for cells in the middle portion. Difference in the cell size shows different phases of cell cycle (Lok et al. 1982), whereas, 3 generations of different size type A spermatogonia basal stem cells, aggregated spermatogonia, and differentiating spermatogonia have been shown by electron microscopy (Wrobel 2000). In this way, cells next to the basement membrane might be A1 - A4 spermatogonia.

Further, we double stained the cells with UCHL1, Oct4, and Sox2. Staining showed, UCHL1 expression was restricted to cells in the basement membrane. However, some cells were positive for UCHL1 but were not positive for DBA, but the number was not significantly different. Equal number of positive cells were located in basement membrane and middle portion for DBA and UCHL1 in 7-months old testes, unlike in 5 months where there was no positive cells for UCHL1 (Fig. 2). UCHL1 expression is restricted to spermatogonial stem cells of prepubertal bull (Herrid et al. 2007, Reding et al. 2010), cat (Vansandt 2014), prepubertal buffalo (Goel et al. 2010) and porcine (Zhao et al. 2016). However, in neonatal and adult bovine testis, UCHL1 is expressed in gonocytes and spermatogonia (Fujihara et al. 2011). In this regard, our results suggest that in 3 months old cells in the middle portion is gonocytes and in 7 months, the stained cells might be result of nonspecific binding.

Cells in the basement membrane from the above ages were also positive for Sox2 (Fig. 3). No Oct4 positive

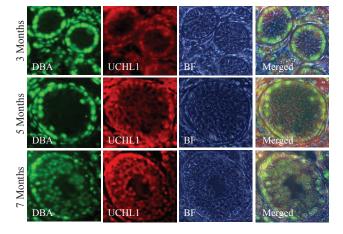


Fig. 2. Histological sections of bovine testes at 3, 5 and 7 months of age were co-immunolocalized with DBA and UCHL1, specific markers for SSCs. Images are representative of three independent experiments.

В

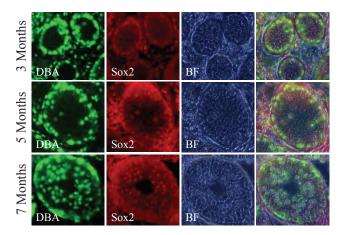


Fig. 3. Histological sections of bovine testes at 3, 5 and 7 months of age were co-immunolocalized with DBA and Sox2. Images are representative of three independent experiments.

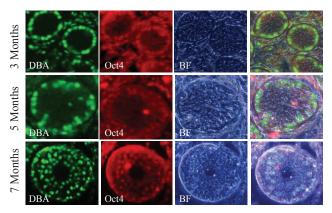
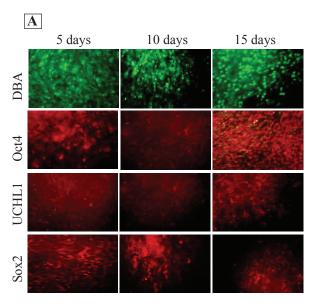



Fig. 4. Histological Sections of bovine testes at 3, 5 and 7 months of age were co-immunolocalized with DBA and Oct4. Images are representative of three independent experiments.

cells were detected in middle part of 3 and 5 months old seminiferous tubes. In 7 months old, cells next to basement membrane were positive for Oct4 (Fig. 4). Oct4 and Sox2 are transcriptional factors critical for maintaining and inducing pluripotency of stem cells (Oatley et al. 2006, Zhang and Cui 2014). Our results showed that these factors could be detected in spermatogonial stem cells of prepubertal bovine. Like other SSCs markers, Oct4 is used to mark spermatogonia at different ages (Fujihara et al. 2011) including stem spermatogonia (Manku and Culty 2015). Expression of Oct4 is reported in single (As), paired (Apr) and aligned (Aal) spermatogonia of cattle (Aponte et al. 2008), gonocyte and spermatogonia of buffalo (Mahla et al. 2012). In addition, Oct4 induces totipotency and its expression is also reported in interstial cells and differentiated spermatogonia (Goel et al. 2008).

Bovine SSCs from 3, 5 and 7 month old calves were cultured *in vitro*. After 5 days of culture, the cells proliferated and adhered to the surface of culture well. About 80% of surface was covered and SSCs represented colony

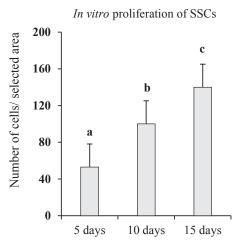


Fig. 5. Bovine SSCs were cultured and stained with stem cell markers, viz. DBA, Oct4, UCHL1 and Sox2. Expression of markers were examined at 5, 10 and 15 days post *in vitro* culture. Images are representative of three independent experiments. **A.** Number of DBA positive cells at 5, 10 and 15 days post *in-vitro* culture were counted. **B.** Data are presented as mean±SEM (n=10). a-cP<0.05.

like structure with 2 different morphologies viz. three dimensional cell mass and scattered form. To characterize these colonies and cells, they were immunocytochemically analyzed after 5, 10 and 15 days of culture, showing that they were DBA positive. Further, UCHL1, Sox2 and Oct4 were also positive. Besides, when double staining was performed for the presence of DBA and stem cell markers, some DBA positive colonies were devoid of stem cell markers and conversely, some positive cells for stem cell markers were devoid of DBA. The number of colonies almost doubled from 5 (110±0.57) to 10 days (192±1.43) and then further increased by 15 days (210.5±1.21). At 10 days of culture, the colonies had spherical shape, but was changed to long shape at 15 days of culture (Fig. 5). Study of cultured cells revealed that 5 days old cultured

SSCs are able to make colonies, and the number of colonies increases further by extended culture period until 15 days. Furthermore, the shape of colonies after 15 days of culture was elongated, which might be resulted from effect of EGF (Aponte *et al.* 2008).

The colonies were consistently positive for the markers. Supporting this, Western blotting showed expression of UCHL1, Oct4 and Sox2 related protein to be present in cultured SSCs (Fig. 6). Oct4 is member of pluripotency regulating protein network (Manku and Culty 2015), together with Sox2, these factors promote stemness of ES cells (Oatley and Brinster 2008), and pluripotency of adult fibroblast cells in bovine (Pan and Ebner 2014). Similarly,

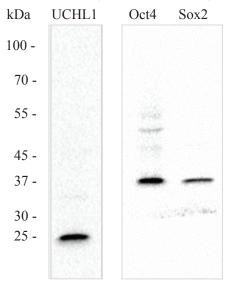


Fig. 6. Cultured SSCs were subjected to immunoblotting with antibodies against UCHL1, Oct4 and Sox2. UCHL1, Oct4 and Sox2 protein were expressed at the predicted molecular weight. Images are representative of three independent experiments.

the expression of Sox2 and Oct4 is not restricted to specific type of germ cells. For instance, Oct4 expression have been seen in differentiated types of spermatogonia in pig but rarely in SSCs (Goel *et al.* 2008). Furthermore, presence of Oct4 and Sox2 in mitotic chromatin is reported to be crucial for pluripotency maintenance (Deluz *et al.* 2016). Whereas Sox2 mechanism is specific to cell type (Hagey *et al.* 2018). In addition to this, Oct4 has two different activities, inducing pluripotency and committing cell differentiation (Stefanovic *et al.* 2009), and Sox2 is required for directing pluripotent stem cell's differentiation (Zhang and Cui 2014). In line with this, Oct4 and Sox2 are able to promote cell differentiation fate (Zeineddine *et al.* 2014).

Putting all these together, our results indicated that, cells in the basement membrane were spermatogonia and that after isolation and culture, colonies continuously increased. On the other hand, the cells in the adluminal compartment were differentiated type germ cells that can be identified based on their geographical location and morphology.

ACKNOWLEDGEMENTS

This paper is prepared from the MSc work of first author

and we thank the University of Tsukuba, Japan where the studies were carried out and Dr Atsushi Asano for his immense guidance throughout the study.

REFERENCES

- Aponte P M, Soda T, Teerds K J, Mizrak S C, van de Kant H J G and de Rooij D G. 2008 Propagation of bovine spermatogonial stem cells *in vitro*. *Reproduction* **136**(5): 543–57.
- Aponte P M, Van Bragt M P A, De Rooij D G and Van Pelt A M M. 2005. Spermatogonial stem cells: Characteristics and experimental possibilities. *Apmis* 113(11–12): 727–72.
- Brinster R L and Zimmermann J W. 1994. Spermatogenesis following male germ-cell transplantation. *Proceedings of the National Academy of Sciences of the United States of America* **91**(24): L11298–302.
- Deluz C, Friman E T, Strebinger D, Benke A, Raccaud M, Callegari A, Leleu M, Manley S and Suter D M. 2016. A role for mitotic bookmarking of SOX2 in pluripotency and differentiation. *Genes and Development* **30**(22): 2538–50.
- Fujihara M, Kim S M, Minami N, Yamada M and Imai H. 2011. Characterization and *in vitro* culture of male germ cells from developing bovine testis. *Journal of Reproduction and Development* **57**(3): 355–64.
- Goel S, Fujihara M, Minami N, Yamada M and Imai H. 2008. Expression of NANOG, but not POU5F1, points to the stem cell potential of primitive germ cells in neonatal pig testis. *Reproduction* **135**(6): 785–95.
- Goel S, Reddy N, Mandal S, Fujihara M, Kim S M and Imai H. 2010. Spermatogonia-specific proteins expressed in prepubertal buffalo (*Bubalus bubalis*) testis and their utilization for isolation and *in vitro* cultivation of spermatogonia. *Theriogenology* **74**(7): 1221–32.
- Hagey D W, Klum S, Kurtsdotter I, Zaouter C, Topcic D, Andersson O, Bergsland M and Muhr J. 2018. SOX2 regulates common and specific stem cell features in the CNS and endoderm derived organs. *PLoS Genetics* 14(2): 1–20.
- Herrid M, Davey R J and Hill J R. 2007. Characterization of germ cells from pre-pubertal bull calves in preparation for germ cell transplantation. *Cell and Tissue Research* **330**(2): 321–29.
- Izadyar F, Den Ouden K, Stout T A E, Stout J, Coret J, Lankveld D P K, Spoormakers T J P, Colenbrander B, Oldenbroek J K, Van der Ploeg K D, Woelders H, Kal H B and De Rooij D G. 2003. Autologous and homologous transplantation of bovine spermatogonial stem cells. *Reproduction* **126**(6): 765–74.
- Izadyar F, Spierenberg G T, Creemers L B, den Ouden K and de Rooij D G. 2002. Isolation and purification of type A spermatogonia from the bovine testis. *Reproduction* 124(1): 85–94
- Izadyar, Fariborz, Den Ouden K, Creemers L B, Posthuma G, Parvinen M and De Rooij D G. 2003. Proliferation and differentiation of bovine type A spermatogonia during long-term culture. *Biology of Reproduction* **68**(1): 272–81.
- Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S and Shinohara T. 2003. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. *Biology of Reproduction* **69**(2): 612–16.
- Kim Y, Turner D, Nelson J, Dobrinski I, McEntee M and Travis A J. 2008. Production of donor-derived sperm after spermatogonial stem cell transplantation in the dog. *Reproduction* **136**(6): 823–31.
- Lok D, Weenk D and de Rooij D G. 1982. Morphology, proliferation, and differentiation of undifferentiated

- spermatogonia in the chinese hamster and the ram. *Anatomical Record* **203**(1): 83–99.
- Mahla R S, Reddy N and Goel S. 2012. Spermatogonial stem cells (SSCs) in buffalo (*Bubalus bubalis*) testis. *PLoS ONE* 7(4): 1-7.
- Manku G and Culty M. 2015. Mammalian gonocyte and spermatogonia differentiation: Recent advances and remaining challenges. *Reproduction* **149**(3): R139–157.
- Oatley J M, Avarbock M R, Telaranta A I, Fearon D T and Brinster R L. 2006. Identifying genes important for spermatogonial stem cell self-renewal and survival. *Proceedings of the National Academy of Sciences* **103**(25): 9524–29.
- Oatley Jon M and Brinster R L. 2008. Regulation of spermatogonial stem cell self-renewal in mammals. *Annual Review of Cell and Developmental Biology* **24**: 1263–86.
- Oatley Jon M, Reeves J J and McLean D J. 2004. Biological activity of cryopreserved bovine spermatogonial stem cells during *in vitro* culture. *Biology of Reproduction* **71**(3): 942–47.
- Priyadarshana C, Tajima A, Ishikawa N and Asano A. 2018. Membrane rafts regulate sperm acrosome reaction via cAMP-dependent pathway in chickens (*Gallus gallus domesticus*). *Biology of Reproduction* **99**(5): 1000–09.
- Reding S C, Stepnoski A L, Cloninger E W and Oatley J M. 2010. THY1 is a conserved marker of undifferentiated spermatogonia

- in the pre-pubertal bull testis. *Reproduction* **139**(5): 893–903. Shi G and Jin Y. 2010. Role of Oct4 in maintaining and regaining stem cell pluripotency. *Stem Cell Research and Therapy* **1**(5):
- Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C and Pucéat M. 2009. Interplay of Oct4 with Sox2 and Sox17: A molecular switch from stem cell pluripotency to specifying a cardiac fate. *Journal of Cell Biology* **186**(5): 665–73.
- Vansandt L M. 2014. Characterization, enrichment, and in vitro culture of felids, spermatogonial stem cells in the domestic cat: a model for rare and endangered. University of Maryland, College Park.
- Wrobel K H. 2000. Prespermatogenesis and spermatogoniogenesis in the bovine testis. *Anatomy and Embryology* **202**(3): 209–22.
- Zeineddine D, Hammoud A A, Mortada M and Boeuf H. 2014. The Oct4 protein: more than a magic stemness marker. *American Journal of Stem Cells* **3**(2): 74–82.
- Zhang S and Cui W. 2014. Sox2, a key factor in the regulation of pluripotency and neural differentiation. *World Journal of Stem Cells* **6**(3): 305-11.
- Zhao H M, Yang H, Luo F H, Li M X, Zhang S and Yang X G. 2016. Isolation, proliferation, and induction of Bama mini-pig spermatogonial stem cells *in vitro*. *Genetics and Molecular Research* **15**(3): 1–13.