Age related effect on pregnancy rate and pregnancy wastage in thoroughbred mares bred during different heat cycles postpartum under subtropical conditions

SUCHITRA B R^{1⊠}, DINESH N M², YATHISH H M¹, ANIL KUMAR M C¹ and CHANDRASKHEKARA MURTHY V¹

Veterinary College, Hebbal, Bengaluru, Karnataka 560 024 India

Received: 8 June 2022; Accepted: 24 March 2023

ABSTRACT

This investigation reports the correlation of age and heat cycles on the pregnancy rate and pregnancy wastage in Thoroughbred mares bred during foal heat (FH), second heat (SH) and third heat (TH) in a commercial stud farm in Kunigal, Karnataka, India. The pregnancy rate was not influenced by the different heat cycles post partum. The correlation of mare's age on the pregnancy rate and heat cycles showed that the age of the mares significantly influenced the conception rate in mares bred during FH and TH postpartum, while it was not significant in SH. The mare's age did not influence the pregnancy wastage significantly in mares bred during FH, SH or TH, but the FH bred mares showed significantly higher early embryonic mortality rate than SH and TH bred mares. While the abortion rate was not influenced by the different heat cycles postpartum. In conclusion, the reproductive efficiency with respect to pregnancy rate was age dependent, while pregnancy wastage looked independent of age in Thoroughbred mares bred on FH, SH and TH. The optimum age for better pregnancy rate was between 6 and 13 years in all the heat cycles and aged mares (>18 years old) showed reduced pregnancy rate due to increased pregnancy losses.

Keywords: Age, Heat cycles, Pregnancy rate, Pregnancy wastage, Thoroughbred mares

One of the primary requirements for efficient and economically viable broodmare management is the production of a foal per year. The limitations of a long gestation period (mean of 335 to 345 days) and a limited physiological breeding season (February to June under Indian subtropical conditions) leaves little margin for error and gradual drift (13±23 days) in consecutive foaling dates results in failure to produce a yearly foal after an average of only 3.4 yr of breeding (Bosh *et al.* 2009). The time from parturition to the resumption of cyclic ovarian activity is very short in mares and the first fertile estrus occurs as early as 6 to 20 days after foaling, this necessitates breeding mares during the first postpartum oestrus, commonly referred to as foal heat (Ginther 1992). Hence exploiting the foal heat would be beneficial and economical to the equine industry.

Pregnancy rates from mares bred on foal-heat have been reported to be lower than in mares bred on subsequent post partum estrus periods and the difference in pregnancy rate in per cent was 72 v/s 82 (Camillo *et al.* 1997), 57.1 v/s 82.3 (Carluccio *et al.* 2016) and 39.28 v/s 60.71 (Akourki *et al.* 2017). In contrast, Bruemmer *et al.* (2002) and Blanchard *et al.* (2004) have dis-approved the difference in pregnancy rates between foal heat bred mares and breeding on subsequent heat cycles. The embryonic mortality rate in per cent was 30.3 v/s 11.5 (Kurtz Filho *et*

Present address: ¹Veterinary College, Bengaluru, Karnataka. ²Kunigal Stud Farm, Kunigal, Karnataka. [™]Corresponding author email: suchitraanilkumar2@gmail.com

al. 1999) and 10.4 v/s 8.0 (De-Souza et al. 2020) in mares bred during foal heat and subsequent cycles postpartum. As reported by quite a few authors, it is well evident that the reproductive performance of the mares deteriorates as the age advances (Sharma et al. 2010, Blanchard et al. 2012, Warriach et al. 2014, Lane et al. 2016 and De-Souza et al. 2020).

Therefore this investigation was carried out to evaluate the effect of mare's age and different heat cycles post partum (FH, SH and TH) on pregnancy rate and pregnancy wastage rate in thoroughbred mares.

MATERIALS AND METHODS

The present study was conducted in a Thoroughbred stud farm situated in the southern part of India located at latitude 13.0232 N and longitude 77.0252 E with an average altitude of 2536 feet in a total of 98 mares (519 mare years, since the majority of mares remained on the same stud farm for several years and were bred each year, many mares appear in the data for more than one year, therefore for "mare" read "mare years") for retrospective studies. The mares were kept in an open shelter and outdoor paddock, fed daily ration according to their reproductive status, as practiced in Indian stud farms (Lucerne/hay and pasture grass *ad lib*. plus 6 kg of concentrate divided thrice a day).

Reproductive records were analysed for mares (519 mare years) aged between 6 and 23 years, recorded over seven years (2008–2015, excluding data from 2009 as it was not available on the farm). A survey form was prepared

and data pertaining to reproductive status of the mares were recorded from yellow sheets present in the stud farm. (The pregnancy was confirmed by ultrasonography on day 14 post covering. The next confirmation was done at 18th day, 21st day and 28th day post covering. Likewise, the developing fetus was scanned on a regular basis to check for optimum growth and viability). The resorption, abortion and birth of still born, if any were recorded throughout the gestation period. The data obtained were analysed statistically by SPSS.V.16 software (SPSS Inc, Chicago, Illinois, USA). Chi-squared tests was used to compare percentage values using SPSS v17 with the significance level set at *p*<0.05.

RESULTS AND DISCUSSION

Influence of different types of heat (foal heat, second heat and third heat) on pregnancy rate in mares: The influence of different types of heat cycles on the pregnancy rate in mares was analysed using chi square analysis (Table 1). The pregnancy rate was statistically similar in mares bred during FH, SH and TH postpartum.

Table 1. Influence of different types of heat (foal heat, second heat and third heat) on pregnancy rate in mares

Age group	Overall						
	N	Positive	%				
Foal heat	85	52	61.18				
Second heat	313	201	64.21				
Third heat	108	70	64.81				
χ2 value		0.2161 NS					

N: Number of mares; NS: Non-significant.

The overall pregnancy rate following breeding at the foal heat was 61.18% in the present study which is similar to 60.2% as reported by Ishii *et al.* (2001). McCue and Hughes (1990) and Bruemmer *et al.* (2002) have recorded 68.4% and 81.0% pregnancy rate, respectively in mares bred in foal heat which is higher than the present work, while the conception rate of the mare covered at foal heat was 57.6% (Morris and Allen 2002), 57.96% (Sharma *et al.* 2010), 46.6% (Aoki *et al.* 2013), 39.28% (Akourki *et al.* 2017) and 20% (Mahal *et al.* 2020) which are much lower than the pregnancy rate reported in the present study.

No significant difference was apparent in the reproductive performance of foal heat bred mares when compared to those bred during SH and TH postpartum in the current study. This, again, is in agreement with several previous studies in thoroughbred mares (Malschitzky *et*

al. 2001 and Sharma et al. 2010). This non-significant differences in pregnancy rate in mares could be due to faster uterine involution, presence of lesser intra uterine fluid and inflammatory byproducts in the uteri which again can be attributed to more number of eutocias, healthy parturition premises, reduced mean placental retention time, delayed ovulation postpartum and number of days post-partum at the time of covering (Ishii et al. 2001, Warriach et al. 2014, Lane et al. 2016, Carluccio et al. 2016 and Mahal et al. 2020).

Influence of age on pregnancy rates in mares bred during foal heat, second heat and third heat postpartum: The chi square analysis (Table 2) revealed that the age of the mares had significant influence on the pregnancy rate in mares bred during foal heat (p=0.025) and third heat (p=0.042), while the pregnancy rate in mares bred during the second heat was not significantly affected by age. There is clear evidence that mare's age has a profound effect on the reproductive performance in mares. All studies have common conclusion that the advancing age has a negative effect on the reproductive performance (Morris and Allen 2002, Malschitzky et al. 2003, Blanchard et al. 2004, Sharma et al. 2010 and Lane et al. 2016). Although there is a linear reduction in fertility with aging, the problem seems to be aggravated from the age of 18 years on, which can be attributed to progressive uterine degenerative injuries.

Several contributing factors for lower pregnancy rates in aged mares are anatomical abnormalities in vulva progressive cranial collapse of dorsal labia commissure (McKinnon et al. 2011), increased susceptibility to uterus inflammation, persistent post breeding endometritis which can lead to pathological fluid accumulation in the uterus, early embryonic mortality, progressive uterine fibrosis, endometrial cyst formation (Wilsher and Allen 2003, Morel et al. 2005) and ovulatory disturbances (McCue and Squires 2002). Hence, it can be concluded that the older mares had significantly poorer pregnancy rates when compared to their younger and middle aged counterparts and significantly half of the mares bred were found to be negative for pregnancy in mares aged beyond 18 years in the present study.

Influence of age on pregnancy wastage in mares bred during different types of estruses (foal heat, second heat and third heat): In the present study, chi square analysis on the influence of age of mares on the pregnancy wastage in mares bred during FH, SH and TH (Table 3) showed that the age did not influence the pregnancy wastage significantly.

Pregnancy losses in mares are in increasing trend with

Table 2. Influence of age on pregnancy rate in mares bred during different estrus (foal heat, second heat and third heat)

Age group	Foal heat				Second heat			Third heat			Overall		
	N	Positive	%	N	Positive	%	N	Positive	%	N	Positive	%	
6-12 yrs	26	21	80.77	92	62	67.39	31	25	80.65	149	108	72.48	
13-17 yrs	36	21	58.33	147	96	65.31	56	36	64.29	239	153	64.02	
18-23 yrs	23	10	43.48	73	43	58.90	21	9	42.86	117	62	52.99	
χ2 value	7.3	7.358* (p=0.0252)			* (p=0.0252) 2.057 NS 8.169* (p=0.0252)			169* (p=0.04	426)	11.37** (p=0.0099)			

N: Number of mares; * & ** indicates the significant difference at p<0.05 and p<0.01; NS: Non-significant.

TE 1 1 2 T CI C	(DIII	\' 1 11'	1'00 / /	DIT OIL 1 TIL
Table 3. Influence of age on	nregnancy wastage (PW	In mares bred dilring	different estriis (FH SH and IHI
rable 3. Illitachee of age on	pregnancy wastage (1 v	I III III III Co orea daring	different couras (i ii, bii ana i ii,

Age group		Foal hea	ıt	9	Second he	eat	Third heat			Overall		
	N	PW	%	N	PW	%	N	PW	%	N	PW	%
6-12 yrs	21	4	19.05	62	11	17.74	25	5	20.00	108	20	18.52
13-17 yrs	21	6	28.57	96	18	18.75	36	5	13.89	153	29	18.95
18-23 yrs	10	4	40.00	43	10	23.26	9	0	0.00	62	14	22.58
χ2 value	1.56 NS			1.832 NS		$3.97^{\rm \ NS}$			2.797 NS			

N: Number of mares positive for pregnancy; NS: Non-significant

Table 4. Influence of foal heat, second heat and third heat postpartum on different catagories of pregnancy wastage in mares.

Heat cycle	N EDD		DD	Abortions		Still births		Overall pregnancy wastage	
		Yes	%	Yes	%	Yes	%	Yes	%
FH	52	11	21.15	3	5.77	0	0.00	14	26.92
SH	206	16	7.77	24	11.65	1	0.49	40	19.41
TH	71	6	8.45	5	7.04	0	0.00	11	15.49
χ2 value		8.495*(p=0.0143)		2.379 NS		$0.5989 ^{\mathrm{NS}}$		2.454 NS	

^{*} indicates the significant difference at p<0.05

increase in mare's age although not significant in the present observation are in line with Sharma *et al.* (2010), Blanchard *et al.* (2012) and Lane *et al.* (2016). Several contributory factors for pregnancy wastage in relation to mare's age have been summerized and they are chromosomally abnormal oocytes (Rambags *et al.* 2005), anatomical abnormalities in vulva (Wilsher and Allen 2003, McKinnon *et al.* 2011), age related luteal insufficiency leading to decreased maternal progesterone (Hendriks *et al.* 2009); progressive degeneration of the uterine tissue, endometrial fibrosis, inflammatory cell infiltration, endometrial cyst development and uterine gland atrophy (Pycock 2006).

Influence of foal heat, second heat and third heat post partum on different catagories of pregnancy wastage in mares: In the present study, chi square analysis showed significant influence of FH, SH and TH on early embryonic death in mares, while significant influence was not observed on abortion and still birth rate (Table 4). Our findings of higher incidence of early embryonic death in mares bred during FH when compared to SH and TH is in accordance with Bell and Bristol (1987) (26% v/s 16%) and Kurtz Filho et al. (1999) (30.3% v/s 11.5%) for foal heat and subsequent estrus mares, respectively.

Embryonic losses in FH bred mares in the present study was 21.15% which is lesser when compared to 26% (Bell and Bristol 1987), 30.3% (Kurtz Filho *et al.* 1999) and 30.5% (Malschitzky *et al.* 2003). The difference in the early embryonic death rate in the present study in mares bred during foal heat with other findings could be due to early uterine involution, presence of smaller quantity of intra uterine fluids with few inflammatory cells at the time of breeding. In contrast, 10.0% (Lowis and Hayland 1999), 17% (Morris and Allen 2002), 8.80% (Sharma *et al.* 2010) and 6.4% (Barber *et al.* 2012) of mares showed early embryonic mortality.

The abortion rates ranged from 5-12% for in the present study is found to be in line with 9.3% (Lowis and Hayland 1991) and 4.74% (Barber *et al.* 2012). Abortions have been

reported due to multifactorial etiology including hormonal, genetic, infectious (Ravi et al. 2013, Weber et al. 2018) and non infectious - twin pregnancies, fetal malformations, umbilical cord strangulations, long cord/cervical pole ischaemia disorder and uterine torsion (Smith et al. 2003, Weber et al. 2018). The contributory factors for abortion in present study could be infectious and non-infectious, where the causes for the same have not been evaluated in the present work.

The assumption that the fertility of FH bred mares is inferior to that of SH and TH bred mares is proved to be wrong in the present study but, the hypothesis of pregnancy rate in FH bred mares is age-dependent is confirmed. The results obtained in the present study indicate that older mares should be bred on SH as a breeding strategy to increase the pregnancy rate and optimize the reproductive efficiency in mares. The concept of increased early embryonic death rate in mares bred during foal heat is yet again proved in the present work, while the pregnancy wastage is found to be unaffected in mares bred during different heat cycles postpartum. The present study also proved that the reproductive efficiency decreases in mares which are aged beyond 18 years and such data can be exploited to minimise the economical loss incurred to the equine industry.

REFERENCES

Akourki A, Echegaray A, Falceto M V and Mitjana O. 2017. Factors influencing reproductive efficiency and pregnancy in Pura Raza Espanola mares. *Veterinarni Medicina* **62**(04): 186–91.

Aoki T, Yamakawa K and Ishii M. 2013. Factors affecting gestation length in heavy draft Mares. *Journal of Equine Veterinary Science* **33**: 437–40.

Barber B K, Bradecamp E A, Howard B S and Mollenkopf B S. 2012. Net effect of foregoing uterine culture and cytology in first-cover foaling mares. *AAEP proceedings* **58**: 526–27.

Bell R J and Bristol F M. 1987. Fertility and pregnancy loss after delay of foal oestrus with Progesterone and Oestradiaol-17β.

- Journal of Reproductive Fertility 35: 667-68.
- Blanchard T L, Thompson J A, Love C C, Brinsko S P, Ramsey J, Meara A O and Varner D D. 2012. Influence of day of postpartum breeding on pregnancy rate, pregnancy loss rate, and foaling rate in Thoroughbred mares. *Theriogenology* 77: 1290–96.
- Blanchard T L, Thompson J A, Brinsko S P, Stich K L, Wendt K M, Varner D D and Rigby S L. 2004. Mating mares on foal heat: a five-year retrospective study. Proceedings of the 50th Annual Convention of the American Association of Equine Practitioners, Denver, Colorado, USA. pp 525–530.
- Bosh K A, Powell D, Neibergs J S, Shelton B and Zent W. 2009. Impact of reproductive efficiency over time and mare financial value on economic returns among Thoroughbred mares in central Kentucky. *Equine Veterinary Journal* 41: 889–94.
- Bruemmer J E, Brady H A and Blanchard T L. 2002. Uterine involution, day and variance of first postpartum ovulation in mares treated with progesterone and estradiol-17 beta for 1 or 2 days postpartum. *Theriogenology* **57**(2): 989–95.
- Camillo F, Marmorini P, Romagnoli S, Vannonzzi I and Bagliacca M. 1997. Fertility at the first postpartum oestrous compared with fertility at the following oestrous cycles in foaling mares and with fertility of non foaling mares. *Journal of Equine Veterinary Science* 17: 612–16.
- Carluccio A, Gloria A, Robbe D, Veronesi M C, De Amicis I, Cairoli F and Contri A. 2017. Reproductive characteristics of foal heat in female donkeys. *Animal* 11: 461–65.
- De Souza J R M, Gonçalves P B D, Bertolin K, Ferreira R, Ribeiro S S, Ribeiro D B, Rechsteiner S M F, De Araújo, Pimentel C A and Pimentel A M H. 2020. Age-dependent effect of foal heat breeding on pregnancy and embryo mortality rates in thoroughbred mares. *Journal of Equine Veterinary Science* **90:** 102982.
- Morel M C G, Newcombe J R and Swindlehurst J C. 2005. The effect of age on multiple ovulation rates, multiple pregnancy rates and embryonic vesicle diameter in the mare. *Theriogenology* **63**: 2482–93.
- Ginther O J. 1992. Reproductive biology of the mare: basic and applied aspects. Equiservices Publishing, Cross Plains, WI. 105, 172
- Hendriks W K, Colenbrander B, Van Der Weijden G C and Stout T A E. 2009. Maternal age and parity influence ultrasonographic measurements of fetal growth in Dutch Warmblood mares. *Animal Reproduction Science* 115: 110–23.
- Ishii M, Shimamura T, Utsumi A, Jitsukawa T, Endo M, Fukuda T and Yamanoi T. 2001. Reproductive performance and factors that decrease pregnancy rate in heavy draft horses bred at the foal heat. *Journal of Equine Veterinary Sciences* 21: 131–36.
- Kurtz Filho M, Deprá N M, Brass K E and Silva C A M. 1999.Post-partum fertility in lactating Thoroughbred mares. Arq. Fac. Vet 27: 47–51.
- Lane E A, Bijnen M L J, Osborne M, More S J, Henderson I S F, Duffy P and Crowe M A. 2016. Key factors affecting reproductive success of thoroughbred mares and stallions on a commercial Stud farm. *Reproduction in Domestic Animals* 51: 181–87.

- Lowis T C and Hyland J H. 1991. Analysis of post-partum fertility in mares on a Thoroughbred stud in southern Victoria. *Australian Veterinary Journal* **68**(9): 304–06.
- Mahal J S, Honparkhe M, Ajeet Kumar and Parladh Singh. 2020. Conception rates following breeding at foal heat versus induced heat in postpartum indigenous mares. *International Journal of Current Microbiology and Applied Sciences* 9(4): 1904–07.
- Malschitzky E, Schilela A, Eirelles L S, Mattos A G, Gregory R M and Mattos R C. 2001. Artificial photoperiod in pregnant mares and its effect on pregnancy length and postpartum reproductive performance. *Pferdeheilkunde* 17: 565–69.
- Malschitzky E, Schilela A, Ana Luiza G, Garbade P, Gregory R M, Rodrigo C and Mattos 2003. Intrauterine fluid accumulation during foal heat increases embryonic death. *Pferdeheilkunde* **19**(6): 246-49.
- McCue P M and Hughes J P. 1990. The effect of postpartum uterine lavage on foal heat pregnancy rate. *Theriogenology* **33**(5): 1121–29.
- McCue P M and Squires E L. 2002. Persistent anovulatory follicles in the mare. *Theriogenology* **58**: 541–43.
- McKinnon A O, Squires E L, Vaala W E and Varner D D. 2011. *Equine Reproduction*. 2nd Edition. Wiley-Blackwell, Hoboken, NJ (USA). pp 1696–1753.
- Morris L H A and Allen W R. 2002. Reproductive efficiency of intensively managed Thoroughbred mares in Newmarket. *Equine Veterinary Journal* **34**: 51–60.
- Pycock J F. 2006. How to maximize the chances of breeding successfully from the older maiden mare. *Proceedings of the American Association of Equine Practitioners* **52**: 245–49.
- Rambags B P B, Krijtenburg P J and Drie H F. 2005. Numerical chromosomal abnormalities in equine embryos produced in vivo and in vitro. Molecular Reproduction and Development 72: 77–87.
- Ravi S K, Yadav P S, Singh R K, Thirumala R T, Pal Y, Arangasamy A, Singh J, Sharma R C and Susavi K. 2013. An overview on reproductive disorders in indigenous female equids. *Journal of Animal Research* 3: 245–59.
- Sharma S, Davies Morel M C G and Dhaliwal G S. 2010. Factors affecting the incidence of postpartum oestrus, ovarian activity and reproductive performance in Thoroughbred mares bred at foal heat under Indian subtropical conditions. *Theriogenology* **74**: 90–99.
- Smith K C, Blunden A S, Whitwell K E, Dunn K A and Wales A D. 2003. A survey of equine abortion, stillbirth and neonatal death in the UK from 1988 to 1997. *Equine Veterinary Journal* 35(5): 496–501.
- Warriach H M, Memon M A, Ahmad N, Norman S T, Ghafar A and Arif M. 2014. Reproductive performance of arabian and thoroughbred mares under subtropical conditions of Pakistan. *Asian Australasian Journal of Animal Sciences* 27: 932–36.
- Weber R R and Wehrend A. 2018. Causes of abortion in horses—overview of the literature and own evaluations. *Tierarztl Prax Ausg G Grosstiere Nutztiere* **46**(1): 35–42.
- Wilsher S and Allen W R. 2003. The effects of maternal age and parity on placental and fetal development in the mare. *Equine Veterinary Journal* **35**(5): 476–83.