Utilization of certain unconventional feeds in poultry as natural alternatives to curb antimicrobial resistance

NEETI LAKHANI1* and MANISH CHATLI2

College of Veterinary Science, Rampura Phul, Bathinda, Punjab 151 103 India

Received: 30 September 2022; Accepted: 12 April 2023

ABSTRACT

Poultry market has been demonstrating emerging potential as an efficient producer of meat with consumption occupying 40.6% of market globally. The requirement of animal protein is anticipated to grow continuously for meeting the requirements by ever-growing human population. To fulfill this demand, the major challenge encountered by poultry breeders was to fasten production in most efficient and economical way. Use of antibiotic growth promoter in feed help in augmenting poultry growth and alter gut microbiota. However, the growing concern of its likely fatal impacts on animal, food safety and on humans for developing microbial resistance; their use was restricted and banned in several countries. With insinuation of ban, several alternatives were explored for having potential growth promoting benefits without hampering the normal gut microbiota. Various phytobiotics, prebiotics, probiotics, organic acids and unconventional feed have positive effects on feed intake, efficiency and play a role as antimicrobial. However, the meager knowledge on availability and potential use of unconventional feeds as potent antimicrobial restricts its application. This review focuses on certain non-conventional feeds rich in specific bioactive compounds, which are attributed to modulate intestinal microbiota, their effects on growth performance and overall health status of poultry. The review aims to serve as a reference for young researchers and poultry industry to recognize alternative feed ingredients to be used as antimicrobial growth promoters minimizing competition between human and animal consumption.

Keywords: Antibiotic, Antimicrobial, Microbial resistance, Microbiota, Non-conventional

The peculiarity of antimicrobials in fighting against bacterial infections of human and livestock in varying dosage has gained tremendous attention among production sector. Incorporation of substantial dose of antimicrobials as non therapeutic drug promotes growth in livestock (Jagtap et al. 2019) and poultry (Rahmann et al. 2022). The ability of antimicrobials in suppressing release and absorption of harmful toxins by bacteria in the intestine can be postulated as one of the factors in promoting growth of broilers. Many authors postulated benefits of dietary antibiotics on growth rate by 1–10% (Chattopadhyay 2014), efficient feed conversion and better meat quality (Hughes and Heritage 2002) in poultry. However, exploitation of antimicrobials as a part of feed to stimulate growth changed the dynamics of feed industry leading to its indiscriminate use in sub therapeutic doses (Chattopadhyay 2014). The rising concern on food safety was reiterated in form of bans by European Union on use of antimicrobials.

Exploitation of antibiotics as growth promoters seems to have developed antimicrobial resistance within poultry. Antimicrobial resistance remains a regularly swelling menace for poultry health, minimizing the ability to treat bacterial infections and enhancing risk of morbidity and mortality (Hedmann 2020). In addition to the emergence of resistant bacteria from poultry production, the critical factors that prohibit their inclusion in poultry diet were rising human health apprehensions on presence of antimicrobial residues in egg (Goetting et al. 2011) and meat. The emergence, spread and diligence of antimicrobial resistance remains a critical global health threat (WHO 2014) (Fig. 1). There is an urgent need to identify effective, economical alternatives to antimicrobials for animal growth promotion, elevating the need for deeper understanding of microflora physiology and interaction with host. Phytobiotics or phyto-genic feed additives come as a saviour in this regard. Phytobiotics are rich in plant derived products such as essential oils, resins imparting them growth promoting effects (Lakhani and Lakhani 2018), antimicrobial, antioxidant (Lakhani et al. 2019) and anti-inflammation activity (Lakhani et al. 2019). However, contradictory results have been published regarding the benefits of phyto-genic feed additives (PFA) in animal health. Non-conventional feed resources have recently emerged as potentially non-toxic additives improving the balance...
of beneficial bacteria in gut of poultry. Utilization of non conventional feeds as poultry growth promoter is because of the presence of secondary metabolites such as essential oils, saponins, tannins (Lakhani et al. 2019) modulating the gut environment and morphology of intestine in poultry. The present review attempts to highlight the prospects of some newer unconventional feeds as potential natural antimicrobials in broiler chicken diet being rich in bioactive compounds. The focus of the present review is to furnish safer antimicrobial level having an achievable choice for lower mortality rate, good feed efficiency and safeguarding environment and consumer health in poultry industry.

Ginger as a natural antimicrobial

Zingiber officinale, a monocotyledonous herb, familiar as ginger; is conventionally used for its feed flavouring property (Wang et al. 2005). Numerous pharmacological properties of ginger include anti-inflammatory, gastrointestinal modulating agent, antimicrobial and as an antioxidant. Ginger is known to have broad pharmacological impacts because of presence of numerous chemical constituents in basic ginger oil (Table 1).

Table 1. Chemical constituents of ginger oil

<table>
<thead>
<tr>
<th>Component</th>
<th>Effect</th>
<th>Metabolite</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginger roots</td>
<td>Antifungal</td>
<td>Zingiberene (28.62%)</td>
<td>Singh et al. (2005)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camphene (9.32%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Curcumene (9.09%)</td>
<td></td>
</tr>
<tr>
<td>Roots</td>
<td>Antimicrobials</td>
<td>Sesquiterpenes (66.66%)</td>
<td>Sharma et al. (2015)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monoterpenes (17.28%)</td>
<td></td>
</tr>
<tr>
<td>Rhizomes</td>
<td>Antioxidant and</td>
<td>β-sesquiphellandrene (27.16%)</td>
<td>El-Baroty et al. (2010)</td>
</tr>
<tr>
<td>and</td>
<td>antimicrobial</td>
<td>Caryophyllene (15.29%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zingiberene (13.97%)</td>
<td></td>
</tr>
</tbody>
</table>

Ginger oil primarily includes large characters of monoterpenes as sesquiterpenes, and have critical antimicrobial action against most pathogenic microorganisms (Sharma et al. 2015). El Baroty et al. (2010) reported that inclusion of 20 to 120 µg/mL of ginger oil is effective in suppressing the population of bacteria and fungi in the intestine. Increasing the dose level may further be fruitful in controlling the *E coli* population. The efficacy of ginger oil is more than turmeric oil for their bacteriostatic and bactericidal impact, and serves as an important substitute governing *Salmonella* infection (Majolo 2014) (Table 2). The incorporation of ginger powder in poultry diet may further aid to minimize cost-benefit ratio and improve economic feasibility.

The antibacterial activity of ginger oil and ginger powder is attributed to their potent cytotoxic potential. The cytotoxic potential is due to presence of saponins, steroids, alkaloids in ginger (Ezez et al. 2021) imparting the AMR activity. The presence of phenolic ketone derivatives also imparts antioxidant activities to ginger oil. The enhanced serum antioxidants may also be partially attributed to the slowing of the process of oxidation of the feed by ginger powder supplementation (Zhao et al. 2011) (Fig. 2).

Fig. 1. Antimicrobial resistance mechanism through different biochemical routes inside the body.

Fig. 2. Mechanism of action of ginger inside the body.
Unconventional Feeds in Poultry Diet

May 2023

Impact of marigold supplementation as potent antimicrobial

Marigolds (T. erecta) are medicinal plants popular for their high therapeutic values. It contains active components such as alkaloids, terpenes, flavonoids and phenolic compounds (Regaswamy and Koilpillai 2014) of which flavonoids exert mild anti-inflammatory action and vitamin C/carotenoids improve immune function (Fig. 3).

Fig. 3. Mechanism of action of marigold.

Flavonoids impart bright yellow colour to egg yolk improving its marketing rate by Rs 2 kg/quintal. Feeding 1% and 3% of marigold to laying birds stimulated proliferation of total leukocytes as well as T and B lymphocytes at 3% level of supplementation (Balenovic et al. 2018). Frankic et al. (2009) reported antioxidant effects of marigold petals and flower-top extracts which was comparable to those of vitamin E supplementation in laying birds. Agiang et al. (2011) added 0, 2.5%, 5, 7.5 and 10% marigold leaf in quail diet and reported significant effect on final weight, daily feed intake and mortality rate at 5% level. However, the presence of certain toxic factors inherent in leaf products have been implicated for the depression in feed intake when supplemented at higher doses.

Uchewa et al. (2012) demonstrated that inclusion of 250 ml/2 litres of marigold leaf extract showed highest feed intake attributing to the active phytochemical ingredients such as high crude protein and sterol. The active ingredients have beneficial effects on gastrointestinal ecosystem by inhibiting growth of pathogenic microorganism and improving health status of digestive system thereupon reducing exposure of birds to microbiological toxins, stress situations and increment in the absorption of essential nutrients. However, many studies have reported (Alcicek et al. 2003) non-significant effect on body weight, FCR and carcass traits with marigold supplementation which might be due to difference in species, dose rate and mode of administration.

Moringa oleifera as a potential antibacterial, antifungal and coccidiostat

M. oleifera is popularly known as a miracle tree owing to its wealthy resource of numerous nutrients and high biological value (Table 3). Moringa is used as a feed additive in poultry diet for its coccidiostat and antibiotic growth promoter effects. It perpetuates intestinal integrity and improves nutrient utilization efficiency and ultimately animal health.

Table 3. Active compounds in M. oleifera and their properties

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Property</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin B complex,</td>
<td>Highly nutritious</td>
<td>Chandran et al. (2022)</td>
</tr>
<tr>
<td>Vitamin C, pro-Vitamin A,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>Antibacterial</td>
<td></td>
</tr>
<tr>
<td>Phytochemicals, PUFA</td>
<td>Anti-septic and detergent</td>
<td></td>
</tr>
<tr>
<td>Saponin</td>
<td>Coccidiostat, antifungal, antibacterial</td>
<td></td>
</tr>
</tbody>
</table>

The antimicrobial activities of the Moringa oleifera may be due to the presence of lipophilic compounds and metabolites (carboxylic acid and chitinases) in plant cell walls (Abd El-Hack et al. 2022) (Fig. 4). Moreover, the saponins present in Moringa are also known to modify the cell membrane structure, interrupting interaction of cell membrane and pathogens (Table 4).

Coccidiosis is one of the most common diseases in poultry. Plant extract having 3.24% saponin was responsible for damage of 36% Eimeria oocytes by entering inside the egg and disrupting their sporocyst. The results were similar to that reported by Hassan et al.

Table 2. Effective dose of ginger in diet and its effect on poultry

<table>
<thead>
<tr>
<th>Component</th>
<th>Dose</th>
<th>Poultry</th>
<th>Effects</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ginger powder</td>
<td>0.6% of diet</td>
<td>Broiler</td>
<td>Better feed conversion efficiency</td>
<td>Hassan et al. (2019)</td>
</tr>
<tr>
<td>Ginger extract</td>
<td>100g per tonne</td>
<td>Layer</td>
<td>Increased egg weight and egg quality and antioxidant status</td>
<td>Wen et al. (2019)</td>
</tr>
<tr>
<td>Ginger oil</td>
<td>0.4% of diet</td>
<td>Broiler</td>
<td>Increase FCE, increase Lactobacillus and decrease Salmonella spp in caecum</td>
<td>Oluwafemi et al. (2021)</td>
</tr>
<tr>
<td>Ginger powder</td>
<td>15g/kg diet</td>
<td>Broiler</td>
<td>Increase antioxidant indices</td>
<td>Al-Khalaifah et al. (2022)</td>
</tr>
</tbody>
</table>

Fig. 4. Mechanism of action of Moringa oleifera.

Table 2. Effective dose of ginger in diet and its effect on poultry

Modulate integrity of enterocytes
Reduce egg cholesterol
Antioxidant effects
Improve carcass traits and growth performance
Immune modulating properties

5
(2016) when fed 5% saponin in diet of poultry. Reduction in incidence of coccidiosis was confirmed by reduced haemorrhage in caecum. Inclusion of *M. oleifera* leaf meal at 25% had no negative effect on body weight and FCR of poultry when used as supplemental diet for soyabean meal (Gadzirayi et al. 2012). *Moringa oleifera* is known as a potential antioxidant due to the presence of vitamin C and E, carotenoids, flavonoids, and selenium (Moyo et al. 2015). Supplementing 1.2% *Moringa* leaf powder in diet of poultry resulted in better absorption of nutrients, modulating the intestinal structure and acidic mucin production (Khan et al. 2017).

Seaweeds as potent alternative to antibiotics

Seaweeds serve as a rich source of carbohydrates, protein, minerals, vitamins and dietary fibers, having well-balanced amino acid profiles and unique blend of bioactive compounds. Chemical composition of different seaweeds are variable with brown seaweed being rich in mineral and iodine (Misurcova et al. 2011), red seaweed containing highest protein level (10-50%) and green seaweed having protein content not more than 15% (Overland et al. 2018). Green seaweed (*Ulva spp.*) improved breast muscle yield and dressing percentage in broilers at 3% level (Abudabos et al. 2013) attributed to availability of S containing amino acid and crude fibre whereas inclusion of green seaweed at level of 4% and 6% serve as prebiotic supplement in diet of poultry. Brown algae contain functional polysaccharides algamates and fucoidans possessing anti-coagulant, anti-inflammatory, anti-viral properties. Red seaweeds are considered highly nutritious for poultry diet and considered as direct source of protein to growing chickens. Seaweeds are known to increase the lactic and acetic acid concentration in gut, altering the microbiome of caecum and improving the overall performance of broilers (Choi et al. 2014). Supplementing *Sargassum* spp in diet of broilers led to high FCR, blood low density lipoprotein (LDL), which might be attributed to bountiful of vitamin, mineral, amino acids, fatty acid content. However, effect of seaweed as prebiotic, antibiotic growth promoter or as additive varies with inclusion level, extraction method, its purification and difference in the method for its preparation. Table 5 enlists few important beneficial aspects of seaweed inclusion in diet of broilers.

Aloe vera as feed additive in broiler diets

Aloe vera is one of the oldest drug having traditional medicinal properties. The most important part of aloe vera is its leaves containing gel having 99% water (Femenia et al. 1999) and rich in active ingredients possessing anti-inflammatory, immunomodulatory and antioxidant properties (Christaki and Florou-Paneri 2010). The well known effect of aloe vera on intestinal microflora, is attributed to the polysaccharide ‘aceman-nan’ in the dry matter of aloe vera gel (Choi and Chung 2003). Inclusion of 1.5%, 2%, and 2.5% of aloe vera extract in broiler diet lead to increase *Lactobacillus* and decrease in *E. coli* count (Darabighane et al. 2012). Similarly, decline in *E. coli* count was observed when aecmannan (0.1% and 0.05%), and aloe vera gel (0.1%) were added separately to broiler feed (Dai et al. 2007). Many other studies have been reported on the antibacterial properties of aloe vera extract (Pandey and Mishra 2010). The exact mechanism by which aloe vera extract exhibits its antibacterial property is not clear but it is most likely that they possess properties similar to prebiotics (Guo et al. 2003) or presence of fumaric acid. Moreover, it has been reported that diet treated with 2% aloe vera gel caused an increase in the antibody titre of broilers and improve humoral immune response (Valle-Paraso et al. 2005). Similar results were reported

<table>
<thead>
<tr>
<th>Component</th>
<th>Dose</th>
<th>Result</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moringa oleifera leaf</td>
<td>3, 6, 9 g/kg</td>
<td>Increased egg production and quality, decrease cholesterol</td>
<td>Ahmed et al. (2021)</td>
</tr>
<tr>
<td>Moringa oleifera leaf</td>
<td>4-6% diet</td>
<td>Increased egg production, feed efficiencies, shell thickness, β-carotene, Mg and Ca contents</td>
<td>Bidura et al. (2020)</td>
</tr>
<tr>
<td>Moringa oleifera seed</td>
<td>1 g/kg</td>
<td>Urea decrease, increase egg production</td>
<td>Ashour et al. (2020)</td>
</tr>
<tr>
<td>Moringa meal</td>
<td>0.2%</td>
<td>Increase SOD, GPx and FCR</td>
<td>Yang et al. (2023)</td>
</tr>
<tr>
<td>M. oleifera extract</td>
<td>12%</td>
<td>Decrease E. coli infection</td>
<td>Ullah et al. (2022)</td>
</tr>
<tr>
<td>M. oleifera extract</td>
<td>3%</td>
<td>Inactivate B. cereus and E. coli</td>
<td>Sharma et al. (2020)</td>
</tr>
</tbody>
</table>

Table 5. Inclusion level and beneficial effects of seaweeds

<table>
<thead>
<tr>
<th>Seaweed</th>
<th>Inclusion level</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sargassum spp</td>
<td>2%, 4% and 6%</td>
<td>No effects on carcass traits</td>
<td>El-Deek (2011)</td>
</tr>
<tr>
<td>Sargassum spp</td>
<td>1%, 2%</td>
<td>Reduced total cholesterol, elevated HDL</td>
<td>Kumar et al. (2018)</td>
</tr>
<tr>
<td>Fucoxanthin</td>
<td>100 mg/kg</td>
<td>Reduced both blood plasma cholesterol and globulins</td>
<td>Gumus (2018)</td>
</tr>
<tr>
<td>Polysiphonia spp</td>
<td>3%</td>
<td>Increased CAT, SOD activities and glutathione (GSH) levels</td>
<td>El Deek et al. (2009)</td>
</tr>
<tr>
<td>Kappaphycus alvarezi</td>
<td>1.25%</td>
<td>Elevated protein and mineral level</td>
<td>Qadri et al. (2019)</td>
</tr>
<tr>
<td>P. palmate</td>
<td>0.15%</td>
<td>Reduced pathogenic (E. coli) and increase beneficial (Lactobacillus) bacteria</td>
<td>Gumus (2018)</td>
</tr>
</tbody>
</table>
in broilers on inclusion of 0.5%, 0.75% and 1% aloe vera gel (Alemi et al. 2012) and 0.1% and 0.05% (Jianping et al. 2005) acemannan in broiler diet. Besharatian et al. (2012) reported an increase in total immunoglobulin of 35-day-old broilers offered aloe vera leaf powder (0.5% and 1% mixed with feed) and aqueous extract of aloe vera leaf (15 and 30 ml/l, added to drinking water).

Cabbage and its benefits as an antimicrobial

Cabbage (Brassica oleracea) contains a plethora of active ingredients providing it its antimicrobial status (Table 6). These bioactive constituents include glycosides, alkaloids, flavonoids and saponin, as well as tannin, terpenes, steroids (Chauhan et al. 2016). Cabbage extract has highest antimicrobial activity against Gram negative bacteria. The antimicrobial activity in cabbage is imparted by the various sulphur compounds present in them (sinigrin, allyl isothiocyanate, S-methyl-L-cysteine sulfoxide, dimethyl disulfide, methyl methanethiosulfinate, dimethyl sulfide and methyl methane thiosulfonate) (Buttery et al. 1976).

Table 6. Active constituents in cabbage

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Function</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulforaphane</td>
<td>Anti inflammation, oxidative stress and cholesterolemia</td>
<td>Leja et al. (2010)</td>
</tr>
<tr>
<td>Indole-3-carbionol</td>
<td>Cancer prevention</td>
<td>Guerrero-Beltrán et al. (2012)</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Cancer prevention</td>
<td>Guerrero-Beltrán et al. (2012)</td>
</tr>
</tbody>
</table>

Body weight of chicken increased significantly when fed 3% cabbage whereas body weight decreased when levels were increased upto 6% cabbage in diet (Adesina and Toye 2012). Addition of cabbage tree extract rich in fructose (5-10g/kg) in poultry diet resulted in reduction of Clostridium perfringes in caeca of birds. Similarly, the number of Lactobacilli increased in ileum and caeca of birds with the plant extract (Vidanarachchi et al. 2010) indicating that the plant extract beneficially modulated the microflora of gut. Mustafa and Baurhoo (2017) also reported similar decrease in body weight of broilers with increasing level of dried cabbage residue from 3 to 6% in diet. Adding 20g/kg of cabbage slurry in broiler diet improved intestinal development in broilers causing growth of beneficial bacteria and increasing length of duodenum villi, villus: crypt ratio (Jianping et al. 2018). Addition of 12% dietary dried cabbage residue in layer diet showed marked improvement in nutrient utilization suggesting that bioactive constituents in cabbage had no harmful effect on gut microbiota of layers (Mustafa and Baurhoo 2018) (Table 7).

Conclusion

Major public health challenges now-a-days are the expanding foodborne infections emerging from indiscriminate use of antibiotics in food animals. This has paved way to sought for alternatives to antibiotic application in food animals responsible for many related infections. Incorporation of available alternatives to antibiotics (probiotics, prebiotics, plant extract and organic acids) has a potential role in lowering dependency on the existing antimicrobial substances. Moreover, unconventional feeds have now emerged as potent antimicrobials to fight against antimicrobial resistance. The active ingredients present in these non-conventional feeds have paved way for future research to utilize these metabolites in proper dose and help improve poultry performance and health.

REFERENCES

Moringa oleifera leaves and/or seeds powder on production, egg characteristics, hatchability and blood chemistry of laying Japanese Quails. *Sustainability* **12**: 2463.

Mustafa A F and Baurhoo B. 2018. Evaluation of dried vegetable

