Polymorphisms of aquaporin 7 (AQP7) gene in Madura bulls (Bos indicus)

HARTATI^{1™} and WIDYA PINTAKA BAYU PUTRA²

Research Center for Animal Husbandry, National Research and Innovation Agency, Bogor 16915, Indonesia

Received: 7 July 2022; Accepted: 5 September 2022

Keywords: AQP7, Madura bulls, Mutation, PCR-RFLP, Polymorphisms

Madura cattle (Bos indicus) are one of the Indonesia's native cattle from Madura Island. This cattle has been decided as the Indonesian native cattle through decision of the Indonesian Ministry of Agriculture No: 3735/Kpts/ HK.040/11/2010 (Kementan 2010). The Madura cattle was kept by the farmers for meat production and drought purposes. Besides this, cattle are also maintained for bull racing (Karapan festival) and cow's contest (Sonok festival). As the beef cattle in Indonesia, the Madura cattle have to reach the adult body weight (20 months of age) of 192.11±63.71 kg in male and 190.57±61.24 kg in female (Hartati and Putra 2021). In addition, the carcass weight of Madura cattle (10-24 months of age) was 227.67±11.59 kg in male and 211.88±46.66 kg in female (Prihandini et al. 2020). Recently, the frozen sperm (straw) of Madura bull was produced in many National Artificial Insemination Centers of Indonesia. Generally, the bulls for straw production were selected based on Indonesian National Standard (SNI) for sperm quality (SNI 4869.1 2017) and Madura breed (SNI 7651.2 2013). However, the candidate bulls can be evaluated and selected based on their molecuar genetic information mainly on genes governing fertility. The aquaporin 7 (AQP7) gene is one of candidate genes used for molecular selection for sperm quality traits in bulls (Ma et al. 2011, Kumar et al. 2014).

AQP7 gene is important to produce AQP7 protein in the germ cell that is responsible for spermatid development in mammals (Ishibashi et al. 1997, Kageyama et al. 2001). The bovine AQP7 gene (GenBank: NC_ 037335.1) is located at chromosome 8 and consist of nine exons. Recently, two mutation sites of c.N8S (A264G) and c.E36Q (G371C) were detected in the bovine AQP7 gene at exon 2 and exon 3 regions, respectively (Ma et al. 2011, Kumar et al. 2014). In buffalo, 6 mutation sites in exonic region (Kumari et al. 2018a) and 15 mutation sites in intronic region were detected in the bubaline AQP7 gene

Present address: ¹Research Center for Animal Husbandry, Research Organisation for Agriculture and Food, National Research and Innovation Agency, Bogor 16915, Indonesia. ²Research Center for Applied Zoology, National Research and Innovation Agency, Bogor 16911, Indonesia. [□]Corresponding author: hartatilolitsapi21@gmail.com

with SSCP analysis (Kumari et al. 2018b). The study to evalute the polymorphism in AQP7 gene of Madura bulls has not been reported. Hence, this study was carried out to identify the polymorphism in AQP7 gene of Madura bulls raised at Indonesian Beef Cattle Research Station (IBCRS) with PCR-RFLP method.

Total 83 blood samples of Madura bulls (*Bos indicus*) at Indonesian Beef Cattle Research Station (IBCRS) were used in this study for DNA extraction with Zymo Biomics DNA Kits (Zymo Research, USA) following the manufacturer's instruction. The PCR analysis was performed in 20 μ L volume of PCR sample including 3 μ L of DNA sample, 0.4 μ L of each primer (1 pmol), 10 μ L of PCR mix (Bioline, USA) and 6.2 μ L of double distilled water (DDW).

The exon 2 region of AQP7 gene (221 bp) was amplified with a primer pair of Forward: 5'- TGA GGT CTG ATG GGA ATG AGG -3' and Reverse: 5'- CTG CCA TGA GGG AGG AGC TA -3'. The exon 3 region of AQP7 gene (199 bp) was amplified with a primer pair of Forward: 5'-TCA CCT GAT CTC ATT TCT GCC -3' and Reverse: 5'-AGT CTG CTC ACC CTG TAC CC -3' (Ma et al. 2011). The PCR thermal profile in each gene consisted of predenaturation at 95°C for 1 min, followed by 35 cycles of denaturation at 95°C for 15 sec, annealing at 60.4°C for 30 sec, extension at 72°C for 10 sec and final extension at 72°C for 5 min. The RFLP analysis was performed in 10 μL volume of reaction mix/sample/gene including 3 µL of PCR product, 0.2 µL of restriction enzyme, 1 µL of 10× buffer Tango and 5.8 µL of DDW. A TaaI restriction enzyme (ACN*GT) was used to detect two mutation sites of c.N8S and c.E36Q in AQP7 gene. Therefore, the genetic diversity parameters such as genotypic frequency, allelic frequency, observed heterozygosity (H_o), expected heterozygosity (H₂), polymorphic informative content (PIC), number of effective allele (n₂) and Chi-square (χ^2) values were computed according to Nei and Kumar (2000). The general linear model of SAS software (SAS Institute Inc., USA) was employed to associate the high polymorphic SNPs with four semen quality traits (sperm volume, progressive motility, sperm concentration and daily sperm viability).

In the present study, two mutation sites of c.N8S (exon 2)

and c.E36Q (exon 3) were observed through PCR-RFLP analysis. Therefore, three genotypes of AOP7/TaaI gene were identified according to the c.N8S and c.E36Q polymorphisms (Figs 1 and 2). A mutation of c.N8S in

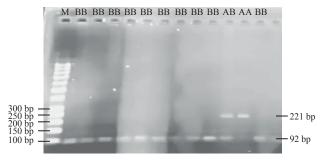


Fig. 1. RFLP result in AQP7/TaaI gene to detect a mutation site of c.N8S in Madura bulls on 2% of agarose gel showed polymorphic with three genotypes of AA (221 bp), BB (92 bp) and AB (221 bp & 92 bp). M: DNA ladder 50 bp.

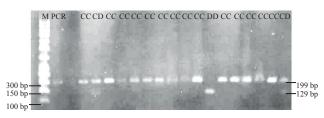


Fig. 2. RFLP result in AQP7/TaaI gene to detect a mutation site of c.E36Q in Madura bulls on 2% agarose gel showed polymorphic with three genotypes of CC (199 bp), DD (129 bp) and CD (199 bp & 129 bp). M: DNA ladder 50 bp.

AQP7/TaaI gene of animal studied exhibited the moderate PIC value (0.30) as shown in Table 1. Meanwhile, a mutation of c.E36Q in AQP7/TaaI gene revealed the low PIC value (0.07). Low PIC value in mutation of c.E36Q indicated that this mutation can not be used for the molecular selection because of low genetic diversity.

Botstein et al. (1980) stated that the PIC value has three categories viz. low (<0.30), moderate (0.30-0.50) and high (>0.50). Ma et al. (2011) and Kumar et al. (2014) obtained two genotype of CC and CD in AQP7/TaaI gene (c.E36Q) in bulls with the CC as the common genotype. Therefore, CC genotype (c.E36Q) has the higher sperm volume,

sperm motility and post-thaw motility traits in Frieswal bulls (Kumar et al. 2014), frozen sperm viability and frozen sperm motility traits in Bos taurus bulls rather than CD genotype. Ma et al. (2011) and Kumar et al. (2014); reported two genotypes of AA and AB in AQP7 gene (c.N8S) in bulls with AA as the common genotype. Thus, the AA genotype in AQP7/TaaI (c.N8S) exhibited higher sperm motility in Frieswal (Kumar et al. 2014) and frozen acrosome integrity ratio and frozen motility in Bos taurus bulls (Ma et al. 2011) than AB genotype. Interestingly, the BB (c.N8S) and DD (c.E36Q) genotypes of AQP7/TaaI were observed in Madura bulls with very low frequency and could be included as a rare genotype. In this study, 15 selected Madura bulls were used for the association study between c.N8S polymorphism and sperm quality traits. These bulls was selected based on phenotypic traits (SNI 7651.2 2013) and estimated breeding value (EBV) of growth traits. Unfortunately, there were no significant association between mutation of c.N8S with sperm quality traits of Madura bulls as shown in Table 2. However, this results need to confirm with the large number of animal samples and sperm quality data.

SUMMARY

In this study, a PCR-RFLP method was employed to investigate the evidence of two mutation sites in exon 2 (c.N8S) and exon 3 (c.E36Q) regions of AQP7/TaaI gene in Madura bulls. Both mutation sites were polymorphic with presence of three genotypes. However, a mutation of c.N8S had the moderate PIC value (>0.30). Hence, it can be suggested that the mutation of c.N8S can be used for the genetic marker of sperm quality traits in Madura bulls. However, the association study with 15 selected Madura bulls revealed that there are no significant association between c.N8S and sperm quality traits. However, the mutation of c.N8S in animal studies was not associated with sperm quality traits of sperm volume, progressive motility sperm concentration and daily sperm viability. In future, a further research with large number of animal samples and records data are important to obtain the genetic markers for productivity traits accurately.

Table 1. Genetic diversity in AQP7/TaaI gene from 83 Madura bulls

Mutation	Genotypic frequency		Allelic frequency		H _o	H _e	n _e	PIC	χ^2	
c.N8S	AA (0.64)	BB (0.13)	AB (0.23)	A (0.75)	B (0.25)	0.23	0.37	1.59	0.30	12.28
c.E36Q	CC (0.95)	DD (0.02)	CD (0.02)	C (0.96)	D (0.04)	0.02	0.07	1.07	0.07	35.52

 H_o , observed heterozygosity; H_e , expected heterozygosity; n_e , number of effective allele; PIC, polymorphic informative content; χ^2 , Chi-square.

Table 2. Association between AQP7/TaaI (c.N8S) and sperm quality traits of selected Madura bulls

Sperm quality	Genotype (n)					
	AA	AB	BB	_		
Sperm volume (mL)	6.42±0.68 (11)	6.95±0.78 (2)	6.95±0.78 (2)	0.449		
Progressive motility (%)	47.18±19.63 (11)	21.50±12.16 (2)	48.00(1)	0.253		
Sperm concentration (×10 ⁶)	1077.50±899.57 (11)	754.00±724.08 (2)	697.00(1)	0.839		
Daily sperm viability (%)	66.18±15.44 (11)	40.50±14.85 (2)	68.00(1)	0.134		

n, number of observation.

ACKNOWLEDGEMENT

This study is the part of research project number 018.09. KB.4585.SDA.502.051.A1 and funded by the Indonesian Agency for Agricultural Research and Development (IAARD). Authors thanks Sri Putri R and Faridha Diyana K for their help in the laboratory analysis.

REFERENCES

- Botstein D, Whie R L, Skolnick M and Davis R W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphism. *American Journal of Human Genetics* **32**(3): 314-31.
- Hartati and Putra W P B. 2021. Predicting the growth curve in Madura cattle. *Kafkas Universitesi Fakultesi Veteriner Dergisi* **27**(4): 431-37.
- Ishibashi K, Kuwahara M, Gu Y, Kageyama Y, Tohsaka A, Suzuki F, Marumo F and Sasaki S. 1997. Cloning and functional expression of a new water channel abundantly expressed in the testis permeable to water, glycerol, and urea. *Journal of Biological Chemistry* **272**(33): 20782-86.
- Kageyama Y, Ishibashi K, Hayashi T, Xia G, Sasaki S and Kihara K. 2001. Expression of aquaporins 7 and 8 in the developing rat testis. *Andrologia* 33(3): 165-69.
- Kementan. 2010. Keputusan menteri pertanian tentang penetapan

- rumpun sapi Madura. http://bibit.ditjenpkh.pertanian.go.id/sites/default/files/Sapi%20Madura.pdf; accessed 15 May 2022.
- Kumar S, Deb R, Singh U, Ganguly I, Mandal D K, Singh R, Sharma S, Sengar G, Singh R, Kumar M and Sharma A. 2014. SNPs at exonic region of aquaporin-7 (AQP7) gene may affect semen quality parameters among crossbred bulls. *Journal of Genetics* 93(3): 108-12.
- Kumari R, Kerekoppa R P, Kumar R, Divya P, Sinha B, Basavaraju M and Rao A. 2018a. Association of aquaporin 7 gene variants with semen quality in Murrah buffaloes. *Veterinarski Arhiv* 88(6): 749-61.
- Kumari R, Ramesha K P, Kumar R, Divya P and Sinha B. 2018b. Genetic polymorphism of aquaporin 7 gene and its association with semen quality in Surti bulls. *Buffalo Bulletin* 37(2): 191-98.
- Ma T H, Liu J F, Zhao R F, Jiang H, Dai L S, Zhao Y M, Zhao Z H and Zhang J D. 2011. Association analysis of aquaporin 7 (AQP7) gene variants with semen quality and fertility in bulls. *Turkish Journal of Animal Science* **35**(1): 63-66.
- Nei M and Kumar S. 2000. Molecular evolution and phylogenetics. Oxford University Press.
- Prihandini P W, Maharani D and Sumadi. 2020. Body weight, body measurements and slaughter characteristics of Madura cattle raised in Pamekasan District, East Java Province, Indonesia. *Biodiversitas* 21(8): 3415-21.