Prevalence of single and multiple reproductive disorders in Jersey crossbred cows of sub-tropical North-Western Himalayas

PANKAJ SOOD¹ and ANKIT AHUJA¹⊠

CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh 176 062 India

Received: 1 July 2022; Accepted: 6 June 2023

Keywords: Age, Prevalence, Reproductive disorders, Season

Propensity of crossbred cows to a variety of diseases, including infertility, has been the major economical impediment (Dhindsa 2014), probably posing a huge threat to the existence of cattle husbandry as evinced from a 14.95% decadal reduction in cattle population (20th Livestock census of H.P. 2019). Investigation on the prevalence of different reproductive disorders is required in strategic designing of appropriate policies and measures to control reproductive disorders. Importantly, presence of one reproductive disorder may accentuate a simultaneous occurrence of another disorder in the same animal (multiple disorders). For instance, a large percentage of cows with urovagina are concomitantly affected with prolonged estrus/ delayed ovulation (Sood and Vatsayan 2017). Apart from the latter findings, the presence of multiple reproductive disorders has not been elaborated in cows in India. Hence, the objectives of the present study were to document the prevalence of single and multiple disorders along with the effect of age and season per se in the crossbred cows of North-Western Himalayan region.

The study included 1612 Jersey crossbred cows presented in 118 infertility camps (October 2013 to February 2021) in different rural North-Western Himalayan areas experiencing a monsoon influenced subtropical climate. On presentation, the past and present reproductive history was ascertained and was followed by a detailed reproductive examination to confirm and categorize pattern of congenital and acquired reproductive disorders (Arthur *et al.* 2001). Of the 1612 cows, 352 were excluded from statistical analysis as these were either reproductively normal, had gestational abnormalities or displayed a reduced detectable frequency. The noticeable infertility situations (single or multiple) were true anestrus (TA), silent estrus (SE), infantile genitalia (IG), metestral bleeding (MEB), prolonged estrous (PE), endometritis

Present address: ¹ Department of Veterinary Gynecology and Obstetrics, DGCN College of Veterinary and Animal Science, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh. [™]Corresponding author email: ankit. ahuja1947@gmail.com

(ENDO), repeat breeding (RB) and kinked cervix (KC). In terms of age, the animals (n=1260) were categorized into Group 1 (≤2.5 years; n=198), Group 2 (2.5-7 years; n=812) and Group 3 (≥7 years; n=250), respectively (Schuster *et al.* 2020). The seasons were categorized as spring (March to April), summer (May to June), monsoon (July to August) and prewinter- winter (September to February) (Jaswal *et al.* 2015).

The data was analysed using descriptive statistics and Pearson's chi-square test. Individual binomial logistic regression was also designed to predict the relative risk of occurrence of disorders for different age groups. For this, the reproductive disorder under deliberation was considered as predictor variable and Group 1 was taken as reference category with an odds ratio of 1.000. A difference of p < 0.05 (at least) was considered as significant. The analysis was done on SPSS version 24.0 (SPSSInc. Chicago, IL, USA).

Our findings of TA, ENDO, IG, RB and SE being most prevalent (Table 1) resembled to the presence of TA (40.5%) in H.P (Sood et al. 2012) and anestrus (31.8%) and RB (24.6%) in North-East (Khan et al. 2016) cows. In a subsequent study from Maharashtra, ENDO, anestrus and RB were prevalent in 36.6%, 22.3% and 21.3% cows, respectively (Ambore et al. 2009). In terms of multiple disorders [Fig. 1.(b)], there was a major co-existence of ENDO with PE and RB with MEB. The pattern of single reproductive disorders cited vide supra, suggested undernourishment and/or unscientific feeding as common etiologic denominator (Dutta et al. 2019). Moreover, the average cultivable land under fodder in H.P (< 0.5%) is considerably less than the national average (4.4%) (DOA 2009), thereby resulting in green fodder deficit of 57.4% (Radotra et al. 2015). Fodder based feeding regimens are important for a profitability dairy entrepreneurship (Policy Paper 59, 2013).

Although considered as different clinical entities (Arthuret al. 2001), ENDO can result into PE, as absorption of bacterial endotoxins from uterus into circulation disturbs neuro-endocrine functions (Sheldon et al. 2009) to cause ovulatory disorders (Williams et al. 2007). We recorded an ENDO-PE nexus in urovagina related infection in cows

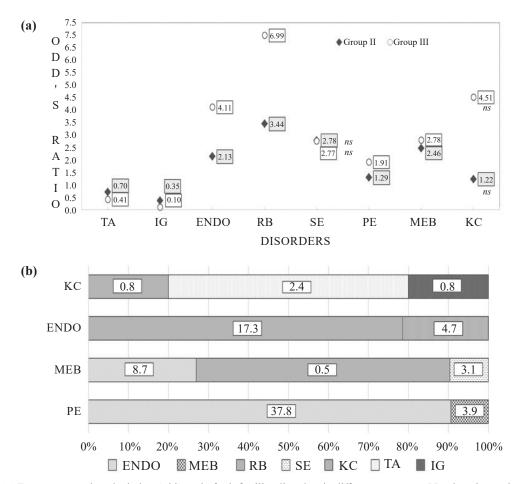


Fig. 1. (a) Forest scatter plots depicting Odd's ratio for infertility disorders in differet age groups. Numbers in text box indicates Odd's ratio where shaded text box corresponds to Group II and white text box corresponds to Group III (p<0.05; ns-non significant). (b) Sidebar depicting inter-relationship of infertility disorders. [KC, ENDO, MEB, PE depicts major infertility disorders simultaneously having other infertility disorders and numbers in text box indicates percentage of respective cases. ENDO-Endometritis, RB-Repeat breeding, KC-Kinked cervix, PE-Prolonged estrus, SE-Silent estrus, MEB- Metestrus bleeding, TA-True anestrus and IG-Infantile genitalia]

(Sood and Vatsayan 2017). From a clinical perspective, it would be intriguing to know if endometritis treatment restores normalcy of estrus duration; if so, the findings will be clinically vital as the need for PE treatment can be avoided in cows treated for ENDO. Another important association between MEB and RB also needs a mention (Fig. 1); MEB in cows is considered physiological (Roberts 1986). To the contrary, our extensive clinical experience on cattle infertility shows that nearly 67% of the RB cows exhibiting MEB conceived following an exogenous administration of progesterone 72 h after AI (Sood P; unpublished data). Hence, a progesterone deficiency or disturbed progesterone: estrogen ratio in the RB cows with MEB could be speculated, which although needs a scientific validation.

In terms of age, Group 2 cows were highly susceptible for presence of different single as well as multiple disorders; RB was, however, most common in Group 3. Interestingly, PE with ENDO and RB with MEB were more prevalent as multiple than single disorders in Group 2 and 3, which also had a higher likelihood of their presence [Table 1 and Fig. 1.(b)]. Likewise, the relative risk of presence of TA

and IG was higher in Group 1 [Fig. 1.(a)]. Presence of ENDO (Kim and Kang 2003), PE (Fonesca *et al.* 1983) and RB (Asaduzzaman *et al.* 2016) is known to increase with aging of cows. More infertility evidence during pre-winter to winter season, considered as a lean period in terms of fodder production, justifies the findings per se (Table 1).

From the findings of this study it can be concluded that TA still holds the top most position among the prevalent reproductive disorders in the state. This demands an urgent need to strategize different policies and measures ensuring nutritional security in cows. Additionally, the depiction of simultaneous occurrence of more than two reproductive disorders in same animal is interesting and paves way for more potential future studies.

SUMMARY

A total of 1612 cows during 118 rural infertility camps (October 2013 to February 2021) in Himachal Pradesh were examined for prevalence of single and multiple reproductive disorders. Subsequently, prevalence of reproductive disorder was analysed from a perspective of age (Group 1: ≤2.5 years; Group 2: 2.5-7 years; Group 3: ≥7

TD 11 1			1	C : C .:1:4	1' 1
Table I	 Age-wise and 	season_wise	nrevalence i	at interfility	/ disorders
Table 1	. I igo-wise and	SCUSUII-WISC	prevalence v	or milermint,	districts

Reproductive disorder	Single / Multiple	Age-wise prevalence		Overall	Season-wise prevalence				
		Group 1 (n=198)	Group 2 (n=812)	Group 3 (n=250)		Winter (n=492)	Summer (n=72)	Monsoon (n=222)	Post-monsoon (n=474)
True anestrus	Single	19.3 (105)	65.8 (357)	14.3 (78)	39.4	44.6 (242)	3.7 (20)	11.0 (60)	40.7 (221)
T C 4'1	Multiple	-	0.4 (2)	0.2 (1)	$(543)^{*\Omega}$	47.4 (72)	5.2 (0)	0.1 (1.4)	20.2 (50)
Infantile genitalia	Single Multiple	33.8 (52) 0.7 (1)	59.7 (92) -	5.8 (9)	$11.1 (154)^{*\Omega}$	47.4 (73)	5.2 (8)	9.1 (14)	38.3 (59)
Endometritis	Single Multiple	3.9 (10) 3.9 (10)	42.2 (108) 19.2 (49)	19.9 (51) 10.9 (28)	18.4 (256)* ^Ω	27.7 (71)	9.8 (25)	25.0 (64)	37.5 (96)
Repeat breeding	Single	3.5 (5)	40.8 (58)	21.1 (30)	10.2 $(142)^{*\Omega}$	31.7 (45)	7.7 (11)	24.6 (35)	35.9 (51)
Silent estrus	Multiple Single	1.5 (2) 6.7 (7)	8.5 (12) 69.5 (73)	24.6 (35) 20.0 (21)	$7.5 (105)^{*\Omega}$	48.6 (51)	16.2 (17)	9.5 (10)	25.7 (27)
Prolonged	Multiple Single	1.3 (1)	1.9 (2) 24.7 (19)	1.9 (2) 5.2 (4)	5.5 (77) ^Ω	18.2 (14)	11.7 (9)	45.5 (35)	24.7 (19)
estrus Metestrus	Multiple Single	11.6 (9) 5.7 (5)	35.1 (27) 32.2 (28)	22.1 (17) 9.2 (8)	6.3 (87) ^Ω	27.6 (24)	9.2 (8)	29.9 (26)	33.3 (29)
bleeding	Multiple	1.2(1)	35.6 (31)	16.1 (14)					
Kinked cervix	Single	4.4(1)	21.7 (5)	26.1 (6)	1.6 (23)#	43.5 (10)	-	34.8 (8)	21.7 (5)
	Multiple	4.4 (1)	21.7 (5)	21.7 (5)					
Total		15.2 (210)	62.5 (868)	22.3 (309)	100 (1387)	38.2 (530)	7.07 (98)	18.1 (252)	36.6 (507)

^{*,} significantly prevalent infertility disorders (p<0.05); $^{\#}$, significantly least prevalent infertility disorder (p<0.05); $^{\Omega}$, marks the infertility disorders significantly influenced by season (p<0.05).

years) and season (summer, monsoon, post-monsoon and winter). In descending order, true anestrus, endometritis, infantile genitalia, repeat breeding and silent estrus were most prevalent single disorders. However, prolonged estrus with endometritis (62.3%) and metestral bleeding with repeat breeding (29.8%), respectively were concomitantly present as multiple disorders (in the same set of cows). Group 2 cows were highly susceptible for the presence of single and multiple disorders; whereas the disorders were most prevalent during pre-winter-winter and minimum during summer season.

ACKNOWLEDGEMENTS

All the authors and resources have been duly acknowledged in the article.

REFERENCES

20th Livestock Census of Himachal Pradesh, India. 2019. Government of Himachal Pradesh. Department of Animal Husbandry, Pashudhan Bhawan, Shimla [2021 December 27]; Available from: http://hpagrisnet.gov.in/hpagris/AnimalHusbandry/Default.aspx ?SiteID=3&PageID=1380.

Ambore M N, Totewad G D, Naik P M and Dhoble R L. 2009. Incidence of various reproductive disorders in cows of Parbani district. *Indian Journal of Animal Reproduction* **30**: 61–62.

Arthur G H, Noakes D E, Pearson H and Parkinson T J. 2001.

Veterinary Reproduction and Obstetrics. 8thedn, pp. 441-464.

W B Saunders Co. Ltd., London.

Asaduzzaman K M, Bhuiyan M M U, Bhattacharjee J and Rahman M M. 2016. Prevalence of repeat breeding and its effective treatment in cows at selected areas of Bangladesh. *Bangladesh Journal of Veterinary Medicine* **14**: 183–90.

Department of Agriculture (DOA). 2009. State agricultural plan. Government of Himachal Pradesh, Vol. XII.Available from

https://hpbiodiversity.gov.in.

Dhindsa S S. 2014. Dairy herd fertility: Role of various factors and associated economics. *Adoption of Newer Reproductive Techniques in Education, Diagnostics and Research*. Ludhiana, India. Guru Angad Dev Veterinary and Animal Sciences University. pp. 61-69.

Dutta L J, Nath K C, Deka B C, Bhuyan D, Borah P, Saikia G K, Bora D P, Deka R and Bharali D. 2020. Identification and clinico-gynaecological characterization of reproductive disorders in crossbred cows under field conditions. *Indian Journal of Animal Research* 54(5): 593–600. Doi: 10.18805/ ijar.B-3810.

Fonesca F A, Britt J H, McDaniel B T, Wilk J C and Rakes A H. 1983. Reproductive traits of Holsteins and Jerseys. Effects of age, milk yield, and clinical abnormalities on involution of cervix and uterus, ovulation, estrous cycles, detection of estrus, conception rate, and days open. *Journal of Dairy Science* 66: 1128–47.

Jaswal A K, Bhan S C, Karandikar A S and Gujar M K. 2015. Seasonal and annual rainfall trends in Himachal Pradesh during 1951-2005. *Mausam* 66(2): 247–64. Doi: 551.577.3 (540.13).

Khan M H, Manoj K and Pramod S. 2016. Reproductive disorders in dairy cattle under semi-intensive system of rearing in North-Eastern India. *Veterinary World* **9**(5): 512–18. Doi: 10.14202/vetworld.2016.512-518.

Kim I H and Kang H G. 2003. Risk factors for postpartum endometritis and the effect of endometritis on reproductive performance in dairy cows in Korea. *Journal of Reproductive Development* **49**: 485–91.

Policy Paper 59. *Livestock infertility and its management*. 2013. Published by National Academy of Agricultural Sciences, New Delhi, India. pp. 1-20. Available from http://naas.org.in.

Radotra S, Dev I, Kanan A and Singh B. 2015. Assessment of Grasslands and Livestock Production in Kangra Valley of Himachal Pradesh. *International Grassland Congress*

- *Proceedings*. New Delhi, India. Paper ID-744 Available from https://uknowledge.uky.edu/igc/23/1-1-2/7.
- Roberts S J. 1986. Veterinary obstetrics and genital diseases. *Theriogenology* (3rdedn) pp. 434-559.
- Schuster J C, Barkema H W, De Vries A, Kelton D F and Orsel K. 2020. Invited review: Academic and applied approach to evaluating longevity in dairy cows. *Journal of Dairy Science* 103: 11008–24. https://doi.org/10.3168/jds.2020-19043.
- Sheldon I M, Cronin J, Goetze L, Donofrio G and Schuberth H J. 2009. Defining post-partum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in
- cattle. Biology of Reproduction 81: 1025-32.
- Sood P and Vatsayan S. 2017. Urovagina in chronic repeat breeder cows. *Indian Veterinary Journal* **94**(7): 9–11.
- Sood P, Singh M, Vashishtha V and Barman P. 2012. Prevalence of infertility disorders in Jersey crossbred cows in North-Western Himalaya of Himachal Pradesh. *Himachal Journal of Agriculture Research* **38**(2): 122–24.
- Williams E J, Fischer D P, Noakes D E, England G C W, Rycroft A, Dobson H and Sheldon I M. 2007. The relationship between uterine pathogen growth density and ovarian function in the post-partum dairy cow. *Theriogenology* **68**: 549–59.