

Indian Journal of Animal Sciences **93** (4): 342–348, April 2023/Article https://doi.org/10.56093/ijans.v93i04.131325

A randomized clinical study to evaluate the plate rod fixation for diaphyseal femoral fracture in dogs

K MOHAMMED ARIF BASHA¹, KIRANJEET SINGH¹⊠, ASWATHY GOPINATHAN¹, SHERIN B SARANGOM¹, D S SURENDRA¹, SWAPNA C R¹, SASIKALA R¹, AKSHAY KUMAR¹, AZAM KHAN¹ and UZMA JABEEN¹

ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh 243 122 India

Received: 13 December 2022; Accepted: 29 March 2023

ABSTRACT

The study was conducted to evaluate clinical effect of working length and rod size for plate rod fixation of diaphyseal femoral fracture repair in dogs. Twenty four dogs with femur fracture were randomly divided into four Groups viz. A, B, C and D having six animals in each group. Three bicortical screws in proximal and three in distal fragments with minimum two empty holes at the center were fixed for short plate working length (SPWL) in Groups A and B with intramedullary rod (IMR) occupying 30% and 40% of medullary canal, respectively. Two bicortical screws in proximal and two in distal fragments were fixed with minimum four empty holes at the center for long plate working length (LPWL) in Groups C and D with IMR occupying 30% and 40% of medullary canal, respectively. Fracture healing progress in all the Groups was assessed using clinical, photographic and radiographic observations. All the Groups showed good functional, radiographic outcome at the end of 14 week post-surgery. The time taken to show complete mobility and weight bearing was non-significantly less in Groups A and B. The functional, radiographic and outcomes of repair were excellent in Groups A and B without any major complications. Short plate working length with IMR occupying 40% of medullary canal of plate rod fixation provided comparatively better stability with fewer complications for femoral fracture repair in dogs.

Keywords: Dog, Femur, IMR diameter, Plate-rod, Plate working length

Locking compression plate (LCP) has revolutionized internal plate fixation technique for long bone fracture management in animals (Niemeyer and Sudkamp 2006). The combination of intramedullary (IM) pin /rod and bone plate significantly increases the construct stiffness and estimated number of fatigue failure when compared to plate alone and been found to be an ideal implant system for management of comminuted fractures in dogs and cats (Beale 2004).

The distance between the proximal and distal screws in closest proximity to the fractures is defined as the 'working length' of the plate (Chao *et al.* 2013). Recognition of weakness of exposed span with empty screw holes at the center of the construct termed as plate working length led to the concept of combining a plate and intra-medullary pin. Addition of IM pin to a bone plate decreases strain on the plate two fold and subsequently increases the fatigue life of the plate-rod construct 10-fold compared with that of plate alone (Hulse *et al.* 1997). A pin of at least 30% of intramedullary diameter is required to increase the bending stiffness and additional significant stiffness is gained by the use of a 40% IM pin (Pearson *et al.* 2015).

Present address: ¹ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh. [™]Corresponding author email: ksuppli@yahoo.co.in

A recent biomechanical study opines that screw configurations which shorten the plate working length provide maximum axial and bending stiffness (Pearson *et al.* 2015). As per the authors knowledge, clinical studies on the effect of plate working length and size of IM rod using LCP as plate rod construct for the repair of unstable femoral fracture in dogs are not reported yet. Therefore, present study was planned to evaluate the clinical effect of plate working length and IM pin/rod size as plate rod fixation for the management of unstable diaphyseal femoral fracture in dogs.

MATERIALS AND METHODS

The study conducted on clinical cases of dogs presenting unstable diaphyseal femoral fracture in dogs at Referral Veterinary Polyclinic of ICAR-IVRI, Izatnagar, Bareilly, Uttar Pradesh. Informed consent was obtained from the owner of each dog before surgery.

A total of 24 clinical cases of dogs presented with unstable fractures of femur were selected and randomly divided into 4 Groups viz. A, B, C and D having six animals in each group. Locking compression plates were used for plate-rod constructs. Combinations of short plate working length (3 bicortical screws in proximal and distal fragments with minimum 2-hole gap) for plate rod constructs using IMR of 30% and 40% size of medullary canal were used

Fig. 1. Representative radiographs of cranio-caudal (A) and mediao-lateral (B) views of the fractured femur in a dog of Group A. Note an increased opacity and dense periosteal bridging callus (E) at week 6 post-surgery as compared with the immediate post operative cranio-caudal (C) and mediao-lateral (D) views of the fracture site.

in Groups A and B, respectively. For long plate working length (2 bicortical screws in proximal and distal fragments with minimum 4-hole gap) plate-rod constructs using IMR of 30% and 40% size of medullary canal were used in Groups C and D, respectively (Figs 1C, 2 C, 3C, 4C and Supplementary Fig. 1). Dogs with concurrent injuries, nutritional and metabolic disorders of bone were excluded from the study.

Pre operatively, food was withheld for 12 h and water for 6 h in all the dogs. Dogs were pre-medicated with atropine sulphate at the rate of 0.04 mg/kg body weight subcutaneous injection. After 15 min, diazepam was given @ 0.5 mg/kg body weight followed by butorphanol @ 0.05 mg/kg body weight intravenously. General anesthesia was induced with thiopentone sodium @ 12.5 mg/kg body weight intravenously. Endotracheal intubation was done and the anesthesia was maintained with isoflurane.

The diameter of the IMR and the dimensions of the locking plates to be used were predetermined based on medio-lateral radiographs of the fractured and contra lateral femurs. An open fracture reduction through a standard cranio-lateral approach to femur was considered. IMR was inserted in a normograde fashion to re-establish the spatial alignment of fractures fragments. Locking plates were applied using self-tapping fixed angle locking screws of corresponding sizes. The holes were drilled under the guidance of a drill sleeve and were fixed as per the description in all Groups given in Table 1 using standard AO-ASIF recommendations (Koch 2015). The excessive IMR protruding out at the proximal end was cut as short as possible.

Data regarding age, body weight, sex breed, etiology, time elapsed and external were recorded. The fractures were classified according to the Unger's classification (Unger et al. 1990) and number of fractured fragments was noted. The duration of surgery, extent of manipulation, soft tissue damage, the technique adopted, dimensions and configurations of implants used and degree of ease or technical difficulty in application of implants were also recorded. Duration of surgical procedure (in minutes) was calculated as the total time required for the procedure from skin incision up to the application of the last skin suture. Time till repair (in days) was calculated as the interval between the fractures occurred till the fracture is fixed surgically.

Lameness grading was done as numerical rating scale with six levels of severity by lameness evaluation at stance, walk and trot of the dog on day of presentation and on 4th, 6th, 10th and 14th post-operative weeks. Scoring was done based on grading system suggested by Ramirez *et al.* (2015).

Radiographs taken were evaluated to assess the status of fixation; status position and configuration of implant used; any post-operative complication; and status of fracture healing during the 4th, 6th, 10th and 14th post-operative weeks. Fracture healing was evaluated by score followed by Field and Ruthenbeck (2018). The functional outcome of the repair was scored during the 14th post-operative weeks and graded as suggested by Gilbert *et al.* (2015).

Time required for attaining normal mobility and complete weight bearing of affected limb (in days) was calculated from the date of surgery to the day when affected limb showed mobility and weight bearing. Time taken to attain complete radiographic healing (in weeks) was calculated from the date of surgery to the day when complete radiographic healing was noticed on the orthogonal projections. Complications were graded as major or minor as described by Dvorak *et al.* (2000).

Fig. 2. Representative cranio-caudal radiographs taken (Group B) preoperatively. Ventrodorsal (A), medio lateral (B), immediate post operative status of implants (C and D) cortical continuity and apparent disappearance of the fracture line at 14 week post-surgery (E & F).

Table 1. Case details of dogs with femur fracture repaired in Group A

Dog no	Age	Breed	Sex	Body	Sex Body Etiology	Type of	Fracture	Plate size	Type of	Complication	Compliance	Functional
	(months)			weight	Jo	fracture	Orientation/		complication		with post	outcome
				(Kg)	(Kg) fracture	(Unger's class)	complexity				operative care	
AI	8	Labrador	M	25	RTA	32A2	Short oblique	10 hole, 3.5 mm ×	ı	ı	Compliant	Excellent
		Retriever						11 mm				
AII	6	Labrador	ഥ	27	RTA	32A2	Short oblique	9 hole, 3.5 mm \times	ı	ı	Compliant	Excellent
		Retriever						11 mm				
AIII	6	Non Descript	\boxtimes	13	RTA	32B2	Several reducible	8 hole, 3.5 mm \times			Compliant	Excellent
							wedges	11 mm	ı	ı		
AIV	11	German	Ľ	17	Fall	32A2	Short oblique	9 hole, 3.5 mm \times			Non compliant	Excellent
		Shepherd						11 mm	ı	•	with movement	
											restriction	
AV	∞	Labrador	ഥ	11	RTA	32A3	Transverse	8 hole, 3.5 mm \times			Compliant	Excellent
		Retriever						11 mm	ı	ı		
AVI	32	Non Descript	Ľ	16	RTA	32B2	Several reducible	8 hole, 3.5 mm \times	Minor	Seroma formation	Compliant	Excellent
							wedges	11 mm		and periosteal		
										reaction (2nd week)		
Mean±SE	12	12.83 ± 3.85		18.16 ± 2.63	.63							

Table 2. Case details of dogs with femur fracture repaired in Group B

Dog no	Age	Breed	Sex	Body	Sex Body Etiology	Type of	Fracture	Plate size	Type of	Complications	Compliance	Functional
	(months)			weight	Jo	fracture	Orientation/		complication		with post	outcome
				(Kg)	fracture	(Unger's class) complexity	complexity				operative care	
BI	6	German Shepherd	[Li	24	RTA	32C3	Non reducible wedges	9 hole, 3.5 mm × 8 mm	ı		Compliant	Excellent
BII	6	Non Descript	Ţ	15	RTA	32B2	Several reducible wedges	Several reducible 8 hole, 3.5 mm × wedges 11 mm	1	•	Compliant	Excellent
BIII	5	Labrador Retriever	Ħ	10	Fall	32B1	One reducible wedge	8 hole, 2.7 mm \times 8 mm	I	1	Compliant	Excellent
BIV	∞	Non Descript	Щ	12	RTA	32A2	Long oblique	8 hole, 3.5 mm \times 11 mm	ı	1	Compliant	Excellent
BV	6	Rottweiler	ഥ	27	Fall	32A3	Short oblique	8 hole, 3.5 mm × 11 mm	ı	1	Non compliant with movement restriction	Excellent
BVI	36	Non Descript	[1	17	Fall	32B2	Several reducible wedges	Several reducible 8 hole, 3.5 mm × Minor wedges 11 mm	Minor	Slight mal- alignment and seroma formation (2nd week)	Compliant	Excellent
Mean±SE	12	12.66±4.70		17.50±2.74	.74							

Summary statistics such as mean±SE and, median and inter-quartile ranges (IQR, 25% to 75% quartile) were calculated for all the variables. Single measurements of continuous variables between Groups were compared using one way analysis of variance (ANOVA) and Turkey's HSD *post-hoc* test. An independent sample't' test was used to compare the parametric data between two Groups (screw density and IMR diameter). Non-parametric variables such as scores at different intervals between Groups were compared using Kruskal-Wallis H test. Wilcoxin signed rank test was used to evaluate non-parametric data at different time intervals within a group.

RESULTS AND DISCUSSION

The locking compression plates are preferred over conventional plates owing to its biological and mechanical advantages. It provides nearly uniform bending stiffness along the entire length of the plate (Gautier and Sommer 2003), does not compromise periosteal blood supply and convert axial load to a compressive force rather than to shear stress (Gautier *et al.* 2015).

The breeds, age, sex, body weight, etiology, type of fracture, Unger's class, fracture orientation, plate size, complications, and compliance with post-operative care and functional outcome of each case of the study are shown in Tables 1-4. There was no significant difference (P>0.05) observed between any of the Groups with respect to the age, body weight, time elapsed, etiology and pre-operative soft tissue inflammation scores. All the dogs were in good general body conditions and met the criteria for inclusion in the study particularly with respect to bone quality. Body weight of the dogs is a mechanical factor that determines the amount of stress and strain acting on a bridging construct (Hulse *et al.* 1997). The dimensions of LCPs used in the present study were in agreement with the previous studies (Sarangom *et al.* 2018).

The soft issue inflammation subsided following stabilization of fractures in all the Groups on 2nd post-operative week. The seroma formation, cellulitis and mild instability of construct due to pin migration and cerclage wire irritation added to the soft tissue inflammation in assorted cases

The mean±SE values of duration of surgery, number of fracture fragments, time till repair, intramedullary cavity diameter, no. of screws in proximal fragment, no. of screws in distal fragment, no. of empty holes in the center (working length), screw density, IMR occupying medullary cavity diameter, radiographic healing time in weeks and time taken to attain mobility and complete weight bearing in weeks in all groups is given in supplementary Table 1. The stress and overall deformation on the screws and strain on the plate were comparatively less in Group B than Groups A and C (Figs 1 to 4). Hindrance in placement of bicortical screws along the diaphysis was encountered in few cases of Groups B and D might be due to the inability of locking screws to comply with more than five degrees of angulations in order to achieve angle stable lock with the

plate holes. Similar observation of hindrance in placement of screws for plate rod construct for femoral fracture repair has been reported (Sarangom *et al.* 2018). The mean screw densities used were 0.75±0.00, 0.75±0.00, 0.48±0.01 and 0.48±0.01 in Groups A, B, C and D respectively. It is adequate to keep the plate screw density value below 0.5 to 0.4 empirically while bridging a comminuted fracture i.e., only less than half of the plate holes should be occupied by the screws (Gautier and Sommer 2003).

Fracture healing in all the dogs of Groups A and Group C was satisfactory with gap healing or early callus formation (Figs 1 to 4). This can be attributed to biological osteosynthesis with more compliant bridging constructs using smaller diameter IMR filling 30% of medullary cavity. It is in agreement with biomechanical findings that smaller diameter IMR should be desired for greater compliance and beneficial micromotion between fracture fragments (Rutherford et al. 2015). The major complication encountered in Group C animals may be attributed to the insufficient relative stability provided by the construct (Supplementary Fig. 2). Hence further studies are required in larger number of dogs to evaluate the demarcation between beneficial effect of micromotion desired by lesser diameter IMR which should not compromise with construct stability and bending strength leading to implant failure. There were no major complications observed in Groups B and D which can be correlated with the biomechanical findings suggested that the overall stiffness increases 6%, 40% and 78% when rods filled 30%, 40% and 50% of the medullary canal, respectively (Hulse et al. 2000).

Lameness scores improved significantly from 2nd to 6th week post-surgery and reached excellent level on 10th and 14th week post-surgery in all Groups (Supplementary Table 2). The scores on the 4th, 6th, 10th and 14th week did not show any significant difference (P>0.05) between the Groups, while a non-significant decline in the median scores was observed in Group C at 6th and 10th post-operative weeks, owning to complications. Lameness subsided at 14th week post-surgery in all the Groups and scores did not differ significantly (P>0.05) between the Groups during the 12th post-operative week. Early limb function with PRCs can be attributed to the fact that plate-rod technique enables adequate fracture reduction and load sharing between the implant and bone (Shiju et al. 2010). Intramedullary pin acts as replacement of transcortical defect in the bony column and acts in concert with eccentrically placed plate to resist bending (Reems et al. 2003).

Radiographic union scores improved significantly from 4th to 14th week predominantly by secondary healing in most of cases (Figs 1 to 4, Supplementary Table 3). Normal fracture healing was achieved in all cases except complications like slight malalignment of the limb and IMR migration (dog CII, Supplementary Fig. 2) during early load sharing phase were observed in Group C. The inevitable removal of migrated IMR led to the development of subsequent complications like plate instability, slight to severe mal-alignment of fracture fragments, plastic

Table 3. Case details of dogs with femur fracture repaired in Group C

Dog no	Dog no Age (months)	Breed	Sex	Body E weight	Breed Sex Body Etiology weight of	Type of fracture	Fracture Orientation/	Plate size	Type of complication	Complications	Compliance with post	Functional outcome
				(Kg)	fracture	(Kg) fracture (Unger's class)	complexity				operative care	
CI	9	Non descript	×	M 11	Fall	32B2	Several reducible wedges	8 hole, 2.7 mm × 8 mm	Minor	Slight mal-alignment	Compliant	Excellent
CII	∞	Pitbull	\geq	41	RTA	32B1	One reducible wedge	8 hole, 3.5 mm × 11 mm	Major	Partial IMR migration, screw loosening (2 nd week), implant failure and mal-union	Non compliant with movement restriction	Fair
CIII	6	German Shepherd	Ţ	24	Fall	32C3	Non-reducible wedges	10 hole, 3.5 mm × 11 mm	Minor	Plastic deformation of plate and inward angling of screws and limb shortening	Non compliant with movement restriction	Good
CIV	12	Non descript	\boxtimes	13	RTA	32A2	Short oblique	8 hole, 2.7 mm \times 8 mm	ı	ı	Compliant	Excellent
CV	18	Pitbull	Ţ	21	Fall	32A3	Transverse	8 hole, 3.5 mm \times 11 mm	ī	1	Compliant	Excellent
CVI	41	Non descript	[I	14	RTA	32B1	One reducible wedge	8 hole, 3.5 mm \times 11 mm	ı	ı	Compliant	Excellent
Mean±SE 11.16±1.90	11.16	±1.90		16.16 ± 2.08	2.08							

Table 4. Case details of dogs with femur fracture repaired in Group D

Dog no	Age	Dog no Age Breed Sex Body Etiology	Sex	Body	Etiology	Type of	Fracture	Plate size	Type of	Complications	Compliance	Functional
	(months)			weight	Jo		Orientation/		complication		with post	outcome
				(Kg)	(Kg) fracture (Un	(Unger's class)	complexity				operative care	
DI	8	3 German	ī	F 19 Fall	Fall	32B1	Several reducible	8 hole, 3.5 mm × Minor	Minor	Hypertrophic callus	Compliant	Excellent
		Shepherd					wedges	11 mm		$(8^{th} week)$		
DII	10	10 Spitz		F 10 Fall	Fall	32A2	Short oblique	8 hole, 3.5 mm \times	ı	1	Compliant	Excellent
								11 mm				
DIII	17	Non	\mathbb{Z}	13	RTA	32A3	Transverse	8 hole, 3.5 mm \times	Minor	Periosteal reaction	Compliant	Excellent
		descript						11 mm				
DIV	12	Non	\mathbb{Z}	17	Fall	32A3	Transverse	8 hole, 3.5 mm \times	Minor	Seroma formation	Compliant	Excellent
		descript						11 mm				
DV	∞	Doberman M	Σ	25	RTA	32C3	Non-reducible	9 hole, 3.5 mm \times	Minor	Osteolytic changes	Non compliant	Good
							wedges	11 mm		at pin insertion	with	
										point, muscle atropy	movement	
											restriction	
DVI	11	11 Labrador M 29	\boxtimes	29	Fall	32C3	Non-reducible	8 hole, 3.5 mm \times	ı	1	Compliant	Excellent
							wedges	11 mm				
Mean±SE	Mean±SE 11.00±1.36	98		18.83 ± 2.92	92							

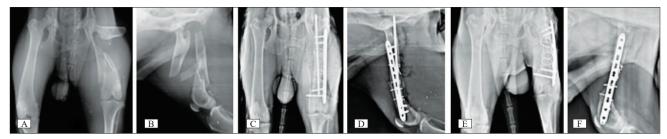


Fig. 3. Representative cranio caudal views radiographs of a dog (Group C) with preoperative ventrodorsal and mediolateral (A and B), post operative status of the implants (C and D) and disappearance of the fracture line with cortical continuity at week 14 post-surgery with slight plastic deformation of the plate (E and F).

deformation of locking plates, screw loosening, delayed union and even failure of the implants. However, in Groups A, B and D no instances of implant related complications were recorded.

Radiograph taken at 2nd week revealed retention of stable fixation with slightly increased radiolucency of fracture line in most of the cases (Figs 1 to 4). A faint periosteal bridging callus was seen on 2nd week, which turned into dense periosteal bridging callus on 8th week post-surgery. Disappearance of fracture line and cortical continuity was noticed in the 10th to 12th post-operative week radiographs. The scores on the 4th, 6th, 10th and 14th week did not show any significant difference (P>0.05) between the Groups. Radiological healing scores indicated bridging plate osteosynthesis enabled faster indirect bone healing by promoting callus formation. The difference in healing times between the Groups may be attributed to the cases that faced complications and fracture configurations. It was attempted that cases were uniformly distributed with same degree to comminution among each group to evaluate bridging plate osteosynthesis. The minimum time taken for mobility, complete weight bearing and time taken for complete radiographic healing were comparable in all the Groups. Similar timings for radiographic healing in 10 to 28 weeks post-surgery using plate-rod technique for the repair of comminuted fractures in dogs are documented (Sarangom et al. 2018). The delay in radiographic healing in few cases can be mainly attributed to the age, degree of comminution, complications anticipated and encountered during post-operative period. Comparatively early radiographic healing was obtained in younger animals of present study irrespective of technique used.

The healing of simple transverse fractures was by primary gap healing (1 case). Comminuted fractures healed

by endosteal callus formation (22 cases) and bone bridging and hence healing under the callus formation envisaged the relative stability of all the four combinations of PRCs. Excellent outcome was observed in Groups A and B and no implant related major post-operative complications were observed. Groups C and D, with less rigid and more elastic fixation had satisfactory outcome apart from one incidence of implant failure in Group C. The time taken for mobility, weight bearing and time taken to attain complete radiographic healing was non-significantly less in Groups B than other Groups (Supplementary Table 1). The functional outcome of repair was excellent in all dogs of Group A, five dogs Groups B and four dogs each of Groups C and D (Tables 1-4). Excellent and very good functional and radiographic healing grades and scores at 14th week post operatively in of animals in Groups A and B can be attributed to the perfect alignment and apposition, early resolution of pain and early callus formation are in agreement with earlier findings (Simon et al. 2015). It might also be due to additional stability provided by more number of screws used in these Groups. Similar outcomes, ranging from poor to excellent, with PRCs were reported previously by many researchers (Basha et al. 2020).

The study was not without any limitations: First, the plate length was selected on patient size, and then either 2-3 screws were applied to the plate, which has resulted into different working lengths for different patients (number of empty screws was almost 2 in short working length but varied from 4-5 in long working length due to different body sizes and femur lengths) which makes comparison between Groups difficult. Second, it was difficult to prospectively randomize orthopedic fracture cases as fracture configuration dictates the plate length and screw configuration. Third, errors in measurement of

Fig. 4. Representative radiographs (Group D) showing the fracture (A; dorsoventral and ventrodorsal views), immediate post-operative status of the implants (C and D; ventrodorsal and mediolateral views, respectively) and formation of bridging callus at week 4 post-surgery (E and F).

medullary cavity in digital imaging due to magnification of the femur in ventrodorsally positioned animal and selection approximate of intramedullary rod of either near to 30% or 40% of this measurement leads to a range which also adds to the limitations of this study. Fourth, force plate gait analysis is required to evaluate fracture healing as subjective lameness scoring scales most accurately reflect force plate analysis when lameness is severe. It was reported that subjective lameness scoring scales may not accurately reflect lameness and do not replace force plate gait analysis and the peak vertical forces acting on the implant post-surgery would not be similar in all the dogs (Vallefuoco *et al.* 2016).

It is concluded that clinical application of LCP as short plate working length with IMR occupying 40% of medullary canal provided better fracture stability with fewer complications in radiographic healing of unstable diaphyseal femoral fracture in dogs although the healing time with long plate working length were similar. The apparent advantage of long plate working length noted in the present study was ease of application, which shortened the duration of surgery. The findings the present study contradicted the hypothesis that use of long plate working length with IMR filling 40% of medullary cavity provides adequate stability and enable fracture healing better than short plate working length. The beneficial effect of long plate working length providing acceptable relative stability and enhancing early callus formation and mobility may not be clinically evident and stability with only two bicortical screws in each fragment with a 30-40% IMR may not be adequate especially in non-compliant dogs for movement restriction. Further studies involving force gait plate analysis is required with less randomized and more standardized clinical trial.

REFERENCES

- Basha K M A, Singh K, Gopinathan A, Sobharenya C, Swapna C R, Sasikala R, Akshay K and Naveen K. 2020. Elastic plate osteosynthesis by long plate working length using locking compression plate as plate-rod constructs for the treatment of unstable diaphyseal femoral fractures in dogs. *Indian Journal of Veterinary Surgery* 41(2): 107–12.
- Beale B. 2004. Orthopaedic Clinical Techniques Femur fracture repair. *Clinical Techniques in Small Animal Practice* **19**: 134–50.
- Chao P, Conrad B P, Lewis D P, Horodyski M and Pozzi A. 2013. Effect of plate working length on plate stiffness and cyclic fatigue life in a cadaveric femoral fracture gap model stabilized with a 12-hole 2.4 mm locking compression plate. *BMC Veterinary Research* 9: 125–31.
- Dvorak M, Neaas A and Zatloukal J. 2000. Complications of long bone fracture healing in dogs: Functional and radiological criteria for their assessment. *Acta Veterinaria Brno* **69**: 107–14.
- Field R and Ruthenbeck G R. 2018. Qualitative and quantitative radiological measures of fracture healing. *Veterinary and Comparative Orthopaedics and Traumatology* **31**: 1–9.
- Gautier E and Sommer C. 2003. Guidelines for the clinical

- application of the LCP. Injury 34: 63-76.
- Gilbert S, Ragetly G R and Boudrieau R J. 2015. Locking compression plate stabilization of 20 distal radial and ulnar fractures in toy and miniature breed dogs. *Veterinary and Comparative Orthopaedics and Traumatology* 28: 441–47.
- Hulse D, Hyman W, Nori M and Slater M. 1997. Reduction in plate strain by addition of an intramedullary pin. *Veterinary Surgery* 26: 451–59.
- Hulse D, Ferry K, Fawcett A, Gentry D, Hyman W, Geller S and Slater M. 2000. Effect of intramedullary pin size on reducing bone platestrain. *Veterinary and Comparative Orthopaedics* and Traumatology 13: 185–90.
- Koch D. 2015. Implants: Description and Application. (Eds) Johnson A L, Houlton J and Vannini R. AO principles of fracture management in dog and cat. Davos Platz Switzerland: AO Publishing. pp. 26–52.
- Niemeyer P and Sudkamp N P. 2006. Principles and clinical application of the locking compression plate (LCP). *Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca* 73: 221–28.
- Pearson T, Glyde M, Hosgood G and Ray R. 2015. The effect of intramedullary pin size and monocortical screw configuration on locking compression plate-rod constructs in an *in vitro* fracture gap model. *Veterinary and Comparative Orthopaedics and Traumatology* **28**: 95–103.
- Ramirez J, Barthelemy N, Noel S, Claeys S, Etchepareborde S, Farnir F and Balligand M. 2015. Complications and outcome of a new modified Maquet technique for treatment of cranial cruciate ligament rupture in 82 dogs. *Veterinary and Comparative Orthopaedics and Traumatology* 28: 339–46.
- Reems M R, Beale B S and Hulse D A. 2003. Use of a plate-rod construct and principles of biological osteosynthesis for repair of diaphyseal fractures in dogs and cats: 47 cases (1994–2001). *Journal of the American Veterinary Medical Association* 223: 330–35.
- Rutherford S, Demianiuk R M, Benamou J, Beckett C, Ness M G and Dejardin L M. 2015. Effect of intramedullary rod diameter on a string of pearls plate-rod construct in mediolateral bending: An in vitro mechanical study. Veterinary Surgery 44: 737–43.
- Sarangom S B, Singh K, Gopinathan A, Basha K M A, Surendra D S, Sowbharenya C, Sharma P and John C. 2018. Plate-rod technique for the repair of comminuted Diaphyseal femoral fractures in young dogs. *International Journal of Advanced Biological Research* 8: 451–53.
- Shiju S M, Ayyappan S, Ganesh T N and Kumar S R. 2010. Plate-rod technique for the management of diaphyseal femoral fractures in dogs. *Indian Journal of Veterinary Surgery* **31**(1): 41–42.
- Simon M S, Gupta C, Kumar S S, Ramprabhu R, Pazhanivel N and Prathaban S. 2015. Plate-rod technique for the management of diaphyseal fracture in a dog A case report. *Indian Veterinary Journal* **92**(7): 85–86.
- Unger M, Montavon P M and Heim U F. 1990. Classification of fractures of long bones in the dog and cat: Introduction and clinical application. *Veterinary and Comparative Orthopaedics* and *Traumatology* 3: 41–50.
- Vallefuoco R, Pommellet H L, Savin A, Decambron A, Manassero M, Viateau V, Gauthier O and Fayolle P. 2016. Complications of appendicular fracture repair in cats and small dogs using locking compression plates. *Veterinary and Comparative Orthopaedics and Traumatology* 29: 46–52.