Asparagus racemosus improves seminal antioxidant status and sperm characteristics in buck semen at refrigeration temperature

CHETNA GANGWAR^{1⊠}, ASHOK KUMAR¹, ANIL KUMAR MISHRA¹, S D KHARCHE¹, KAMENDRA SWAROOP², R POUROUCHOTTMANE¹, RAKESH GOEL² and SHRIPRAKASH SINGH²

ICAR-CIRG, Farah, Mathura, Uttar Pradesh 281 122 India

Received: 20 September 2022; Accepted: 14 September 2023

ABSTRACT

The present investigation was carried out to evaluate the effect of *Asparagus racemosus* (Shatavari) aqueous extract on buck semen quality during preservation. In the current study, 8 ejaculates from 8 Jakhrana bucks maintained at Jakhrana unit of ICAR-CIRG (semi-arid region) were collected (total 64 ejaculates) during the period from April to June, 2022. Good quality semen samples were pooled during each collection. Pooled semen samples were then divided into 4 equal parts, and diluted in TRIS buffer containing different concentration of Shatavari aqueous extract (Different groups, i.e. Gr1-5 mg, Gr2-2.5 mg, Gr3-1.25 mg, Gr4-0 mg of Shatavari aqueous extract/ml of semen diluent). All the diluted semen samples were kept at refrigerated temperature (5°C) for seven days, and on each day, diluted semen was evaluated for various sperm characteristics and antioxidant status. Gr3 showed significantly better results in terms of sperm viability, sperm motility, acrosomal integrity and plasma membrane integrity. Along with this, the longevity of sperm was also enhanced in Shatavari supplemented group.

Keywords: Antioxidant, Aphrodisiac, Buck semen, Fertility

Artificial insemination (AI) is most widely used technique for fast dispersal of elite animal genetics, and is more successful and economical, actually reaching to the farmers' door-step in India. Semen preservation is the indispensable step in AI, which prolongs the keeping duration and maintains sperm fertility, eases worldwide transfer of preserved semen, and enriches the reproducing potential of elite male animals (Wen et al. 2019). Either chilled or frozen semen, can be employed for AI however, liquid preservation leads to better pregnancy rates than that of frozen one. During semen preservation at refrigerated temperature, antioxidant in semen is exhausted and at the same time ROS is spontaneously formed by sperm aerobic metabolism (Gangwar et al. 2018) resulting in disparity between antioxidant and pro-oxidant activities, which eventually causes the lipid peroxidation of the polyunsaturated fatty acids of the sperm membrane. This curtails the efficient use of semen preservation technology. There is an obligatory requirement to optimize the buck semen extender to attain the better semen quality with higher fertility. The chemical antioxidants provide benefit in one way and may be harmful in another way, i.e. may stimulate inflammatory/immune reaction in females during artificial insemination (Ribeiro et al. 2021). However, this problem

Present address: ¹ICAR-Central Institute for Research on Goats, Farah, Mathura, Uttar Pradesh. ²DUVASU, Mathura, Uttar Pradesh. ™Corresponding author email: chetnaom82@gmail.com

can be addressed by using the good quality antioxidants which are of natural origin and herbal antioxidants do not have such deleterious effects (Shahid *et al.* 2022).

Continuous research efforts have been directed towards investigating plants and their derivatives, particularly for their potential in treating various diseases and developing innovative therapeutic approaches (Kuo et al. 2018). Asparagus racemosus (A. racemosus) is one such important medicinal plant having wide range of pharmacological and therapeutic effects, and it is called as a rasayana (plant drug that enhances overall health by increasing cellular vitality and resistance) in the Ayurveda (Goyal et al. 2003). Hence, after going through the available literature on the beneficial effects and potent antioxidant property of Shatavari (Wiboonpun et al. 2004, Guo et al. 2023), the current research work was designed with the objective to study effect of Shatavari aqueous extract on buck semen preservation and seminal antioxidant potential.

MATERIALS AND METHODS

Method of aqueous extract preparation of Shatavari: A. racemosus comes under the family Asparagaceae and roots were purchased from the local market. The aqueous extract was prepared from the roots in the Veterinary Medicine Laboratory of the Institute (ICAR-CIRG, Makhdoom). Dried root powder was soaked in distilled water for 5 h at 80°C. The sediment was separated by filtration and the filtrate was concentrated by lyophilisation. The obtained aqueous extract was processed with a small pulverizer, and

kept at 25°C for further use.

Semen collection: The collection of semen was done as per the guidelines laid down by the Institute Animal Ethics Committee. In the present experiment, 8 Jakhrana bucks of 2 to 4.5 years of age, and weighing 35±1.8 kg were used. From each buck, 8 ejaculates were collected. Semen was collected twice at weekly intervals with the help of artificial vagina in the morning hours.

Experimental design: The semen was diluted with tris-citric acid fructose diluents having 6% (v/v) glycerol and 10% (v/v) egg yolk as cryoprotective agent (Gangwar et al. 2014). The methodology was developed for the addition of Shatavari aqueous extract in the above extender (Different groups, i.e. Gr1-5 mg, Gr2-2.5 mg, Gr3-1.25 mg, Gr4-0 mg of Shatavari aqueous extract per ml of semen diluent). The semen samples were diluted

to maintain sperm concentration approximately 100–120 million/straw. All the diluted semen samples were kept at refrigerated temperature (5°C) for seven days, and on each day, the semen samples were evaluated for various sperm characteristics and antioxidant status.

Semen evaluation: The semen samples were placed in water bath at 37°C till the primary evaluation. The semen samples were evaluated for volume, pH, colour, consistency, concentration and mass motility just after the collection. Quantity of each ejaculate was measured with the help of the graduated collection cups. Mass motility and individual sperm motility was assessed as reported by Gangwar et al. (2014). The semen samples showing mass motility more than three were pooled, and diluted for further experimental study. Live sperm percentage and acrosomal integrity of buck spermatozoa was evaluated as

Table 1. Sperm characteristics (Mean±SEM) at different concentrations of Shatavari extract supplementation at different time intervals of buck semen preservation

Sperm characteristics	Day	Gr1	Gr2	Gr3	Gr4
Sperm motility (%)	Day 1	89± 1.87	89± 1.87	90± 1.58	89± 1.87
	Day 2	84 ± 1.01^a	88 ± 1.22^{a}	$88\pm~1.22^a$	79 ± 2.45^{b}
	Day 3	$72\pm\ 2.24^{b}$	$76 \pm 2.24^{\rm ab}$	$78.2{\pm}~1.22^{\rm a}$	$64 \pm 3.02^{\circ}$
	Day 4	60 ± 3.16^{ab}	$67{\pm}~4.06^{\rm a}$	70 ± 3.16^a	52 ± 2.06^{b}
	Day 5	38 ± 3.74^{bc}	$47{\pm}~3.03^{\rm ab}$	51 ± 3.32^a	$33\pm3.05^{\circ}$
	Day 6	18 ± 2.06^{b}	$28{\pm}~2.04^{\rm a}$	$32\pm2.07^{\mathrm{a}}$	$12\pm 2.05^{\circ}$
	Day 7	7 ± 2.06^{bc}	13 ± 3.10^{ab}	$18\pm3.74^{\mathrm{a}}$	$2.5\pm2.10^{\rm c}$
Sperm viability (%)	Day 1	92 ± 0.63	93.2 ± 0.73	91.8 ± 0.73	90.6 ± 0.81
	Day 2	87 ± 0.32^{b}	$90.8{\pm0.37}^{\rm a}$	92.6 ± 0.40^{a}	83.6± 1.12°
	Day 3	76.4 ± 1.36^{b}	81.4 ± 1.29^{a}	84.6 ± 0.81^{a}	$72\pm 2.50^{\circ}$
	Day 4	64.4 ± 2.77^{bc}	$71{\pm}~3.21^{\rm ab}$	75.8 ± 2.63^{a}	$57 \pm 2.05^{\circ}$
	Day 5	42.8 ± 3.12^{bc}	50.8 ± 2.92^{ab}	56 ± 3.22^{a}	36.6± 3.61°
	Day 6	$22.6 \pm 2.23^{\rm b}$	$32.8{\pm}~1.74^{\rm a}$	$37.2{\pm}\ 1.66^a$	$15.4 \pm 1.66^{\circ}$
	Day 7	11 ± 2.68^{bc}	16.8 ± 3.20^{ab}	22.2 ± 3.35^{a}	4.4± 2.23°
Acrosomal integrity (%)	Day 1	87.4 ± 0.60	87.6 ± 1.02	88.2 ± 0.86	87.4 ± 1.08
5 , ()	Day 2	84.2 ± 0.86^{bc}	85.8 ± 0.86^{ab}	86.8 ± 0.49^a	$83 \pm 0.71^{\circ}$
	Day 3	$79.2 \pm 0.58^{\circ}$	81.6 ± 0.75^{b}	84.6 ± 0.40^{a}	76.4 ± 0.50^{d}
	Day 4	72.6 ± 1.66^{bc}	$77{\pm}~1.34^{\rm ab}$	79.8 ± 1.32^{a}	$69 \pm 1.58^{\circ}$
	Day 5	65 ± 2.39^{bc}	$71{\pm}~1.95^{ab}$	75.4 ± 1.43^{a}	$60.6 \pm 2.38^{\circ}$
	Day 6	56.4 ± 3.78^{bc}	64.4 ± 2.42^{ab}	69.4± 1.63a	$51.8 \pm 3.26^{\circ}$
	Day 7	$49.4{\pm}~4.28^{bc}$	$55.4{\pm}~2.87^{ab}$	$61.4{\pm}\ 2.16^a$	$42.6 \pm 4.83^{\circ}$
Plasma membrane integrity (%)	Day 1	84.2 ± 2.08	83.8 ± 2.01	84.4 ± 1.6	83.8 ± 2.39
	Day 2	78.4 ± 1.57^{bc}	82 ± 1.70^{ab}	84.6 ± 1.6^{a}	74.6± 1.72°
	Day 3	70.8 ± 1.36^{b}	74.4 ± 0.68^a	77.4 ± 0.68^a	65.6± 1.69°
	Day 4	55.8 ± 2.69^{bc}	61.4 ± 2.94^{ab}	65.2 ± 2.87^{a}	$48.6 \pm 2.54^{\circ}$
	Day 5	37.8 ± 3.56^{bc}	$44{\pm}~2.66^{ab}$	$48.4{\pm}\ 2.09^a$	$30.8 \pm 2.52^{\circ}$
	Day 6	18.8 ± 2.73^{b}	29.2 ± 2.01^a	$34\pm1.38^{\mathrm{a}}$	12± 1.92°
	Day 7	8.1 ± 2.70^{ab}	13.6 ± 3.66^{a}	17.6 ± 4.30^{a}	3.2 ± 1.96^{b}
Sperm abnormality (%)	Day 1	6.4 ± 0.68	6.8 ± 0.95	6.4 ± 1.03	6.6 ± 0.51
	Day 2	7.6 ± 0.75	7 ± 0.77	6.8 ± 0.8	8.2 ± 0.97
	Day 3	8.8 ± 0.8	7.2 ± 0.86	7.2 ± 0.77	9.6 ± 0.93
	Day 4	$9.8{\pm}~0.86^{ab}$	8.2 ± 0.84^{b}	7.6 ± 0.81^{b}	11 ± 0.95^a
	Day 5	$10.6{\pm}~0.98^{ab}$	8.8 ± 0.86^{b}	8.8 ± 0.73^{b}	$12.6{\pm}~1.36^{\rm a}$
	Day 6	11.6 ± 0.98^{a}	9.8 ± 0.73^{b}	9.2 ± 0.77^{b}	$13.6 \pm 0.98^{\rm a}$
	Day 7	12.4 ± 0.75^{a}	10.2 ± 0.84^{b}	9.8 ± 0.58^{b}	$14.4{\pm}~0.6^{\rm a}$

Within the same preservation time, mean values with different superscripts differ significantly (P< 0.05) among treatment groups.

per the method described by Gangwar *et al.* (2019). The hypo-osmotic swelling test (HOST) was done to evaluate the integrity of the sperm plasma membrane. The sperm membrane integrity was examined as per the protocol used by Jayendran *et al.* (1984). Sperm abnormalities were assessed as mentioned by Nayak *et al.* (2016).

Effect on lipid peroxidation: Lipid peroxidation in sperm plasma membrane was indirectly measured by MDA (malondialdehyde) production assay as mentioned by Arangasamy *et al.* (2018) with certain changes. MDA levels were estimated at day 1 to day 7 of preservation, respectively, and denoted as nmol/dl.

Statistical analysis: Data was given as mean±S.E., and the statistical analysis was done by SPSS-22 Software, IBM (SPSS Inc., Chicago, IL, USA). The differences in mean values were assessed using Duncan's multiple range tests and one-way analysis of variance (ANOVA). The difference between means was significant at 95% level of significance (P<0.05).

RESULTS AND DISCUSSION

After first day of preservation, all the experimental groups had similar total sperm motility, sperm viability, acrosomal integrity, sperm plasma membrane integrity, sperm abnormalities whereas on the subsequent days, total sperm motility was significantly (P<0.05) higher in Shatavari extract supplemented groups in comparison with the control group. However, significantly (P<0.05) enhanced sperm motility was observed in Gr3 containing 1.25 mg of Shatavari aqueous extract per ml of diluter. Thus, we can say the buck spermatozoa are more motile for longer duration in this group. Hence, it was concluded that Shatavari helped in maintaining the sperm motility,

Table 2. MDA concentration (Mean±SEM) at different concentrations of Shatavari aqueous extract at different time intervals of buck semen preservation

Day	Gr 1	Gr2	Gr3	Gr4
Day 1	2.64 ± 0.33	2.55 ± 0.35	2.61 ± 0.35	2.73 ± 0.35
Day 2	3 ± 0.32	2.98 ± 0.29	2.83 ± 0.28	3.56 ± 0.30
Day 3	$3.20{\pm}0.38^{b}$	$3.05{\pm}0.37^{b}$	3.01 ± 0.40^{b}	$4.89{\pm}0.32^a$
Day 4	$3.60{\pm}0.32^{b}$	3.47 ± 0.28^{b}	3.27 ± 0.32^{b}	5.24±0.21a
Day 5	$3.92{\pm}0.30^{b}$	3.74 ± 0.32^{b}	3.67 ± 0.36^{b}	$5.47{\pm}0.33^a$
Day 6	$4.4{\pm}0.18^{b}$	4.13 ± 0.25^{b}	4.06 ± 0.28^{b}	$6.24{\pm}0.23^a$
Day 7	4.67 ± 0.22^{b}	$4.42{\pm}0.18^{b}$	$4.25{\pm}0.21^{b}$	$6.35{\pm}0.21^a$

Within the same incubation time, values with different superscripts differ significantly (P< 0.05) among treatment groups.

viability, acrosomal integrity for longer duration and it minimized the early acrosome reaction as well as protected the sperm plasma membrane for longer duration and reduced the sperm abnormality (Table 1 and Table 2).

All the experimental groups showed similar MDA production for two days, whereas on the subsequent days, lipid peroxidation was significantly (P<0.05) lower in Shatavari extract supplemented groups in comparison with the control group (Table 2).

Earlier, various researchers reported that addition of antioxidants in semen diluter improved the semen quality (Gangwar et al. 2014, Gangwar et al. 2015, Gangwar et al. 2018). But now a days, people are trying natural antioxidants in semen extenders (Wen et al. 2019) and extract from Asparagus racemosus (Shatavari) roots have been used in many investigations as antioxidants (Goyal et al. 2003, Guo et al. 2023). However, there are no evident research findings with respect to the protective effect of Shatavari aqueous extract on buck sperm as well as inhibition of lipid peroxidation. Thus, this research work was carried out to examine the semen quality and antioxidant activity in the bucks after supplementation of Shatavari aqueous extract in buck semen diluter.

Reduced lipid peroxidation of sperm plasma membrane reflected by MDA level in Shatavari extract supplemented group was also seen. Though, this type of investigation has not been done or performed with herbal antioxidant supplementation in buck semen diluter in comparison with results of this study. Very little amount of data is present with regard to the specific use of herbs in laboratory animals, boar and human beings (Kopalli et al. 2015, Ansari and Khan 2017, Kumar et al. 2018). Thakur et al. (2009) reported that Asparagus racemosus, Chlorophytum borivilianum, and rhizomes of Curculigo orchioides improved the mating behaviour and aphrodisiac activity in male rats. In the current investigation, it was observed that Shatavari extract had negative correlation with MDA production; hence it had ability to reduce the lipid peroxidation and sperm abnormalities during semen cryopreservation and this might be due the presence of flavonoids in it (Table 3).

Similar to our findings, Wen et al. (2019) reported that sperm motility, acrosomal integrity, mitochondrial membrane potential, plasma membrane integrity, and total antioxidative activity in the 30 mg/L GSPE (Grape seed procyanidin extract) group was significantly enhanced, whereas MDA content was lower than the control group

Table 3. Correlation among the different sperm parameters and MDA level in different treatment groups of buck semen

	Sperm Motility	Sperm Viability	Acrosomal Integrity	HOST	Sperm Abnormality	MDA
Sperm motility	1	0.996	0.938	0.99	-0.702	-0.762
Sperm viability	0.996	1	0.945	0.992	-0.694	-0.75
Acrosomal integrity	0.938	0.945	1	0.947	-0.744	-0.745
HOST	0.99	0.992	0.947	1	-0.706	-0.778
Sperm abnormality	-0.702	-0.694	-0.744	-0.706	1	0.753
MDA	-0.762	-0.75	-0.745	-0.778	0.753	1

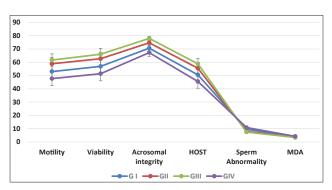


Fig. 1. Overall sperm characteristics and MDA level during the entire period of experiment in buck semen supplemented with different concentration of Shatavari extract.

(P <0.05). Similarly, Zhao *et al.* (2009) reported the significant correlation between *Rhodiola sacra* aqueous extract and concentrations of GSH and MDA in frozenthawed boar semen. It is already known that oxidative stress is a well-documented inducer of apoptosis, and lipid peroxidation can initiate aging and a diminished longevity of the cryopreserved spermatozoa.

The results of the current study indicate that there is overall increase in sperm motility, sperm viability, acrosomal integrity, plasma membrane integrity in treatment groups as compared to the control groups whereas, there is significant increase in number of abnormal spermatozoa and MDA level in control group as compared to treatment groups which shows higher peroxidative damage in control group (Fig. 1). In a previous study, it was found that dietary azolla supplementation significantly improved the semen quality and libido in bucks (Gangwar et al. 2019). Earlier study showed that buck sperm motility was 68.59% after three days of storage at 5°C (Wen et al. 2019); it reached 78.2% (a significant increase) after three days of liquid preservation with Shatavari supplementation. Hence, Shatavari extract is capable to protect the buck sperm from various types of cryo-damages.

Malo *et al.* (2011) found that adding rosemary extract into the freezing medium enhanced post-thawed semen quality in boar. Similarly, Zhao *et al.* (2009) reported that *Rhodiola sacra* aqueous extract (RSAE) exhibited strong scavenging activity against superoxide anion radical. They observed significant improvement in progressive motility, HOST response, fertility, and safeguarding the functional integrity of sperm plasma membrane. Antecedent findings indicated that the number of hypo-osmotic swelled spermatozoa is positively correlated with the oocyte penetration rate in human oocytes.

In congruence with our results, El-Sheshtawy *et al.* (2016) demonstrated that addition of bull semen extender with 10% and 20% pomegranate Juice provides adequate chilling, and boosted frozen-thawed semen quality. Similarly, Khan *et al.* (2017) reported that addition of green tea extract in semen diluter exhibited remarkable response on the post-thawed spermatozoa motility, viability and membrane integrity of Achai bull. Vahedi *et al.* (2018)

found that supplementation of *Thymus vulgaris* extract at the rate of 4-8 ml/dl of diluter improves the attributes of ram sperm after freezing and thawing. Addition of 5% *Tribulus terrestris* extract in semen diluter improved the sperm motility in Afshari rams at 5°C (Pour *et al.* 2015). Similarly, Mehdipour *et al.* (2016) reported that supplementation of *Camellia sinensis* extract at level of 10 mg/L can enhance post-thaw ram semen quality, when it is cryopreserved in a soybean lecithin extender.

In the present investigation, the enhancement of semen quality and antioxidant activity could be due to the richness of *A. racemosus* in advantageous polycarbohydrates and flavonoids (kaempferol, quercetin, and rutin).

The results of the current study showed that Shatavari aqueous extract can be used as natural antioxidant in buck semen diluter, and may be replaced with chemical antioxidants. It significantly enhanced the sperm motility, acrosomal integrity, plasma membrane integrity and increased the sperm viability for longer duration, thus improving buck semen quality during preservation at refrigerated temperature.

ACKNOWLEDGEMENT

The research was carried out under the NLM funded project (Project number - ANSC CIRG SOL 2023 00100319).

REFERENCES

Ansari M M and Khan H A. 2017. Yohimbine hydrochloride ameliorates collagen type-II-induced arthritis targeting oxidative stress and inflammatory cytokines in Wistar rats. *Environmental Toxicology* **32**: 619–29.

Arangasamy A, Krishnaiah M V, Manohar N, Selvaraju S, Guvvala P R, Soren N M, Reddy I J, Roy K S and Ravindra J P. 2018. Advancement of puberty and enhancement of seminal characteristics by supplementation of trace minerals to bucks. *Theriogenology* **110**: 182–91.

El-Sheshtawy R I, Gamal A and El-Nattat W S. 2016. Effects of pomegranate juice in Tris-based extender on cattle semen quality after chilling and cryopreservation. *Asian Pacific Journal of Reproduction* **5**: 335–39.

Gangwar C, Kharche S D, Ranjan R, Kumar S,Goel A K and Jindal S K. 2015. Effect of vitamin C supplementation on freezability of Barbari buck semen. *Small Ruminant Research* 129: 104–07.

Gangwar C, Ranjan R, Satish K, Kharche S D, Goel A K, Ramachandran N and Jindal S K. 2014. Use of chelating agent for optimum post thaw quality of buck semen. *Indian Journal* of Animal Sciences 84: 839–41.

Gangwar C, Ravindra K, Kharche, S D, Jindal S K, Chaudhary U B and Mishra A K. 2019. Effect of azolla supplementation in feed on semen freezability in bucks. *Indian Journal of Animal Sciences* 89: 398–401.

Gangwar C, Saxena A, Patel A, Singh S P, Yadav S, Kumar R and Singh V. 2018. Effect of reduced glutathione supplementation on cryopreservation induced sperm cryoinjuries in Murrah bull semen. *Animal Reproduction Science* **192**: 171–78.

Goyal R K, Singh J and Lal H. 2003. *Asparagus racemosus*-An update. *Indian Journal of Medical Sciences* **57**: 408–14.

Guo Y, Liu Z, Wan Y, Zhang Y, Abdu HI, Yang M, Pei J, Yue T, Zhang X, Hacimuftuoglu A and Abd El-Aty A M.

- 2023. Literature analysis on asparagus roots and review of its functional characterizations. *Frontiers in Nutrition* **9**: 1024190.
- Jeyendran R S, Van der Ven H H, Perez-Pelaez M, Crabo B G and Zaneveld L J D. 1984. Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics. *Reproduction* 70: 219–28.
- Khan H, Khan M, Qureshi M S, Shakoor A, Gohar A, Ullah H, Hussain A, Khatri P, Shah S S A, Rehman H and Khan A. 2017. Effect of green tea extract (*Camellia sinensis*) on fertility indicators of post-thawed bull spermatozoa. *Pakistan Journal of Zoology* **49**: 1243–49.
- Kopalli S R, Hwang S Y, Won Y J, Kim S W, Cha K M, Han C K, Hong J Y and Kim S K. 2015. Korean red ginseng extract rejuvenates testicular ineffectiveness and sperm maturation process in aged rats by regulating redox proteins and oxidative defense mechanisms. *Experimental Gerontology* **69**: 94–102.
- Kumar S, Kumar A, Honparkhe M, Singh A, Malhotra P, Gandotra V and Singh P. 2018. Effects of dietary supplementation of herbs on semen quality and oxidative stress in subfertile buffalo bulls. *International Journal Livestock Research* 8: 56–66.
- Kuo Y T, Liao H H, Chiang J H, Wu M Y, Chen B C, Chang C M, Yeh MH, Chang T T, Sun M F, Yeh C C and Yen H R. 2018. Complementary chinese herbal medicine therapy improves survival of patients with pancreatic cancer in Taiwan: A nationwide population-based cohort study. *Integrative Cancer Therapies* 17: 411–22.
- Malo C, Gil L, Cano R, Martínez F and Galé I. 2011. Antioxidant effect of rosemary (*Rosmarinus officinalis*) on boar epididymal spermatozoa during cryopreservation. *Theriogenology* 75: 1735–41.
- Mehdipour M, Kia H D, Najafi A, Dodaran H V and García-Álvarez O. 2016. Effect of green tea (*Camellia sinensis*) extract and pre-freezing equilibration time on the post-thawing quality of ram semen cryopreserved in a soybean lecithin-based extender. *Cryobiology* 73: 297–303.

- Nayak G, Vadinkar A, Nair S, Kalthur S G, D'Souza A S, Shetty P K, Mutalik S, Shetty, M M, Kalthur G and Adiga S K. 2016. Sperm abnormalities induced by pre-pubertal exposure to cyclophosphamide are effectively mitigated by *Moringa* oleifera leaf extract. Andrologia 48: 125–36.
- Pour S S, Pirestani A, Alirezai M and Shafiyei K. 2015. The effect of adding different levels of aqueous extract of *Tribulus terrestris* in the extender on sperm motility Afshari rams at 5°C. *Journal of Chemical and Pharmaceutical Research* 7: 957–59.
- Ribeiro J C, Braga P C, Martins A D, Silva B M, Alves M G and Oliveira P F. 2021. Antioxidants present in reproductive tract fluids and their relevance for fertility. *Antioxidants* 10(9): 1441.
- Shahid M N, Afzal H S, Farooq B, Yousaf M R, Ijaz M R, Shafqat T A, Khan T M, Neoh C F, Lean Q Y, Bukhsh A and Karuppannan M. 2022. A systematic review on the effectiveness of herbal interventions for the treatment of male infertility. *Frontiers in Physiology* 13: 930676.
- Thakur M, Chauhan N S, Bhargava S and Dixit V K. 2009. A comparative study on aphrodisiac activity of some Ayurvedic herbs in male albino rats. *Archives of Sexual Behavior* **38**: 1009–15.
- Vahedi V, Hedayat Evrigh N, Behroozlak M and Dirandeh E. 2018. Antioxidant effects of thyme (*Thymus vulgaris*) extract on ram sperm quality during cryopreservation. *Iranian Journal of Applied Animal Science* 8: 263–69.
- Wen F, Li Y, Feng T, Du Y, Ren F, Zhang L, Han N, Ma S, Li F, Wang P and Hu J. 2019. Grape seed procyanidin extract (GSPE) improves goat sperm quality when preserved at 4°C. Animals 9: 810.
- Wiboonpun N, Phuwapraisirisan P and Tip-pyang S. 2004. Identification of antioxidant compound from *Asparagus racemosus*. *Phytotherapy Research* **18**: 771–73.
- Zhao H W, Li Q W, Ning G Z, Han Z S, Jiang Z L and Duan Y F. 2009. *Rhodiola sacra* aqueous extract (RSAE) improves biochemical and sperm characteristics in cryopreserved boar semen. *Theriogenology* **71**: 849–57.