

Indian Journal of Animal Sciences **92** (11): 1320–1326, November 2022/Article https://doi.org/10.56093/ijans.v92i11.125138

Assessing essentiality of nickel in growing Hariana heifers by determining its effect on performance, nitrogen and mineral metabolism, urease activity, and endocrine biomarkers

MUNEENDRA KUMAR¹™, ANUJ SINGH¹, VINOD KUMAR¹, RAJU KUSHWAHA¹, SHALINI VASWANI¹, AVINASH KUMAR¹, PANKAJ KUMAR SHUKLA² and YAJUVENDRA SINGH³

DUVASU, Mathura, Uttar Pradesh 281 001 India

Received: 24 June 2022; Accepted: 13 September 2022

ABSTRACT

The objective of this study was to determine the effect of nickel (Ni) on growth performance, nutrient utilization, urease activity, and endocrine variables in growing cattle. Growing Hariana heifers (18) were randomly assigned into three groups (n=6), i.e. groups either without Ni supplementation (Ni0.0; control) or supplemented with 1.5 mg of Ni/kg DM (Ni1.5), and 3.0 mg of Ni/kg DM (Ni3.0). The experiment lasted for 90 days. Heifers supplemented with Ni showed higher nutrient intake and average daily gain (ADG) than control group. The nutrient digestibility was not affected by treatment, while the Ni supplemented animals showed higher intake, excretion, and nitrogen balance. The urease activity was comparable and higher in the Ni_{1.5} and Ni_{3.0} groups than in the control group. There was no effect of treatment on the metabolism of calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu), and chromium (Cr). However, iron (Fe) retention showed a negative association with Ni levels. Plasma cortisol concentration was lower while the insulin like growth factor-1 (IGF-1) and tetraiodothyronine (T4) were higher in the Ni3.0 group compared to the Ni0.0 group, with Ni1.5 being intermediate. The plasma concentrations of triiodothyronine (T3) and thyroid stimulating hormone (TSH) were not affected by dietary treatment. Plasma Ni concentration showed a dose dependent increase whereas, plasma levels of other minerals were not affected by treatment. In conclusion, dietary Ni supplementation in growing Hariana heifers improves performance and nutrient utilization by modulating urease activity and endocrine growth biomarkers.

Keywords: Endocrine biomarker, Heifer, Metabolism, Nickel, Nutrients utilization, Performance

The essentialities of macro-or-micro minerals are well established in living beings and both play a vital role in augmenting production and reproduction in farm animals. Evidence has suggested that a number of other trace elements, not previously recognized as essential, are required at least by certain animal species (Nielsen 2000). These elements are recognized as newer trace elements, because deprived animals were unhealthy and showed physiological responses to their supplementation (Afridi et al. 2001). Among the newer trace elements, nickel (Ni) is one of them. Recently, evidence has been presented suggesting that ruminants have an absolute requirement for Ni (McGrath et al. 2018). Ni plays a significant role in the regulation of protein metabolism by the activation of enzymes and hormones. A major site of action of Ni in ruminants appears to be the Ni containing enzyme urease, which is thought to play a key role in nitrogen metabolism

Present address: ¹College of Veterinary Science and Animal Husbandry, Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, Uttar Pradesh. ⊠Corresponding author email: muneendra82@gmail.com

by allowing the rumen microbes to utilize a waste product of the animal (non-protein nitrogen) as a nitrogen source for growth and production (Mazzei et al. 2020). Ni can show interaction with other minerals and it has been suggested that various effects of Ni are due to their interaction with Fe, Cu, Zn, Ca, etc. in the body (Kasprzak et al. 2003). Ni deficiency impaired Fe utilization, depresses Zn absorption and increased Ca excretion (Anke et al. 1995a). Ni has been reported to be a bio-ligand cofactor facilitating the intestinal absorption of the Fe in the animals (Shambhvi et al. 2020). At low concentrations, Ni specifically inhibited prolactin release, but at higher concentrations, it stimulated the release of growth hormone, thyrotropin, and adrenocorticotropic hormones from bovine pituitary (Yang and Ma 2021). Ni induced hypo-insulinemic response was attributed to modulating secretion of IGF-1 by stimulating α -2 adrenergic receptors in pancreatic islets (Alverez et al. 1993).

Knowledge regarding the role of Ni in ruminant nutrition is currently limited. However, the evidence of the essentiality of this element in laboratory animals is not a new issue. Considering these facts, this study has been designed to study the effects of Ni supplementation

on growth performance, nutrient utilization, mineral metabolism, urease activity, and endocrine variables in growing cattle.

MATERIALS AND METHODS

Experimental design: Animal care procedures were approved (Approval No. 115/IAEC/17) and conducted under the established standards of the Institutional Animal Ethics Committee (IAEC), constituted as per the Article Number 13 of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) rules laid down by the Government of India.

Growing female Hariana cattle (18) were randomly assigned into three dietary treatments based on initial body weight (125±3.0 kg) and initial age basis (10±2.0 months). Animals either received a basal diet devoid of supplemental Ni (Ni_{0.0}; control) or were supplemented with 1.5 mg (Ni_{1.5}), and 3.0 mg (Ni_{3.0}) of Ni/kg DM as NiSO₄·6H₂O (Loba Chemical Pvt. Ltd., Mumbai, India) for a period of 90 days. The nutrient requirements of experimental animals were met by feeding a total mixed ration (TMR) consisting of concentrate: green berseem fodder: wheat straw in the proportion of 45:35:20 (NRC 2001). To ensure that each animal consumed the required amount of Ni, the calculated amount of Ni premix was fed by mixing it with 100 g of concentrate mixture.

Observations recorded, sampling, and laboratory analysis: A metabolism trial with 4 days adaptation period followed by a 7 days collection period was conducted at the end of the study. Net feed consumption during the trial period was recorded daily by weighing feedstuffs offered and orts left. Total urine voiding over a 24 h period was collected using a URO-FLEX (urine collection bag, capacity 2 L, Ramsons) equipped with a uro-cath 2-way

foley balloon catheter (Size 16FG, Ramsons). However, faeces excreted during 24 h was collected manually. About 1% of the thoroughly mixed faeces voided during 24 h was taken for the chemical analysis. 10 g of another faecal sample was taken and stored in glass containers having 10 ml of 25% $\rm H_2SO_4$ solution. For the nitrogen and mineral estimation, 6% of the total urine voided in 24 h was sub sampled.

The representative samples of feedstuffs offered, orts left, and faeces voided were analyzed for proximate composition (AOAC 2005). However, fibre fractions were determined according to the procedures given by Van Soest *et al.* (1991). The mineral content in the samples of feedstuffs, orts left, faeces, urine, and plasma were analyzed by using an Atomic Absorption Spectrophotometer (AAS; Perkin Elmer AAnalyst 300, USA). The ingredients and chemical composition of the basal diet fed during the experimental period are given in Supplementary Table 1.

Peripheral blood samples were collected at day 0, 30, 60 and 90 post-Ni supplementation. Blood samples were centrifuged at $1200 \times g$ for 30 min at 4°C and separated plasma was stored at -20 °C until further analysis. Plasma concentration of cortisol, IGF-1, T_3 , T_4 , and TSH were determined by the use of bovine specific ELISA test kits (Cayman's Chemical Company, Ann Arbour, Michigan, USA). Ruminal urease activity, measured as unit pH change, was estimated by urease index (AOCS 2011).

Statistical analysis: The generated data was analyzed by repeated measures using the PROC MIXED procedure of SPSS (V21.0; SPSS Inc., Chicago, IL, USA). The effects of treatment, period, and their interaction on the concentration of endocrine variables, urease activity, and plasma mineral levels were analyzed by using the following model:

$$Y_{ijk} = \mu + T_i + D_j + (T \times D)_{ij} + e_{ijk}$$

Table 1. Effect of Ni supplementation on performance and nutrients digestibility

	Treatment			p value eta		
$Ni_{0.0}$	Ni _{1.5}	$Ni_{3.0}$		T	D	$T \times D$
5.47^{a}	6.23^{b}	7.39°	0.58	0.025	0.011	0.045
475.71°	500.00^{a}	667.14 ^b	43.03	0.013	< 0.001	0.039
714.6	737.7	748.4	14.83	0.288		
723.2	748.5	758.0	16.31	0.324		
755.6a	786.4^{b}	806.0°	14.75	0.043		
812.8	823.9	825.4	10.49	0.114		
592.2	609.2	611.7	24.01	0.091		
555.6	589.7	593.8	24.85	0.172		
122.53a	139.56 ^b	165.55°	3.19	< 0.001		
29.95ª	29.81a	32.12 ^b	1.25	0.018		
24.67a	26.58^{ab}	30.29^{b}	1.38	0.003		
54.62a	56.39ab	62.41 ^b	2.19	< 0.001		
67.91ª	83.16 ^b	103.13 ^c	2.38	0.001		
55.43a	59.59b	62.30°	2.05	0.028		
	5.47 ^a 475.71 ^a 714.6 723.2 755.6 ^a 812.8 592.2 555.6 122.53 ^a 29.95 ^a 24.67 ^a 54.62 ^a 67.91 ^a	Ni _{0.0} Ni _{1.5} 5.47a 6.23b 475.71a 500.00a 714.6 737.7 723.2 748.5 755.6a 786.4b 812.8 823.9 592.2 609.2 555.6 589.7 122.53a 139.56b 29.95a 29.81a 24.67a 26.58ab 54.62a 56.39ab 67.91a 83.16b	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^{a-c}Mean values within a row with unlike superscript letters are significantly different for each dietary treatment ($p \le 0.05$).

where, $Y_{ijk'}$ dependent variable; μ is the overall mean of the population; $T_{i'}$ mean effect of the treatment; $D_{j'}$ mean effect of day of sampling (j=0, 30, 60, and 90 days of dietary treatment); ($T \times D$)_{ij'} effect of the interaction between the effect of Ni supplementation and the day of sampling; and $e_{ijk'}$ unexplained residual element assumed to be independent and normally distributed. Animals tested within a group were considered as a random effect, while group, period (sampling days), and their interaction were considered as the fixed effects. Data regarding nutrient intake, apparent nutrient digestibility, and nitrogen and mineral balance were analyzed using the one-way ANOVA procedure.</sub>

RESULTS AND DISCUSSION

Growth performance and apparent nutrient digestibility: Heifers offered diets supplemented with Ni had a greater (p<0.05) DMI and ADG compared to those fed on basal diets devoid of supplemental Ni (Table 1). The intake of CP, DCP, and TDN was also higher (p<0.05) in heifers receiving diets supplemented with Ni. Intake of nutrients and ADG were greater in experimental heifers fed on a diet supplemented with 3.0 mg of Ni/kg DM.

Similar to the present findings, higher ADG and feed efficiency in calves receiving Ni supplementation when compared to calves receiving the basal diet devoid of supplemental Ni was reported by Singh *et al.* (2019).

Anke *et al.* (1977) noted that goats fed a diet supplemented with 10 ppm Ni gained faster than goats receiving a diet containing 1 ppm Ni. The addition of 5 ppm Ni has been shown to increase growth rate and feed efficiency in lambs and steers fed on high-energy, low-protein diets (Spears *et al.* 1979, Spears 1984). Oscar *et al.* (1987) also observed higher ADG and improved feed conversions in Angus steers fed on 5 ppm Ni supplemented diets compared to non-Ni supplemented steers. The higher feed intake and growth rate in Ni supplemented heifers appeared to be correlated with activity levels of ruminal urease, an enzyme that has been shown to require Ni.

Although the digestibility of different nutrients, specifically protein, was better in Ni supplemented heifers but mean values showed a non-significant (p<0.05) difference. The digestibility of CP in 3.0 mg of Ni/kg DM group was 6.67% higher compared to the non-supplemented group. Higher DM and fibre digestibility in goats receiving diets supplemented with 1.0 ppm Ni was reported by Yousuf (2005). However, Spears *et al.* (1978a) observed no influence of Ni supplementation on nutrient utilization in lamb. Bersenyi (2003) observed depressed digestibility of protein by 3-4% and that of crude fibre by 20-25% inrabbits exposed to higher Ni levels (500 mg Ni/kg diet). Spears *et al.* (1979) stated that ruminants benefited more from Ni supplementation while on low protein diets as the ruminal urease enzyme converts endogenous urea to

Table 2. Effect of Ni supplementation on mineral metabolism

Mineral		Treatment	SEM	p value		
	Ni _{0.0} Ni _{1.5}		Ni _{3.0}			
Ni intake (mg/d)	6.95ª	17.26 ^b	31.56°	0.92	0.004	
Ni voided in faeces and urine (mg/d)	6.64ª	16.63 ^b	30.41°	1.50	0.002	
Ni balance (mg/d)	0.46^{a}	0.63^{b}	1.15°	0.01	< 0.001	
Ni retention (% of Ni intake)	4.36^{a}	7.99^{b}	12.21°	0.39	0.001	
Ca intake (g/d)	51.97a	59.19 ^b	70.21°	3.89	0.015	
Ca voided in faeces and urine (g/d)	32.92ª	38.47 ^b	44.50°	2.08	< 0.001	
Ca balance (g/d)	19.05ª	20.72^{ab}	25.71 ^b	1.19	0.036	
Ca retention (% of Ca intake)	36.62	35.01	36.63	2.27	0.998	
P intake (g/d)	22.97ª	26.17 ^b	31.04°	1.09	0.029	
P voided in faeces and urine (g/d)	10.91ª	12.27 ^b	14.85°	0.82	0.001	
P balance (g/d)	12.07a	13.89ab	16.19 ^b	1.14	0.017	
P retention (% of P intake)	52.52	53.10	52.15	3.91	1.000	
Fe intake (mg/d)	1811.94ª	2063.69b	2447.94°	48.14	0.007	
Fe voided in faeces and urine (mg/d)	1266.11a	1463.28 ^b	1787.71°	25.09	0.028	
Fe balance (mg/d)	545.83ª	600.40^{b}	660.23°	18.20	0.004	
Fe retention (% of Fe intake)	30.12^{b}	29.09^{ab}	26.97^{a}	1.17	0.027	
Zn intake (mg/d)	252.60a	287.70^{b}	341.27°	11.29	< 0.001	
Zn voided in faeces and urine (mg/d)	182.26ª	210.21 ^b	249.60°	8.93	0.039	
Zn balance (mg/d)	70.35a	77.49^{b}	91.67°	2.91	0.003	
Zn retention (% of Zn intake)	27.85	26.93	26.79	1.09	0.944	
Cu intake (mg/d)	108.58a	123.67 ^b	146.69°	9.58	0.047	
Cu voided in faeces and urine (mg/d)	94.58a	107.92 ^b	130.79°	5.40	0.001	
Cu balance (mg/d)	14.00	13.75	15.90	2.92	0.835	
Cu retention (% of Cu intake)	12.89	11.12	10.84	2.03	0.496	

a-c Mean values within a row with unlike superscript letters were significantly different for each dietary treatment ($p \le 0.05$).

ammonia that is used for the synthesis of microbial protein.

In the present study, nitrogen balance was 34.15% higher for heifers supplemented with 3.0 mg of Ni/kg DM and 18.34% higher for those fed with 1.5 mg of Ni/kg DM compared to those fed the control diet. Urinary nitrogen to faecal nitrogen excretion was lower (p<0.05) in heifers fed 3.0 mg of Ni/kg DM diets compared to those fed 1.5 mg of Ni/kg DM and non-Ni supplemented diets. Ni containing ruminal urease enzyme is required for hydrolysis of dietary and endogenous urea that is recycled to the rumen (Patra and Aschenbach 2018). In this manner, Ni supplementation may influence nitrogen recycling and dietary nitrogen metabolism which is of major importance in ruminants consuming low protein diets (Goshtashpour-parsi *et al.* 1974). No information is available regarding the effects of Ni supplementation on nitrogen metabolism in animals.

Urease activity and mineral metabolism: The dietary supplementation of Ni showed significant effect (p<0.001) on urease activity and activity was observed comparable and higher in Ni_{1.5} and Ni_{3.0} groups than non-Ni supplemented group (Fig. 1). Urease activity in Ni supplemented group starts increasing at day 60 post Ni-supplementation and

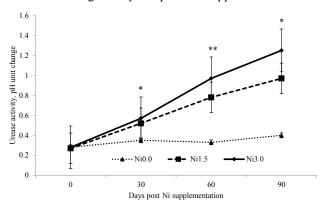


Fig. 1. Effect of Ni supplementation on ruminal urease activity; single (*p≤0.05) and double (**p<0.001) asterisks represents statistical significance compared with control.

continued until the end of the study.

Urease has been shown to be a Ni metalloenzyme and found to contain 6-8 atoms of Ni in a mole of enzyme (Fishbein *et al.* 1976). Ruminal urease hydrolyses dietary NPN and recycled urea into NH₃-nitrogen that can be utilized by most of the rumen bacteria for microbial protein synthesis (Hailemariam *et al.* 2021). In this study, Ni supplementation improved the activity of a ruminal urease enzyme. Starnes *et al.* (1982) and Milne *et al.* (1990) also observed higher rumen bacterial urease activity in 5 mg Ni/kg DM and 5 mg Ni/day, respectively, in sheep fed on high-energy and low protein diets. Murrah buffalo calves supplemented with 10 ppm Ni showed higher urease activity than the 5 ppm and non-Ni supplemented groups (Thamizhan 2020).

Treatment dependent higher DMI resulted in a significantly higher (p<0.05) intake of Ca, P, Ni, Fe, Zn, Cu, and Cr (Table 2). As the dietary intake of minerals increased, their excretion in faeces and urine also increased (p<0.05). However, no differences among treatments for the balance of Cu were observed. Ni supplementation had no effect on Ca, P, Zn, Cu, and Cr retention, whereas Ni retention had a positive and Fe retention had a negative association with supplemental Ni levels.

Ni has been reported to alter the metabolism of a number of other elements in the body but the interrelationships are complex and poorly understood (Kasprzak *et al.* 2003). Most ingested Ni remains unabsorbed in the gastrointestinal tract and is excreted in the faeces (Nielsen *et al.* 1987). Bersenyi (2003) also observed no interaction between supplemental Ni with Zn, Mn, Fe, and Cu. However, Anke *et al.* (2002) noted disturbed Ca, Zn, Fe, etc. metabolism in Ni depleted subjects. Sunderman (2007) conducted a study to observe the Ni distribution in the body and observed that Ni absorption is directly related to supplemental Ni level and absorbed Ni is excreted mainly through urine. Schnegg and Kirchgessner (1976a) reported that Fe absorption was

Table 3. Effect of Ni supplementation on plasma endocrine variables and mineral levels

Attribute		Treatment		SEM	<i>p</i> value ^β		
	Ni _{0.0}	Ni _{1.5}	Ni _{3.0}		T	D	T×D
Plasma hormonal levels							
Cortisol level (ng/ml)	4.63^{b}	4.39^{ab}	3.94^{a}	0.04	0.004	0.296	0.994
IGF-1 level (ng/ml)	192.03ª	217.35 ^b	256.08°	8.67	0.001	0.017	0.928
T, level (ng/ml)	3.93	3.87	4.02	0.46	0.382	0.485	0.940
T ₄ level (ng/ml)	83.88a	87.87^{ab}	97.71 ^b	3.67	0.001	0.032	0.692
T_4 : T_3 ratio	21.34	22.71	24.31	4.79	0.483	0.773	0.976
TSH level (mIU/l)	6.43	6.64	6.78	0.52	0.291	0.459	0.776
Plasma mineral levels							
Ni (μg/l)	56.00a	77.92^{b}	98.50°	6.00	0.002	0.030	0.049
Ca (mg/l)	107.8	107.4	108.5	5.21	0.183	0.339	0.907
P (mg/l)	52.71	53.93	54.36	3.7	0.492	0.519	0.734
Fe (mg/l)	3.36	2.61	2.05	0.06	0.086	0.283	0.994
Zn (mg/l)	1.38	1.32	1.32	0.10	0.291	0.442	0.995
Cu (mg/l)	0.82	0.79	0.77	0.02	0.519	0.692	1.000

^{a-c}Mean values within a row with unlike superscript letters are significantly different for each dietary treatment ($p \le 0.05$).

inhibited during Ni deficiency. Ni supplementation at the levels of 5, 10, 20 or 50 ppm in the diet increased the Fe content of marginally Fe adequate rats (Nielsen *et a.* 1984). Ni deficiency in goat lower Ca and Zn concentrations in blood, bones and milk suggest effects of Ni deficiency on Ca and Zn metabolism (Anke *et al.* 2002).

The supplementation of Ni had no effect on the plasma levels of Ca, P, Fe, Zn, Cu, and Cr. However, there was an increasing (p<0.05) trend for plasma Ni levels (Table 3). Serum Ni varies among the species but comparatively little within species if Ni exposure is not excessively altered. Ni content (µg/l) normally ranges between 4-5 for pigs, 3-4 for goats, 1-4 for rats, and 6.5-14 for rabbits (Milne et al. 1990). Similar to the findings of the present study, Whanger (1973) observed no effect of Ni supplementation on plasma and tissue levels of other minerals. Lambs receiving no supplemental Ni had lower levels of Fe in their lungs than animals that had been receiving supplemental Ni (Spears et al. 1979). Thamizhan (2020) found a higher plasma Fe concentration in Murrah buffalo calves supplemented with 10 ppm Ni in comparison to 5 ppm and 0 ppm groups. Spears and Hatfield (1978) also found that serum Ca and P were not affected by dietary Ni supplementation in lambs.

Endocrine variables: The plasma concentration of endocrine variables is given in Table 3. Plasma cortisol concentration decreased while IGF-1 and T_4 levels increased significantly (p<0.05) in a dose dependent manner as the supplemental level of Ni increased (Supplementary Figs 1-3). There were no effects of Ni supplementation on the plasma concentrations of T_3 and TSH in all groups.

Information regarding the beneficial impact of Ni on endocrine variables is lacking and most of the studies that demonstrate the effects of this element are restricted as toxic metals. Ni may play a significant role in the stimulation or inhibition of the release of growth hormone, thyrotropin, and adrenocorticotropic hormones from the bovine pituitary (Stejskal *et al.* 2006, Yang and Ma 2021). Concentrations of Ni were inversely related to plasmatic cortisol, which agrees with the *in vitro* hormone release inhibition proposed for the divalent cation by Lorenson *et al.* (1983). Significant inverse effects were observed for Ni on levels of cortisol in human subjects (Candahia *et al.* 2008).

IGF-1 is an anabolic hormone mainly synthesized in the liver and locally expressed in peripheral tissues (Sherlock and Toogood 2007) under the control of pituitary growth hormone (GH). Ni exposure was associated with impaired GH-IGF-1 axis function (Watanabe *et al.* 2018). In the present study, Ni supplementation showed a positive influence on the plasmatic concentration of IGF-1. However, dietary Ni as NiCl₂ in excess (300 mg/kg diet) in broilers birds reduced IGF-1 content in the small intestine (Wu *et al.* 2013). Similarly, inhibited release of GH from the bovine pituitary gland was also reported by Dormer *et al.* (1973) in Ni exposed subjects.

Thyroid hormone metabolism is affected by several metabolic and nutritional factors (Mercer and Trayhurn 1987), particularly the intake of feed (Chopra *et al.* 1975).

In the present study, higher feed intake in Ni supplemented groups might be the reason behind greater thyroxin levels. Stangi and Kirchgess (1998) observed that dietary Ni depleted rats had total T₄ and T₃ levels in plasma that were reduced by about 14 and 13% compared to the controls. The Ni deficiency driven effects on thyroid hormones were mainly caused by the Ni induced impaired Fe status (Chen *et al.* 1983). Thyroxine peroxidase, which is a haeme Fe containing enzyme in the thyroid gland (Chen *et al.* 1983), could be responsible for the observed alterations in thyroid hormone level.

In conclusion, dietary Ni supplementation in growing Hariana heifers improves feed intake, growth performance, and nitrogen retention. Better performance of Ni supplemented heifers might be due to higher urease activity and plasmatic concentration of endocrine growth biomarkers. However, nickel supplementation did not exert any adverse effect on other minerals metabolism except it had a negative interaction with iron metabolism. It seems to be worth to supplement nickel in growing cattle by subsequent studies and supplementing nickel at low nitrogen diet is required.

ACKNOWLEDGEMENTS

This research was funded under the University Grant by the Indian Council of Agricultural Research Grant, New Delhi, India. The authors gratefully acknowledge scientific and technical assistance provided by the crew of the Department of Veterinary Pharmacology and Toxicology and LFC, Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India.

REFERENCES

Afridi H I, Kazi T G and Kazi N. 2001. Evaluation of status of cadmium, lead, and nickel levels in biological samples of normal and night blindness children of age groups 3-7 and 8-12 years. *Biological Trace Element Research* **142**(3): 350–61.

Alverez C, Blade C and Catana J. 1993. Alpha-2 adrenergic blockage prevents hyperglycemia and hepatic glutathione depletion in nickel-injected rats. *Toxicology and Applied Pharmacology* 121(1): 112–17.

Anke M, Angelow L, Glei M, Muller M and Illing H. 1995a. The biological importance of nickel in the food chain. *Fresenius Journal of Analytical Chemistry* **352**: 92–96.

Anke M, Henning A, Grun M, Partschefeld M, Groppel B and Ludkf H. 1977. Nickel, an essential trace element. I. The supply of nickel as affecting the live weight gains, food consumption and body composition of growing pigs and goats. *Schweizer Archiv fur Tierheilkunde* 27: 25–34.

Anke M, Muller M, Trupschuch A and Muller R. 2002. Intake and effect of cadmium, chromium and nickel in humans. *Journal of Commodity Science* **41**(1): 41–63.

AOAC. 2005. Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists, Arlington, VA, USA.

AOCS 2011. *Urease activity*, 6th ed. Official methods and recommended practices of the American Oil Chemist Society, Second Printing, Urbana, USA.

Bersenyi A. 2003. 'Study of toxic metals (Cd, Pb, Hg and Ni)

- in rabbits and broiler chickens.' D.V.M. Thesis, Faculty of Veterinary Science, Szent Istvan University, Budapest, Hungary.
- Candahia B, Laffon B, Porta M, Lafuent A, Cabaleiro T, Lopez T, Caride A, Pumarega J, Romero A, Pasaro E and Mendez J. 2008. Relationship between blood concentrations of heavy metals and cytogenetic and endocrine parameters among subjects involved in cleaning coastal areas affected by the 'Prestige' tanker oil spill. *Chemosphere* 71: 447–55.
- Chen S C H, Siiirazi M R S and Orr R A. 1983. Effect of nickel deficiency on circulating thyroid hormone concentrations. *Nutrition Research* **3**: 91–106.
- Chopra I J, Chopra U, Smith S R, Reza M and Solomon D H. 1975. Reciprocal changes in serum concentration of 3,3',5'-triiodothyronine (reverse T₃) and 3,3'5-triiodothyronine (T₃) in systemic illness. *Journal of Clinical Endocrinology* and Metabolism 41: 1043–49.
- Dormer R L, Kerbey A L, McPherson M, Manley S, Ashcroft S J H, Schofield J G and Randle P J. 1973. The effect of nickel on secretory systems: Studies on the release of amylase, insulin and growth hormone. *Journal of Biochemistry* **140**: 135–40.
- Fishbein W N, Smith M J, Nagarajan K and Sarzi W. 1976. The first natural nickel metalloenzyme: Urease. *Federation Proceedings* **35**: 1680.
- Goshtashpour-parsi B G, Ely D G, Boling J A, Anderson N E and Amos H E. 1974. Nitrogen components reaching the omasum and abomasum of lambs fed two nitrogen I levels. *Journal of Animal Science* **39**(5): 643–47.
- Hailemariam S, Zhao S, He Y and Wang J. 2021. Urea transport and hydrolysis in the rumen: A review. *Animal Nutrition* **7**(4): 989–96.
- Kasprzak K S, Sunderman Jr F W and Salnikow K. 2003. Nickel carcinogenesis. *Mutation Research* 533(1-2): 67–97.
- Lorenson M Y, Robson D L and Jacobs L S. 1983. Divalent cation inhibition of hormone release from isolated adenohypophysial secretory granules. *Journal of Biological Chemistry* 258: 8618–22.
- Mazzei L, Musiani F and Ciurli S. 2020. The structure-based reaction mechanism of urease, a nickel dependent enzyme: Tale of a long debate. *Journal of Biological Inorganic Chemistry* **25**: 829–45.
- McGrath J, Duval S M, Luis F M, Kindermann T M, Stemmler R T, de Gouvea V N, Acedo T S, Immig I, Williams S N and Celi P. 2018. Nutritional strategies in ruminants: A lifetime approach. *Veterinary Science Research Journal* **116**: 28–39.
- Mercer S W and Trayhurn P. 1987. Effect of high fat diets on energy balance and thermogenesis in brown adipose tissue of lean and genetically obese ob/ob mice. *Journal of Nutrition* 117: 2147–53.
- Milne J, Whitelaw F, Price J and Shand W. 1990. The effect of supplementary nickel on urea metabolism in sheep given a low protein diet. *Animal Science Journal* **50**(3): 507–12.
- Nielsen F H, Shuler T R, Meleod T G and Zimmerman T J. 1984. Nickel influences iron metabolism through physiologic, pharmacologic and toxicologic mechanisms in rats. *Journal of Nutrition* 114: 1280–88.
- Nielsen F H. 1987. Nickel, pp. 245-273. Trace Elements in Human Animal Nutrition. (Ed.) Mertz W. California: Academic Press, Inc., San Diego, USA.
- Nielsen F H. 2000. Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditionally essential. *Journal of Trace Elements in Experimental Medicine*

- **13**: 113–29.
- NRC. 2001. Nutrient Requirements of Dairy Cattle, 2nd revised ed. National Academies Press, Washington, DC, USA.
- Oscar T P, Spears J W and Shih J C. 1987. Performance, methanogenesis and nitrogen metabolism of finishing steers fed monensin and nickel. *Journal of Animal Science* **64**(3): 887–96.
- Patra A K and Aschenbach J R. 2018. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. *Journal of Advanced Research* 13: 39–50.
- Schnegg A and Kirchgessner M. 1976a. Absorption and metabolic efficiency of iron during nickel deficiency. *International Journal for Vitamin and Nutrition Research* **46**: 96–99.
- Shambhvi, Thamizhan P, Datt C, Chauhan P, Dudi K, Thakuria A, Singh P and Mani V. 2020. Probable roles of nickel in nutrient utilisation and animal performance: A review. *Indian Journal* of Animal Nutrition 37(4): 299–306.
- Sherlock M and Toogood AA. 2007. Aging and the growth hormone/insulin like growth factor-I axis. *Pituitary* **10**: 189–203.
- Singh A, Kumar M, Kumar V, Roy D, Kushwaha R, Vaswani S and Kumar A. 2019. Effects of nickel supplementation on antioxidant status, immune characteristics, and energy and lipid metabolism in growing cattle. *Biological Trace Element Research* **190**(1): 65–75.
- Spears J W and Hatfield E E. 1978. Nickel for ruminants I. Influence of dietary nickel on ruminal urease activity. *Journal of Animal Science* 47: 1345–50.
- Spears J W, Hatfield E E and Forbes R M. 1979. Nickel for Ruminants II, influence of dietary nickel on performance and metabolic parameters. *Journal of Animal Science* 48: 649–57.
- Spears J W, Hatfield E E, Forbes R M and Koenig S E. 1978a. Studies on the role of nickel in the ruminant. *Journal of Nutrition* 108: 313–20.
- Spears J W. 1984. Nickel as a 'newer trace element' in the nutrition of domestic animals. *Journal of Animal Science* **59**: 823–34.
- Stangi G I and Kirchgess M. 1998. Comparative effects of nickel and iron depletion on circulating thyroid hormone concentrations in rats. *Journal of Animal Physiology and Animal Nutrition* 79: 18–26.
- Starnes S R, Spears J W and Harvey R W. 1982. Influence of nickel and protein on performance and ruminal urease activity of growing steers. *Journal of Animal Science* 55: 465.
- Stejskal V, Hudecek R, Stejskal J and Sterzl I. 2006. Diagnosis and treatment of metal-induced side-effects. *Neuroendocrinology Letters* **27**(S1): 7–16.
- Sunderman F W Jr, Dingle B, Hopfer S M and Swift T. 2007. Acute nickel toxicity in electroplating workers who accidently ingested a solution of nickel sulfate and nickel chloride. *American Journal of Industrial Medicine* 14: 257–66.
- Thamizhan P. 2020. 'Influence of supplementary nickel on nutrient use efficiency, blood metabolic profile and growth in Murrah buffalo calves.' M.V.Sc. Thesis, ICAR-National Dairy Research Institute, Karnal, India.
- Van Soest P J, Robertson J B and Lewis B A. 1991. Symposium: carbohydrate methodology, metabolism and nutritional implications in dairy cattle, methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. *Journal of Dairy Science* 74(10): 3583–97.
- Watanabe M, Masieri S, Costantini D, Tozzi R, De Giorgi F, Gangitano E, Tuccinardi D, Poggiogalle E, Mariani S, Basciani S, Petrangeli E, Gnessi L and Lubrano C. 2018. Overweight and obese patients with nickel allergy have a worse metabolic

- profile compared to weight matched non-allergic individuals. *PLoS ONE* **13**(8): e0202683.
- Whanger P D. 1973. Effects of dietary nickel on enzyme activities and mineral contents in rats. *Toxicology and Applied Pharmacology* **25**: 323–31.
- Wu B, Cui H, Peng X, Fang J, Zuo Z, Deng J and Huang J. 2013. Dietary nickel chloride restrains the development of small intestine in broilers. *Biological Trace Element Research*
- 155(2): 236-46.
- Yang J and Ma Z. 2021. Research progress on the effects of nickel on hormone secretion in the endocrine axis and on target organs. *Ecotoxicology and Environmental Safety* **213**: 112034.
- Yousuf M B. 2005. Effect of nickel supplementation on dry matter intake, nutrient digestibility and live weight change of goats fed *Panicum maximum* hay. *Journal of Agricultural Research and Development* 4: 23–31.