SNP screening of the *HSD3B1* gene and its association with laying performance in Taihang chickens

MENG-XIAO LI¹, TENG-HE MA¹⊠, BEI-BEI ZHANG¹, XUE-NAN LI¹, JIA-RONG WEI¹ and HONG-NA WANG¹

Hebei University of Engineering, Handan 056038 China

Received: 24 September 2022; Accepted: 8 May 2023

ABSTRACT

The 3 beta- and steroid delta-isomerase 1 (HSD3B1) gene has a great influence on reproductive traits and therefore has been widely studied. However, little is known about the relationships between polymorphisms of the HSD3B1 gene and laying traits in Taihang chickens. Therefore, the HSD3B1 gene was selected for polymorphism detection and analysis of its relationship with laying performance traits. The mRNA expression levels of HSD3B1 in 16 tissues of Taihang chickens were detected, and the HSD3B1 gene was SNP screened and genotyped, and associated with laying traits. The results showed that the HSD3B1 gene was widely expressed. The HSD3B1 expression level was highest in F1 follicles, lowest in small white follicles, and differentially expressed in large follicles with small yellow follicles. The C274T allele was moderately polymorphic in Taihang chickens, and the age of opening day was significantly earlier for the CC genotype than for other genotypes. The present results demonstrate that the homozygous CC genotype can be considered a genotype for molecular marker-assisted selection (MAS) to improve the breeding efficiency of Taihang chickens.

Keywords: HSD3B1, Laying performance, SNP, Taihang chicken

Understanding the regulatory mechanisms of hormones is important for reproductive control in the animal industry. Steroid hormones are the most important gonadal hormones in animals (Groothuis and von Engelhardt 2005, Samardzija et al. 2018). The pathway of ovarian steroid production, which includes numerous genes involved in encoding synthesizing steroid enzymes in the ovary, is strongly linked to ovarian function and follicular development (Guo et al. 2018). Among them, *HSD3B1* is one of the key members of the steroid hormone family and contributes significantly to the transversion of steroid hormone synthesis (Simard et al. 2005). Along with in-depth studies, a few studies have found a relationship between HSD3B1 and the reproductive performance of different animal species (Shimodaira et al. 2012). In pigs, it has been found that AMH inhibits LHmediated expression of steroidogenic genes, including HSD3B1, and androstenedione production in theca cells (Li et al. 2020). OXA is one of the elements that can modify uterine steroidogenesis genes, including HSD3B1, by regulating the expression of significant steroidogenic enzyme genes and the secretion of steroid hormones in pigs (Rytelewska et al. 2020). In sheep, transcriptional analysis of follicular development after FSH superstimulation at the pre-recruitment, dominant, and mature stages confirmed

Present address: ¹Hebei University of Engineering, Handan 056038 China. [™]Corresponding author email: matenghe@126.

that *HSD3B1* could be a key gene involved in follicular development (Yao *et al.* 2021). Polymorphisms in the sheep *HSD3B1* gene have little effect on its protein structure (Hu *et al.* 2021). In addition, it has been reported that the *HSD3B1* gene affects follicular development and ovulation in chickens by regulating ovarian secretion of steroid hormones in gallus, thus serving as a functional gene affecting reproductive performance in poultry (Sechman *et al.* 2020).

Taihang chickens are a domestic breed of poultry resources in China. This breed has advantages such as small body size, relatively low feed consumption and good egg quality. However, Taihang chickens still have low production performance overall, and it is urgent to improve the breeding of Taihang chickens. Only the *HSD3B1* gene of 3β-HSD family members was found in chickens, including Taihang chickens. *HSD3B1* plays an important function in follicular development in chickens (Zimmer *et al.* 2018, Huang *et al.* 2021).

Nevertheless, the SNPs of the *HSD3B1* gene in chickens have not been reported. In this study, the connection between *HSD3B1* polymorphism and laying traits was examined in domestic Taihang chickens. The study of chicken *HSD3B1* gene SNPs is helpful in terms of identifying meaningful molecular markers, laying a theoretical foundation for marker-assisted selection of chickens, and providing new approaches for improving chicken reproduction.

MATERIALS AND METHODS

Sample collection: All experiments were approved by the animal welfare department of the Institute of Animal Science, Hebei University of Engineering. Taihang laying hens raised in single cages were provided by Hebei Tiankai Food Co., Ltd.

A total of 175 Taihang chicken were fed in the same layer and same feed. Five Taihang chickens were killed at the age of 43 weeks. Pterygoid veins were used to draw blood samples. The heart, liver, spleen, lung, kidney, ovary, large white follicle (LWF), small white follicle (SWY), large yellow follicle (LYF), small yellow follicle (SYF) and F6-F1 follicle samples were collected, wrapped in tin foil and stored in an -80°C ultralow-temperature refrigerator for future use.

Primer design and synthesis: Using Primer 5.0 software, primers were designed according to the sequences of the chicken *HSD3B1* gene (GenBank accession no. NM_205118.1). P-*HSD3B1* was used for PCR, and *HSD3B1* was used for qPCR to amplify the *HSD3B1* gene. The primers were synthesized by Suzhou GENEWIZ Biotechnology Co., Ltd. (GENEWIZ, Suzhou, China) and given in Table 1.

Total RNA extraction and cDNA synthesis: Different tissue samples and follicles of Taihang chickens were ground in liquid nitrogen. As stated in the instructions, total RNA was extracted using an EasySPIN Plus Tissue Cell RNA Rapid Extraction Kit (Aidlab, Beijing, China). The integrity, concentration and purity of the total RNA were determined by 1% agarose gel electrophoresis and stored at -80°C. cDNA was synthesized by HiFiScript gDNA Removal cDNA Synthesis Kit (Kangwei, Beijing, China).

DNA extraction and detection: DNA was extracted by a blood genomic DNA extraction kit (Tiangen, Beijing, China). Agarose gel electrophoresis was used to verify the DNA's purity and concentration.

qPCR and *PCR* amplification: Using cDNA of each tissue and follicle as template and *GAPDH* as an internal reference gene, the *HSD3B1* gene was detected by qPCR to analyze its expression in different tissues. qPCR was carried out using SYBR® qPCR Master mix (Vazyme, Nanjing, China).

The genomic DNA of randomly selected Taihang chickens with known laying numbers was used as the template. Primers P-HSD3B1 were used for PCR amplification, as given in Table 1. The PCR was carried out with 2×TaqMaster Mix (Vazyme, Nanjing, China) and

the amplification were sent to Sangon Bioengineering Co., Ltd. (Shanghai, China) for custom sequencing. DNASTAR software (http://www.biologysoft.com/) was used for sequence alignment and SNP selection.

Enzyme identification: PCR products of primers P-HSD3B1 were digested by the restriction endonuclease MvaI (TaKaRa, Beijing, China) at 37°C for 4 h. The digestion system was as follows: total volume 10 μ L, including 0.5 μ L of MvaI restriction enzyme (10 U/ μ L), 3 μ L of PCR product, 1 μ L of 10× Buffer and 5.5 μ L of ddH₂O. The enzyme products were tested by using 1% agarose gel electrophoresis.

Statistical analysis: The HSD3B1 gene's relative mRNA levels were calculated as 2-^^CT using GAPDH for normalization. Calculations were made for the genotype and allele frequency, polymorphism information content (PIC), heterozygosity (He) and effective number of alleles (Ne). The Hardy-Weinberg law was used to test whether the distribution of SNP genotypes in the studies population deviated from Hardy-Weinberg equilibrium. SPSS 20.0 software was used for correlation analysis of different genotypes with traits (age of opening day (AFE), egg production at 300 days (E300), and egg production at 500 days (E500)).

RESULTS AND DISCUSSION

Expression of HSD3B1 in different tissues and follicles: The relative expression levels of the HSD3B1 gene were analyzed by qPCR in sixteen tissues of Taihang chickens. The experimental results indicated that the gene was widely expressed in all tissues, with tissue expression specificity. Daily selection of one SYF to LYF from the SYF pool is called follicle selection, which is an important process and is directly associated with laying performance in hens (Johnson 2015). We found that the expression level of HSD3B1 in LYF was significantly higher than that in the SYF (P<0.05), HSD3B1 expression in the LYF was approximately 2.2 times that in the SYF, and the expression level increased significantly with increasing follicle diameter (P < 0.05), indicating that the HSD3B1 gene could be involved in the chicken follicle selection process. The result is consistent with previous research (Kozubek et al. 2020, Huang et al. 2021).

Detection of HSD3B1 gene polymorphisms: Amplification length to detect HSD3B1 gene polymorphisms was 586 bp (Marker DL 2000) (Fig. 1). The target fragment obtained by PCR amplification presents a single, bright band consistent with the predicted fragment

Table 1. HSD3B1 gene primers

Primer	Sequence $(5' \rightarrow 3')$	Annealing temp (°C)	Product size (bp)	
P-HSD3B1	F: GCCCAAGGTGTCAATGAT	63	586	
HCD 2D 1	R: AAGACCCTCTGTGCCATT			
HSD3B1	F: GCAAGAGGCTGGCAGAGGAATG R: TGGATCTCAGGGCACAGGTCAC	60	90	
GAPDH	F: GCCATCACAGCCACAGA R: TTTCCCCACAGCCTTAGCA	60	120	

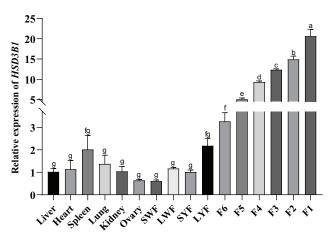
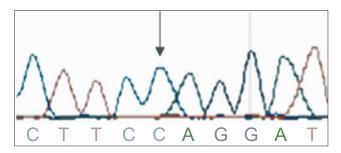
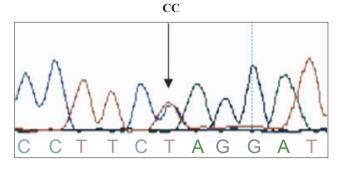


Fig. 1. Expression of *HSD3B1* in different chicken tissues and follicles (mean±SEM). Different letters indicate significant differences (P<0.05).


Fig. 2. PCR amplification of HSD3B1 gene.


size; therefore, this product was used for further study (Fig. 2).

SeqMan software was used to analyze the sequencing results, and SNPs were found in the *C274T* site (Exon 3) of the *HSD3B1* gene amplified from Taihang chicken population, producing the CC, CT and TT genotypes, as shown in Fig. 3.

The target PCR fragment was digested by the endonuclease *MvaI*, resulting in 586 bp, 493 bp and 93 bp fragments. The three genotypes were detected according to different band patterns, as follows: CC (493 bp, 93 bp), CT (586 bp, 493 bp and 93 bp) and TT (586 bp). Genotyping results are shown in Fig. 4.

Analysis of HSD3B1 gene polymorphism and laying performance in chickens: The results showed that the CT genotype frequency (0.47) was higher than the CC genotype (0.24) and TT genotype (0.29) frequencies, and the T allele frequency (0.52) was higher than the C allele frequency (0.48). The C274T mutation in Taihang chickens was moderately polymorphic (0.25<PIC<0.5). SHEsis online software was used for linkage imbalance analysis. The results indicated that the C274T site was in a linkage equilibrium state, which could be because the domestic Taihang chickens were not under continuous selection, as shown in Table 2.

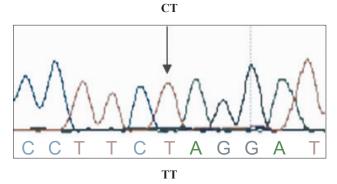


Fig. 3. Sequencing of HSD3B1 gene mutation sites.

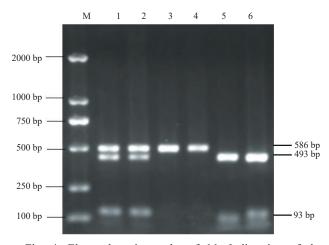


Fig. 4. Electrophoresis results of *MvaI* digestion of the *HSD3B1* gene (Line M: DL 2000 marker; Line 1 and 2: CT (586 bp, 493 bp and 93 bp); Line 3 and 4: TT (586 bp); Line 5 and 6: CC (493 bp, 93 bp)).

Table 2. Genotype and allele frequency distribution of SNPs in the exon 3 region of the chicken HSD3B1 gene

SNP	Breed	Geno	otype frequ	ency	Allele fi	requency	PIC	Не	Ne	χ_2
C274T	Taihang chicken (175)	CC	CT	TT	С	T	0.37	0.5	2.0	0.64
		0.24	0.47	0.29	0.48	0.52				

Here, an association study between the *HSD3B1* gene and laying traits was also conducted. The three main laying performance traits, AFE, E300 and E500, of Taihang chickens with the three genotypes at the *C274T* locus of the *HSD3B1* gene were statistically analyzed, and the association of polymorphic exon 3 *C274T* with laying performance was analyzed. The results are shown in Table 3.

Table 3. Association analysis of polymorphisms at the *C274T* locus (exon 3) of the chicken *HSD3B1* gene and laying performance

SNPs	Trait		Genotype	
		CC (42)	CT (82)	TT (51)
C274T	AFE	169.57±2.11a	176.21±1.71 ^b	174.6 ± 2.49^{ab}
	E300	96.31 ± 2.29	90.66 ± 1.70	91.90 ± 2.01
	E500	182.29±6.72	175.29 ± 4.10	179.31 ± 5.72

Note: AFE refers to the age of opening day, E300 refers to egg production in 300 days, and E500 refers to egg production in 500 days.

There was no significant difference in E300 production or E500 among the 3 genotypes at this locus. However, the CC type showed earlier AFE than the heterozygous CT type and homozygous TT type (P<0.05). Therefore CC genotype had better AFE compared to the other genotype in Taihang chicken.

In conclusion, the *HSD3B1* gene was differentially expressed in sixteen chicken tissues and could be an important gene in follicle selection. Exon 3 of the *HSD3B1* gene is polymorphic, and the *C274T* allele showed a significant effect on AFE. The present results lay a foundation for the MAS breeding process and could provide a new way to improve the breeding efficiency of Taihang chickens. Further study will be necessary to confirm the SNP function in a large laying group before informing in the breeding procedure.

ACKNOWLEDGEMENT

This study was supported by the Natural Science Foundation of Hebei Province (C2020402003), Science and Technology Project of Hebei Province (20326343D).

REFERENCES

- Groothuis T G and Von Engelhardt N. 2005. Investigating maternal hormones in avian eggs: Measurement, manipulation, and interpretation. *Annals of the New York Academy of Sciences* **1046**: 168–80.
- Guo X, Wang X, Di R, Liu Q, Hu W, He X, Yu J, Zhang X, Zhang J, Broniowska K, Chen W, Wu C and Chu M. 2018. Metabolic effects of *FecB* gene on follicular fluid and ovarian vein serum in sheep (*Ovis aries*). *International Journal of Molecular Sciences* 19(2): 539.

- Hu W P, Liu M Q, Tian Z L, Liu Q Y, Zhang Z B, Tang J S, He X Y, Zhu Y Y, Wang Y Y and Chu M X. 2021. Polymorphism, expression and structure analysis of key genes in the ovarian steroidogenesis pathway in sheep (*Ovis aries*). Veterinary Medicine and Science 7(4): 1303–15.
- Huang S J, Purevsuren L, Jin F, Zhang Y P, Liang C Y, Zhu M Q, Wang F, Jia C L and Wei Z H. 2021. Effect of anti-müllerian hormone on the development and selection of ovarian follicle in hens. *Poultry Science* 100(3): 100959.
- Johnson A L. 2015. Ovarian follicle selection and granulosa cell differentiation. *Poultry Science* 94(4): 781–85.
- Kozubek A, Katarzyńska-banasik D, Grzegorzewska A K, Kowalik K, Hrabia A and Sechman A. 2020. Nitrophenols are negative modulators of steroidogenesis in preovulatory follicles of the hen (*Gallus domesticus*) ovary: An *in vitro* and *in vivo* study. *Theriogenology* 157: 162-175.
- Li Y, Gao D, Xu T, Adur M K, Zhang L, Luo L, Zhu T, Tong X, Zhang D, Wang Y, Ning W, Qi X, Cao Z and Zhang Y. 2020. Anti-Mullerian hormone inhibits luteinizing hormoneinduced androstenedione synthesis in porcine theca cells. *Theriogenology* 142: 421-432.
- Rytelewska E, Kisielewska K, Gudelska M, Kiezun M, Dobrzyn K, Bors K, Wyrebek J, Kaminska B, Kaminski T and Smolinska N. 2020. The effect of orexin a on the StAR, CYP11A1 and HSD3B1 gene expression, as well as progesterone and androstenedione secretion in the porcine uterus during early pregnancy and the oestrous cycle. *Theriogenology* **143**: 179–90.
- Samardzija N D, Pogrmic-majkic K, Fa S, Stanic B, Tubic A and Andric N. 2018. Environmental mixture with estrogenic activity increases Hsd3b1 expression through estrogen receptors in immature rat granulosa cells. *Journal of Applied Toxicology: JAT* 38(6): 879–87.
- Sechman A, Grzegorzewska A K, Grzesiak M, Kozubek A, Katarzynska-banasik D, Kowalik K and Hrabia A. 2020. Nitrophenols suppress steroidogenesis in prehierarchical chicken ovarian follicles by targeting STAR, HSD3B1, and CYP19A1 and downregulating LH and estrogen receptor expression. *Domestic Animal Endocrinology* 70: 106378.
- Shimodaira M, Nakayama T, Sato I, Sato N, Izawa N, Mizutani Y, Furuya K and Yamamoto T. 2012. Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. *Endocrine* **42**(3): 700–07.
- Simard J, Ricketts M, Gingras S, Soucy P, Feltus F A and Melner M H. 2005. Molecular biology of the 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase gene family. *Endocrine Reviews* **26**(4): 525–82.
- Yao Y C, Song X T, Zhai Y F, Liu S, Lu J, Xu X, Qi M Y, Zhang J N, Huang H, Liu Y F, Liu G S and Yuan H. 2021. Transcriptome analysis of sheep follicular development during prerecruitment, dominant, and mature stages after FSH superstimulation. *Domestic Animal Endocrinology* 74: 106563.
- Zimmer B, Tenbusch L, Klymiuk M C, Dezhkam Y and Schuler G. 2018. Sulfation pathways: Expression of SULT2A1, SULT2B1 and HSD3B1 in the porcine testis and epididymis. *Journal of Molecular Endocrinology* 61(2): M41–M55.