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ABSTRACT

In general, statistical models for estimation of heritability follow certain assumptions, i.e. random components
including the error follow a normal distribution and are identically independently distributed. But in the practical
situation, sometimes these assumptions are violated. Thus, from the perspective of plant and animal breeding
programs, estimating various genetic variances and inferring their inheritance based on estimations of various
genetic parameters is studied. In the present study, estimation of heritability for the half-sib model is considered
with correlated error, and sire and error follow a range of different distributions like normal, Cauchy, beta, and
t- distribution. Two error structures AR(1) and AR(2) was considered and observations for correlated and uncorrelated
cases were generated using a one-way classification model. The developed procedure was applied using the generated
observations using simulation.Various heritability ranges, such as high and low (0.5, 0.1), Half-sib AR(1), varied
sample sizes (100 and 500), and various correlations of errors between AR(1) and AR, were used to obtain the data
(2). p=-1 to +1. It was noticed that correlated errors a significant effect on heritability estimation and are highly

affected by the distribution it follows.
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In many real-word situations, observations generated
from plant and animal breeding are not always randomly
distributed, sometimes correlated observations may occur
too. The classical assumption of independence between
observations is violated in the presence of highly correlated
patterns in the data. The information on genetic components
of variances of the important characters is the prime
interest of plant and animal breeders. In addition to the
variability explained by various causes, it is demonstrated
that in the presence of correlated observations, something
more from the error components can be organized to
provide a truly random error component. To get at an
independent or truly random error model, it is necessary
to investigate a model in which structural variation owing
to error may be further accounted for. As a result, the use
and development of statistical techniques are advocated, in
which the amount of variability due to various causes at the
genetic and phenotypic level can be assessed scientifically,
factors can be compared with a high degree of precision,
and breeding values can be predicted more efficiently. In
a time series, serial correlation occurs when a variable and
a lagged version of itself are observed to be correlated
with one another over time. The number of immediately
preceding observations in an autoregressive series that
are used to predict the value at the current observation is
defined as the order of the autoregressive models. First-
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order and second-order autoregressive models i.e. AR(1)
and AR(2) error structures have been considered. Fisher
(1925) made a significant addition to variance component
models by proposing the analysis of the variance technique
of estimation. Durbin and Watson (1950) gave a procedure
to check the presence of first-order autocorrelation
disturbance in the error term. Diblasi and Bowman (2001)
proposed a test statistic and a graphical method, which
can assess the evidence for the presence of any spatial
correlation in the data. Singh er al. (2006) estimated
variance components when errors are correlated in half-sib
data. Costa et al. (2009) estimated genetic parameters of
test day fat and protein yields using autoregressive multiple
lactation animal models. As a result, development of a
statistical approach for estimating genetic parameters when
errors are correlated is an important research topic in the
field of statistical genetics. The correlation present in the
observations is ignored in the classical analysis approach
of field experimental data. We cannot ignore the correlation
effect when there are significantly correlated trends present
in the data. Therefore, it becomes vital to create appropriate
statistical techniques for these circumstansec. Henderson
(1963) was the first to formally develop the general theory
of mixed model techniques applied to animal breeding
(1963). Using an autoregressive test day multiple lactations
(AR) animal model, Zuk et al. (2011) studied a technique
that is not inflated by genetic interactions for estimating
heritability from isolated populations. Bernal-Vasquez
et al. (2014) used ad hoc method to estimate heritability
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in genomic prediction study proposed by Piepho and
Mohring (2007). Bernal-Vasquez et al. (2016) investigated
and assessed several techniques for identifying potential
outliers in genomic study and applied to hybrid rye genomic
prediction programme.

Paul and Wahi (2016) studied the estimation of
heritability under correlated errors. Lourencgo et al. (2020)
investigated robust estimation of heritability and predictive
accuracy in plant breeding using simulation and empirical
data evaluation. Roy et al. (2022) studied the estimation
of heritability of Karan Fries cattle using the Bayesian
procedure.

Our present investigation was used to develop a
framework for the estimation of heritability under the half-
sib model using autocorrelated structures. The developed
approach was compared using estimation procedures
such as ANOVA (Analysis of Variance), ML (Maximum
Likelihood), REML (Restricted Maximum Likelihood),
and MIVQUE (Minimum Variance Quadratic Unbiased
Estimation).

MATERIALS AND METHODS

One of the basic criteria for studying the statistical
properties of genetic parameters is to simulate statistical—
biological models with known population parameters.
We limit ourselves in this study to estimating heritability
through sib analysis. Data for correlated and uncorrelated
cases are generated using one-way classification model. In
the light of the weaknesses (negativity, lack of distributional
properties) of ANOVA estimators developed earlier, other
approaches namely MLREML, MIVQUE , etc. emerged.

Models for heritability: Two important models, namely
one-way and two-way nested models ( Half-Sib model) for
the estimation of heritability given by Roningen (1974) are
used in this study. A brief discussion of these Monte Carlo
methods is as follows:

One Way Classification

The one-way classification or half-sib analysis model
can be written as follows:

V= htste; i=1,2,....s; j=L,2,...p (1)

where, Vi is the observed value on the progeny of the
J™ dam mated to the i"sire; p is the general mean; s, is the
effect due to /" sire; e; is the random effect associated with
Jhprogeny of the i sire.

The simulation model (Ronningen 1974) to generate
half-sib model was carried out as follows:

yy=u+od+o.4q; )
Where a' and aj’. are random standard normal values.
The value of heritability is given by
4(55
o+

(552 = sire variance components, c§ = error variance components

h?=

Correlated Case
Suppose that sires are independent but within sire,
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progenies are correlated. Further, assume that the correlated
errors follow AR(1) i.e.,

e; = pe (j-1)+ n; »17; =random error components

here d
Y p1<a varly )= 2 M g < DN (L) for 51

Generate e using the equation (3). Then, we can
generate the correlated observations Vi 's by using the
following modiﬁqd simulation model:

Vi =p+oa,+oe

Notations have the same meaning as defined above, and
e 's are the values generated from equation (3). In the
case of AR(2)

e, = pel—1) +p2€i(j—2)+77ij, n,= random error components

Similarly, we can generate the correlated data for
different error structures other than AR(1) e.g., AR(2), the
function of a distance, etc.

RESULTS AND DISCUSSION

Data was generated using different heritability ranges
i.e. high and low (0.5, 0.1), Half-sib AR(1):different
sample size 100 and 500 and different correlation of errors
AR(1) and AR(2). p=-1 to +1. The simulated observations
were studied and variance components (Searle 1992) were
estimated using SAS varcompproc. ANOVA, ML, REML,
and MIVQUE methods were used. Estimates of heritability
were obtained using the above formulae are given in
different tables.

Half-sib estimate of heritability and MSE values in
case of correlated errors (AR(1)) and different sample
sizes for the different parametric values of heritability:The
data was generated from a population with low and high
heritability for various sample sizes and family structures.
The heritability estimates along with MSE (Means Square
Error) were obtained and shown in Table 1. It was seen that
value of estimates of heritability changed from negative
to positive when p changes from -1 to +1. MSE value
decreased up to p=0, then again increased p is positive. For
p=-1to p=-0.5, the estimate of heritability is 0 in the case
of ML, REML, and MIVQUE methods and MSE values
are not changing. Estimated value of heritability increased
from p=-.4 to p=1. MSE values showed the same trend.
With increasing sample sizes, it was noticed that the MSE
values decreased. Half-sib estimate of heritability and MSE
values in case of correlated errors (AR(2)) and different
sample sizes in case heritability of 0.10 are presented in
Supplementary Table 1.

Half-sib estimate of heritability and MSE values in
case of correlated errors (AR(2)) and different sample
sizes for the different parametric value of heritability:The
data was generated from a population with low and high
heritability for various sample sizes and family structures.
The heritability estimates along with MSE (Mean Square
Error) were obtained and shown in Supplementary Table
2 and Table 3. It was noticed that in the case of AR(2), if
fixing AR(1) value changes AR(2) values, the MSE value
decrease with increasing the correlation value in general.
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Table 1. Half-sib estimate of heritability and MSE values in case of correlated errors (AR(1)) and different sample sizes for parametric
value of heritability 0.10

Methods
r ANOVA ML REML MIVQUE
P=100 P=500 P=100 P=500 P=100 P=500 P=100 P=500
-1 MSE 0.2293 0.2311 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
(ht) -0.3811 -0.3830 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.9 MSE 0.2041 0.2067 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
(ht) -0.3539 -0.3566 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.8 MSE 0.1731 0.1764 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
(ht) -0.3177 -0.3215 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.7 MSE 0.1416 0.1454 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
(ht) -0.2773 -0.2819 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.6 MSE 0.112 0.116 0.010 0.010 0.010 0.010 0.010 0.010
(ht) -0.2343 -0.2399 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
-0.5 MSE 0.0845 0.0887 0.0095 0.0095 0.0095 0.0095 0.0095 0.0095
(ht) -0.189 -0.1954 0 0 0 0 0 0
-0.4 MSE 0.0601 0.0642 0.0095 0.0095 0.0094 0.0094 0.0094 0.0094
(ht) -0.1408 -0.1481 0.0004 0.0004 0.0005 0.0005 0.0005 0.0005
-0.3 MSE 0.0392 0.0642 0.0092 0.0095 0.0091 0.0094 0.0091 0.0094
(ht) -0.0889 -0.1481 0.0024 0.0004 0.0032 0.0005 0.0032 0.0005
-0.2 MSE 0.0226 0.0258 0.0078 0.0080 0.0076 0.0079 0.0076 0.0079
(ht) -0.0320 -0.0408 0.0163 0.0149 0.0186 0.0171 0.0186 0.0171
-0.1 MSE 0.0118 0.0142 0.0065 0.0068 0.0064 0.0068 0.0064 0.0068
(ht) 0.0314 0.0220 0.0465 0.0430 0.0513 0.0476 0.0513 0.0476
0 MSE 0.0095 0.0109 0.0078 0.0078 0.0083 0.0083 0.0083 0.0083
(ht) 0.1037 0.0939 0.1006 0.0958 0.1082 0.1031 0.1082 0.1031
0.1 MSE 0.0201 0.0204 0.0180 0.0178 0.0200 0.0197 0.0200 0.0197
(ht) 0.1879 0.1779 0.1792 0.1715 0.1887 0.1806 0.1887 0.1806
0.2 MSE 0.0515 0.0506 0.0472 0.0464 0.0515 0.0506 0.0515 0.0506
(ht) 0.2884 0.2784 0.2775 0.2681 0.2884 0.2787 0.2884 0.2787
0.3 MSE 0.1176 0.1157 0.1096 0.1079 0.1176 0.1157 0.1176 0.1157
(ht) 0.4114 0.4018 0.3991 0.3896 0.4114 0.4018 0.4114 0.4018
0.4 MSE 0.2434 0.2409 0.2301 0.2279 0.2434 0.2409 0.2434 0.2409
(ht) 0.5659 0.5570 0.5520 0.5432 0.5659 0.5570 0.5659 0.5570
0.5 MSE 0.4753 0.4733 0.4542 0.4524 0.4753 0.4733 0.4753 0.4733
(ht) 0.7647 0.7571 0.7490 0.7415 0.7647 0.7571 0.7647 0.7571
0.6 MSE 0.8976 0.8980 0.8651 0.8656 0.8976 0.8980 0.8976 0.8980
(ht) 1.0252 1.0195 1.0077 1.0021 1.0252 1.0195 1.0252 1.0195
0.7 MSE 1.6534 1.6585 1.6050 1.6103 1.6534 1.6585 1.6534 1.6585
(ht) 1.3663 1.3632 1.3472 1.3442 1.3663 1.3632 1.3663 1.3632
0.8 MSE 2.9268 2.9386 2.8600 2.8719 2.9268 2.9386 2.9268 2.9386
(ht) 1.7950 1.7948 1.7752 1.7750 1.7950 1.7948 1.7950 1.7948
0.9 MSE 4.7491 4.7670 4.6678 4.6858 4.7498 4.7670 4.7491 4.7670
(ht) 2.268 2.2703 2.2491 2.2515 2.268 2.2703 2.268 2.2703
1 MSE 6.54006 6.5607 6.4551 6.4753 6.5406 6.5607 6.5406 6.5607
(ht) 2.6502 2.6538 2.6333 2.6370 2.6502 2.6538 2.65024 2.6538

1, Correlation coefficient; ANOVA, Analysis of Variance; ML, Maximum Likelihood; REML, Restricted Maximum Likelihood;
MINQUE, Minimum Variance Quadratic Unbiased Estimation; MSE, Mean squared error; P, Sample size.

Sometimes haphazard trends are noticed. We found some
good combination of AR(1) and AR(2) values (-0.6,0.4),
(-0.5,-0.1), (0, 0), (0.1,0.1) and (0.1, 0.5) combinations
gave better estimates of heritability. With increasing sample
sizes, the MSE values decreased.

Data were generated using different heritability values
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i.e. high, moderate, and low (0.5, 0.25, 0.1) Half-sib
AR(1): and different sample size 100 and 500 and different
correlation of errors A(1) and AR(2) i.e. in the range p=-1
to +1. After generating the data, variance components were
estimated using SAS ProcVarcomp. ANOVA, ML, REML,
and MIVQUE methods were used. Half-sib estimate of
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Table 2. Half-sib estimate of heritability and MSE values in case
of correlated errors (AR(1)) and different sample sizes for the
parametric value of heritability 0.10 when the sire is distributed
as Normal but error follows a Beta distribution
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Table 3. Half-sib estimate of heritability and MSE values in case

of Correlated errors (AR(1)) and different sample sizes for the

parametric value of heritability 0.10 when the sire is distributed
as Normal but error follows Cauchy distribution

Heritability Correlation Estimateid M.S.E Heritability Correlation Estimated MS.E
(Hl) Coefficient (RC)  Heritability (Hl) Coefficient (RC)  Heritability o
0.1 -0.7 -0.779 0.780 0.3 -0.7 -0.740 1.196

0.000 0.009 0.000 0.089
0.000 0.009 0.000 0.089
0.000 0.009 0.000 0.089
0.1 -0.3 -0.323 0.215 0.3 -0.3 -0.427 0.589
0.004 0.005 0.005 0.090
0.006 0.007 0.006 0.090
0.006 0.007 0.006 0.090
0.1 0 0.099 0.049 0.3 0 0.015 0.095
0.095 0.018 0.035 0.076
0.107 0.020 0.044 0.072
0.107 0.020 0.044 0.072
0.1 0.3 0.578 0.287 0.3 0.3 -0.427 0.589
0.554 0.263 0.005 0.090
0.579 0.287 0.006 0.090
0.579 0.287 0.006 0.090
0.1 0.7 1.315 1.532 0.3 0.7 1.390 1.634
1.288 1.467 1.365 1.579
1.315 1.532 1.390 1.634
1.315 1.532 1.390 1.634

heritability and MSE values in case of correlated errors
(AR(1))and AR(2) different sample sizes for the parametric
value of heritability 0.10, 0.25, 0.5 for different sample sizes
(100 and 500). The expected mean sum of squares due to
error is overestimated when the correlation is negative and
they increase as the degree of correlation increases. But the
expected mean sum of the square is underestimated if errors
are positively correlated and they decrease with an increase
in the degree of correlation and approach to 0 as p tends to
unity. On the other hand, just reverse results were obtained
for estimating the mean sums of squares due to sire i.e.
expected mean sum of squares is underestimated when rho
is negative and they are overestimated if the correlation is
positive. As p tends to unity, the expected mean sum of
squares due to sire approaches to its maximum value.

Heritability values are overestimated if the correlation
is positive. The same trend follows for all levels of
heritability. Also, heritability increases from zero to nearly
four as autoregressive coefficients increase from minus
unity to approximate unity. with and without fixed effects
are obtained. The value of estimates of heritability changes
negative to positive when p changes from -1 to +1. MSE
value decreases up to p=0, then again increasing p is
positive. Up to p=-1 to p=-0.5, the estimate of heritability
is 0 in the case of ML, REML, and MIVQUE methods
and MSE values are not changing. Estimated value of
heritability increased from p=-4 to p=1. MSE values
showed the same trend. With increasing sample sizes, the
MSE values decreased.
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In the case of AR(2) if fixing AR(1) value by changing
AR(2) values, the MSE value decrease with increasing
the correlation value in general. Sometimes haphazard
trends are noticed. We found some good combination of
AR(1) and AR(2) values (0, 0), (0.1,0.1) and (0.1, 0.5)
combinations giving better estimates of heritability. With
increasing sample sizes, the MSE values decreased.

We may infer that different correlation patterns, such as
AR(1), AR(2), and so on, have an impact on heritability
estimates and Means Square FError values. Different
combinations are identified for better performance in
certain instances. Different combinations of distributions,
such as normal, beta, Cauchy, and t-distribution with
different heritability values, and estimate of heritability
and MSE values obtained by four different methods,
such as ANOVA, ML, REML, and MIVQUE methods
with different parametric values of heritability, are used
to generate sire component and error component. From
Tables 2 to 3, it can be seen that when the correlation value
—ve approaches zero, the MSE values decline.

Half-sib estimate of heritability and MSE values in case
of correlated errors (AR(1)) and different sample sizes for
the parametric value of heritability 0.10 when the sire is
distributed as t- distribution but error follows t-distribution
is given in supplementary Table 4. Half-sib estimate of
heritability and MSE values in case of correlated errors
(AR(1)) and different sample sizes for the parametric
value of heritability 0.90 when sire and error both follow
Normal distribution is depicted in supplementary Table
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5. Supplementary Table 6 presents half-sib estimate of
heritability and MSE values in case of correlated errors
(AR(1)) and different sample sizes for the parametric value
of heritability 0.90 when the sire is distributed as Cauchy
distribution but error follows Cauchy distribution. The
MSE values for all choices of distribution grew as we
climbed from zero to higher values, i.e. closer to +1.

It can be concluded that there is a significant effect
on heritability of correlated error, sire and error follow a
variety of different distributions, like normal, Cauchy, beta,
and 7-distributions in the estimation procedure. A one-way
classification model is used to generate observations for
correlated and uncorrelated cases with respect to two error
structures, AR(1) and AR(2). The data were generated
using a variety of heritability ranges, including high and
low (0.5, 0.1), Half-sib AR(1), different sample sizes (100
and 500), and different correlations of errors between AR(1)
and AR (2). p= -1 to +1. Correlated errors are observed to
significantly affect heritability estimation and to be greatly
influenced by the distribution they follow.
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