Lactation performance of dairy cows on feeding rumen-protected choline

PRAVIN M LUNAGARIYA[™], SHAILESH V SHAH¹, YOGESH G PATEL¹ and JIGAR H PATEL¹

Kamdhenu University, Anand, Gujarat 388 001 India

Received: 22 December 2022; Accepted: 9 August 2023

ABSTRACT

The experiment was designed to assess the effect of supplemental feeding of 40 g/day rumen-protected choline (33.5% w/w) in the total mixed ration of lactating cows on nutrient intake, lactation, reproduction, feed efficiency, and feed cost during 294 days of the lactation. The study was conducted at Livestock Research Station, Anand during 2018 to 2021. A total of sixteen cows were randomly distributed into two groups of eight each based on descending order of previous standard lactation yield and lactation numbers. An intake and milk yield were calculated for 1-21 biweekly periods. The milk composition was assessed four times during lactation. The body condition score (BCS) on a 1-5 point scale with an increment of 0.25 points was measured at -21, -14, -7, 0, 7, 14, 21, 35, 49, 63, 91, and 119 days of calving. The supplemental feeding of rumen-protected choline (RPC) in T2 group resulted in lower nutrient intake, lesser insemination to conceive, and service period with higher 4% fat corrected milk (FCM) yield in dairy cows. The body condition score and milk yield persistency were higher along with improved feed efficiency and feed economics in the T2 group as compared to the T1 group. The daily feeding of 40 g RPC during -21 to 120 days of calving resulted in significantly lower nutrient intake with improved 4% FCM yield, reproductive performance, feed efficiency, and feed economics in dairy cows.

Keywords: Cow, Feed efficiency, Intake, Milk yield, Reproduction, Rumen protected choline

Most high-yielder cows experience negative energy balance after calving as nutrient intake is insufficient to meet the increased energy demands of lactation (Grummer et al. 2004). To meet the energy demand, cow utilizes body fat reserve, which predisposes to hepatic lipidosis and ketosis. These hepatic lipidosis and ketosis compromise production, immune function, and fertility (Hayirli 2006). The body requires choline chloride for building and maintaining cell structures, fat metabolism of the liver, formation of acetylcholine, and as a methyl group donor. Choline as a lipotropic factor transports fat from the liver and improves production. The earliest investigations with unprotected choline, reveal a non-significant effect on milk yield and milk composition, due to rapid degradation in the rumen (Chaudhary et al. 2017). In vitro rumen degradation of choline was 80-90% for common feedstuffs and choline supplements (Sharma and Erdman 1989). Rumen-protected choline (RPC) chloride improves milk yield, fat, and reproductive parameters; reduces serum non-esterified fatty acids in transitional periods (Jayaprakash et al. 2016) and along with an improvement in milk yield, reproduction, and feed efficiency (Acharya et al. 2020, Amrutkar et al. 2015) in dairy cows. Research on supplementation/top dressing of RPC in dairy cows during variable peripartum periods

Present address: ¹College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat.
☐ Corresponding author email: drpravinml@gmail.com

improved production and reproduction (Arshad *et al.* 2019) while information recorded during the lactation period is meager. It was hypothesized that the supplementation of RPC positively affects dairy cow performance. The specific objective was to study the effect of supplementation of RPC on milk production, reproduction, feed efficiency, and feed economics in dairy cows.

MATERIALS AND METHODS

Animals and design of experiment: All procedures and protocols used in this experiment were approved by Institutional Animal Ethics Committee, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand (272/LRS/2018). Cows (16) were randomly distributed into two groups of eight each. Each group had six multiparous cows [Five crossbred (50% HF and 50% Kankrej) and one Kankrej cow], and two primiparous crossbred cows (50% HF and 50% Kankrej). Criteria for allotment of cows were in descending order of previous lactation milk yield (kg/day) and lactation numbers. The primiparous cows were distributed based on the first lactation yield of the dam. Cows were housed in a well-ventilated barn with an individual feeding facility. All animals were dewormed before the initiation of the experiment. Animals were offered clean and fresh water at noon and in the evening at a tying place. Animals were let loose for exercise after morning milking (5:30 h to 9:30 h), during this time, they had free access to water. The water was also provided at the tying place.

Total mixed ration preparation and animal feeding: Total mixed ration (TMR) was prepared using 20% compounded concentrate mixture-1, 33% green fodder (sorghum/Hybrid Napier-Coimbatore-3), 25% wheat straw, 20% pulse straw (ground-nut/pigeon pea), 1% premix and 1% common salt on dry matter basis and fed to both groups of cows (ICAR 2013). Rumen-protected choline (33.5% w/w choline), @ 40 g/day was supplemented to cows of the T2 (RPC) group from 21 days prepartum to 120 days postpartum. Individual feeding of TMR was followed at tying place from 21-day pre-calving to 294 days post-calving two times in the morning (10:00 h) and afternoon (16:30 h). The leftover was measured the next day in the morning (5:00 h) to arrive at the daily feed intake. The cows required the concentrate at milking, were offered weighed quantity of pelleted concentrate mixture-2 and calculated in intake.

Data recording and statistics: Cows were milked two times a day in the morning (4:30 to 5:30 h) and evening (16:30 to 17:30 h). The daily milk yield was averaged at a bi-weekly period for 294 days (1-21 period). The milk yield during the 1-8th and 9-21st biweekly periods was considered as initial and residual milk yield, respectively. Four times milk samples were collected in the morning and evening in lactation and analyzed using Milkoscan (BIS 1981). FCM (4% fat corrected milk) was calculated using formula FCM = $(0.4 \times \text{milk yield in kg})$ + $(15 \times \text{milk fat in kg})$. The body condition score (BCS) from 1 to 5 point scale was recorded by three scientists individually with an increment of 0.25 points (Edmonson et al. 1989). BCS of cows was measured at 21, 14, and 7 days prepartum, at calving, and 7, 14, 21, 35, 49, 63, 91, and 119 days postpartum. Reproduction parameters viz. number of services required to conceive and service period were recorded. The feed efficiency was calculated based on dry matter and nutrients required to produce one kg of milk and 4% fat-corrected milk. The feed cost (₹) was calculated considering the price of milk, feeds, and fodders. The data were analyzed as per Snedecor and Cochran (2014) as one-way ANOVA using web-based agriculture statistic software WASP 2.0 (Jangam and Wadekar 2004). The difference between treatment means was considered significant at less than 5 % level.

RESULTS AND DISCUSSION

Feed and nutrient intake: The nutrient composition of TMR, feeds, and fodder is given in Table 1. The feeding TMR supplemented with 40g/day RPC (T2) resulted in a daily lower (P<0.05) intake of dry matter (DM; 2.44 kg), total digestible nutrients (TDN; 1.46 kg), crude protein (CP; 0.35 kg), and ether extract (0.07 kg) than the control group (Table 2). The periodical DMI of cows (Fig. 1) showed lower intake trend with milder fluctuation in T2 group than in T1 control group.

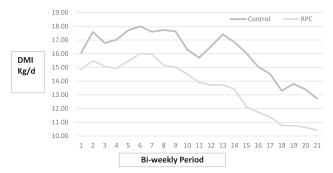


Fig. 1. Dry matter intake (DMI) of cows.

The cows of the RPC group had lower dry matter intake and a higher body condition score in the present experiment, this finding is in accordance with Hartwell *et al.* (2020) who reported significantly lower post-partum dry matter intake in high BCS cows compared to low BCS cows. Cooke *et al.* (2007) have also reported that supplementation of RPC in dairy cows improves liver function by reducing fatty liver during the peripartum period and it might be the reason for lower DMI. The RPC supplementation can reduce the fatty liver during the transition period and lead to increased gene expression related to VLDL mobilization (Abbasi *et al.* 2017). This mobilized fat can be utilized for milk synthesis and body energy requirements.

Contrary to the present study, a non-significant influence of feeding of rumen-protected choline on dry matter intake was reported (Elek *et al.* 2008, Potts *et al.* 2020, Hartwell *et al.* 2020) in dairy cows. The meta-analysis revealed that RPC did not impact DMI and appetite in dairy cows (Jayaprakash *et al.* 2016). While the study of Zom *et al.* (2011) and Arshad *et al.* (2019) reported higher dry

Table 1. Composition of TMR, feeds, and fodder (% on dry matter basis)

Composition parameter	DM	СР	EE	CF	NFE	TDN	Ash	Silica	Ca	P
TMR	86.19	11.04	2.81	26.02	47.85	54.40	10.26	4.22	096	063
Compounded concentrate mixture-1	90.05	27.13	4.91	13.11	46.84	80.00	8.01	2.59	2.56	1.54
Pelleted compounded concentrate mixture-2	90.20	19.66	3.41	13.39	49.45	75.00	14.09	4.16	2.25	1.23
Green sorghum	75.50	6.16	2.11	35.70	46.91	55.00	9.12	4.15	0.99	0.75
Green Hybrid Napier-CO3 (Coimbatore-3)	79.75	9.53	1.56	28.65	45.72	55.00	14.54	4.35	0.43	0.23
Wheat straw	90.00	4.02	1.94	30.18	54.24	45.00	9.62	6.25	0.23	0.21
Pigeon pea straw	90.02	9.01	3.27	27.34	46.71	45.00	13.58	5.45	069	0.34
Ground nut straw	90.22	11.23	4.14	25.05	49.69	45.00	9.89	1.90	1.00	0.72

TMR, Total mixed ration; DM, Dry matter; CP, Crude protein; EE, Ether extract; CF, Crude fibre; NFE, Nitrogen free extract; TDN, Total digestible nutrients; Ca, Calcium; P, Phosphorus.

Table 2. Nutrients intake, milk yield, and components yield of cows fed rumen-protected choline

Parameter	T1 (Control)	T2 (RPC)	P value	
Nutrients intake (kg/day)				
DM	16.01 ± 0.27	13.57 ± 0.26	0.039	
TDN	9.07 ± 0.17	7.61 ± 0.13	0.040	
CP	1.91 ± 0.04	1.56 ± 0.03	0.034	
EE	0.46 ± 0.01	0.39 ± 0.01	0.043	
Milk yield				
Whole milk, kg/day (1-21 Biweekly period)	9.71 ± 0.48	10.61 ± 0.32	0.118	
Initial whole milk yield, kg/day (1-8 Bi-week)	13.59 ± 0.67	13.20 ± 0.37	0.609	
Residual whole milk yield, kg/day (9-21 Bi-week)	7.33 ± 0.53	9.02 ± 0.39	0.011	
4% FCM yield, kg/day (1-21 biweekly period)	9.80 ± 0.48	10.99 ± 0.33	0.042	
Initial 4% FCM yield, kg/day (1-8 Bi-week)	13.63 ± 0.66	13.73 ± 0.36	0.893	
Residual 4% FCM yield, kg/day (9-21 Bi-week)	7.45 ± 0.54	9.30 ± 0.41	0.007	
Milking days	273.25 ± 14.39	282.13 ± 11.31	0.635	
Fat yield, kg/day	0.401 ± 0.02	0.446 ± 0.01	0.056	
SNF yield, kg/day	0.853 ± 0.04	0.953 ± 0.03	0.048	
TS yield, kg/day	1.254 ± 0.06	1.399 ± 0.04	0.049	
Lactose yield, kg/day	0.472 ± 0.02	0.520 ± 0.02	0.080	
Protein yield, kg/day	0.309 ± 0.01	0.344 ± 0.01	0.055	
Milk components (%)				
Fat	4.28 ± 0.27	4.25 ± 0.17	0.911	
SNF	8.88 ± 0.14	9.02 ± 0.11	0.461	
TS	13.17 ± 0.39	13.26 ± 0.26	0.845	
Lactose	4.91 ± 0.06	4.93 ± 0.05	0.895	
Protein	3.23 ± 0.05	3.26 ± 0.04	0.650	

RPC, Rumen protected choline; DM, Dry matter; TDN, Total digestible nutrients; CP, Crude protein; EE, Ether extract; FCM, Fat corrected milk; SNF, Solid not fat; TS, Total solid.

matter and net energy intake on choline supplementation. The present experiment was carried out for 294 days of lactation and most researchers did work for the RPC feeding period, so the further whole lactation study will be more interesting.

Milk and component yield: The effect of RPC supplementation on 4% FCM yield and milk yield during the 9-21 bi-week period was significantly higher but not during the overall 21 bi-week period (Table 2; Fig. 2). A significant (P<0.05) improvement was also noted in the yield of milk solids not fat and total solids. The milk fat, SNF, TS, lactose, and protein content (%) were not influenced (P>0.05) by supplemental feeding of RPC to dairy cows.

Similar results were reported by Acharya et al. (2020) in Karan Fries cows fed 55 g/d RPC from -30 days to

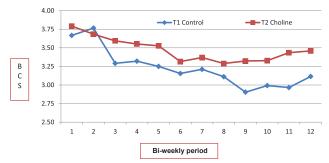


Fig. 2. Body condition score of cows.

+ 60 days of calving. The milk yield improvement was also reported by Potts et al. (2020), Soltan et al. (2012), Mohsen et al. (2011), Xu et al. (2006), and Pinotti et al. (2004) on supplementation of rumen-protected choline in the diet of lactating cows. Meta-analysis of Arshad et al. (2019) also revealed similar findings from different research. The present improvements in yield were attributed to more milking days, and higher daily milk yield, which may be owing to higher TVFA, efficient nitrogen fermentation, nutrient digestibility, and lipid metabolism as reported by Mohsen et al. (2011). The RPC also spares methionine, which can be utilized for milk production in dairy cows (Acharya et al. 2020). Contrary to the present findings, Hartwell et al. (2020), Pawar et al. (2015) and Leiva et al. (2015) reported a non-significant effect on milk production.

Reproductive performance: The feeding of RPC to dairy cows resulted in a lesser (P<0.05) number of artificial inseminations to conceive and a reduction (P<0.05) in the service period compared to a control group of cows. The calf weight was only 1.321 kg lower in the rumen-protected choline group than in the control even though having a higher ratio of females to males in the RPC group (Table 3). Choline supports cows to minimize negative energy, improves follicular development and fertility (Pirestani and Aghakhani 2018), improves follicular stimulating hormone-FSH and luteinizing hormone-LH production (Evans et al. 2006) which improves

Table 3. Reproductive performance, feed efficiency and feeding economics of cows

Parameter	T1 (Control)	T2 (RPC)	P value	
BCS	3.23 ± 0.08	3.47 ± 0.05	0.012	
Reproduction				
AI/conception	2.286 ± 0.18	1.857 ± 0.14	0.008	
Service period days	177.38 ± 20.92	108.13 ± 20.73	0.024	
Calf weight (kg)	29.150 ± 1.91	27.838 ± 1.12	0.194	
Female to male ratio	5:3	7:1		
Feed efficiency				
DM/kg milk	2.032 ± 0.06	1.399 ± 0.08	0.033	
DM/kg FCM	1.921 ± 0.03	1.345 ± 0.08	0.014	
TDN/kg milk	1.133 ± 0.09	0.807 ± 0.06	0.042	
TDN/kg FCM	1.071 ± 0.01	0.772 ± 0.01	0.015	
Feeding economics				
Feed cost (₹/kg milk)	25.228 ± 0.699	17.867 ± 0.258	0.002	
Milk value	293.13±51.23	321.88 ± 36.47	0.650	
(₹/cow/day)				
Feed cost	179.63 ± 15.60	163.57 ± 10.81	0.342	
(₹/cow/day)				
Return over feed cost	113.50±41.78	158.31 ± 27.34	0.462	
(ROF) (₹/cow/day)				
Feed cost to milk	1.00:1.63	1.00:1.97		
income ratio				
ROF over control		+44.81		
(₹/cow/day)		20.40		
% ROF over control		39.48		

RPC, Rumen protected choline; AI, Artificial insemination; ROF, Return over feed cost; DM, Dry matter; TDN, Total digestible nutrients; FCM, Fat corrected milk.

reproduction. Similarly, a reduction in the open days, service per conception in Holstein dairy cows was reported on daily feeding of 18 g (Ardalan *et al.* 2010) and 60 g (Pirestani and Aghakhani 2018) RPC during -4 to 20 and -1 to 4 weeks of calving, respectively.

Body conditions score (BCS) and milk yield: The postpartum decline in body condition score of cows (Fig. 2) fed RPC was gradual but in the control group, a sharp decline was observed up to 14 days post-partum. BCS of cows of the RPC-supplemented group remained on the higher side throughout the experiment. The milk yield curve (Fig. 3) of RPC group cows showed higher persistency compared to the cows of the control group.

The cows under RPC group experienced only mild decline in BCS and higher persistency of milk yield that

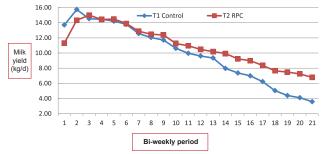


Fig. 3. Bi-weekly milk yield (kg/day) of cows

might have diverted more energy to improve reproductive performance. The loss of BCS has more consequences on reproduction than the absolute value. A loss of BCS under one point has a modest effect on reproduction while a loss above one point has a negative effect on production and reproduction (Souissi and Bouraoi 2019) in dairy cows. Similarly, a trend in milk yield and BCS was reported by Elek *et al.* (2008) in Holstein cows, fed 25 and 50 g/d RPC during pre- and post-partum periods, respectively. The meta-analysis of choline supplementation 0 to 12.9 g/d by Arshad *et al.* (2019) also revealed a positive and linear effect (*P*=0.008) on postpartum BCS in dairy cows.

Feed efficiency and feed economics: The conversion efficiency (Table 3) of cows fed RPC was improved significantly (P<0.05) compared to the control group. The cows consumed 0.633 and 0.576 kg less dry matter to produce a kg of whole and 4% fat-corrected milk, respectively. The requirement of total digestible nutrients was 0.326 and 0.299 kg less for the same. The daily feeding cost of cows fed supplemental RPC was ₹ 7.361 lower (P<0.05) to produce a kilogram of milk. The return over feed cost was ₹ 44.81/cow (39.48%) more in the RPC group. Similarly, improved feed utilization efficiency for milk yield was reported in Karan-Fries cows (Amrutkar et al. 2015) and in Holstein cows (Soltan et al. 2012). A meta-analysis by Arshad et al. (2019) also showed efficient feed utilization in dairy cows fed 12.9 g RPC daily. The lower intake of nutrients and better milk production in the current experiment may be due to improved feed utilization for milk production.

The supplementation of 40 g/day rumen-protected choline (35% w/w) from 21 days prepartum to 120 days postpartum in dairy cows resulted in significantly lower nutrient intake, improved 4% FCM yield, reproductive performance, body condition score, feed efficiency, and feed economics.

ACKNOWLEDGEMENTS

This project was funded by the Government of Gujarat, India. Authors are highly thankful to the Authority of Anand Agricultural University, Anand, Gujarat for providing the funds, facilities, and logistics to conduct research.

REFERENCES

Abbasi I H R, Abbasi F, Soomro R N, ElHack M E A, AbdelLatif M A, Li W, Hao R, Sun F, Bodinga B M, Hayat K, Yao J and Cao Y. 2017. Considering choline as methionine precursor, lipoproteins transporter, hepatic promoter and antioxidant agent in dairy cows. *AMB Expression* 7: 214.

Acharya P, Lathwal S S, Singh P, Patnaik N M and Moharana B. 2020. Effect of supplementation with rumen-protected choline and green tea extract on production performance of transition Karan Fries cows. *Veterinary World* **13**(3): 489–94.

Amrutkar S A, Pawar S P, Thakur S S, Kewalramani N J and Mahesh M S. 2015. Dietary supplementation of rumen-protected methionine, lysine and choline improves lactation performance and blood metabolic profile of Karan-Fries cows. *Agriculture Research* 4: 396–404.

- Ardalan M, Rezayazdi K and Banadaky M D. 2010. Investigation on the effect of supplementing rumen protected forms of methionine and choline on health situation and reproductive performance of Holstein dairy cows. *Pakistan Journal of Biological Science* 12(1): 69–73.
- Arshad U, Zenobi M G, Staples C R and Santos J E P. 2019. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. *Journal of Dairy Science* 103: 282-300.
- BIS (1981). *Handbook of Food Analysis* (XI), Dairy Products. Bureau of Indian Standards. Manak Bhavan, New Delhi, pp. 152–182.
- Chaudhari K I, Prajapati D C, Lunagariya P M, Sorathiya K K, Patel S N, Patel R P and Nayak A L. 2017. An importance of choline chloride for poultry and cattle: An overview. *International Journal of Science, Environment and Technology* 6(5): 2804–10.
- Cooke R F, Silva Del Rio N, Caraviello D Z, Bertics S J, Ramos M H and Grummer R R. 2007. Supplemental choline for prevention and alleviation of fatty liver in dairy cattle. *Journal of Dairy Science* **90**: 2413–18.
- Edmonson A J, Lean I J, Weaver L D, Farver T and Webster G. 1989. A body condition scoring chart for Holstein dairy cows. *Journal of Dairy Science* **72**: 68.
- Elek P, Newbold J R, Gaal T, Wagner L and Husveth F. 2008. Effects of rumen-protected choline supplementation on milk production and choline supply of periparturient dairy cows. *Animal* 2(11): 1595–1601.
- Evans E, Mair D T, Gauthier R and Fontaine J. 2006. Case study: Effects of providing a protected vitamin and choline supplement in the transition period on dairy cow production and reproduction. *Professional Animal Scientist* 22:158–63.
- Grummer R R, Mashek D G and Hayirli A. 2004. Dry matter intake and energy balance in the transition period. *Veterinary Clinics of North America Food Animal Practice* **20**: 447–70.
- Hartwell J R, Cecavqa M J and Donkin S S. 2020. Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites and milk production in transition dairy cows. *Journal of Dairy Science* 83: 2907–17.
- Hayirli A. 2006. The role of exogenous insulin in the complex of hepatic lipidosis and ketosis associated with insulin resistance phenomenon in postpartum dairy cattle. *Veterinary Research Communications* **30**(7): 749–74.
- ICAR 2013. Nutrient Requirements of Cattle and Buffaloes, Indian Council of Agricultural Research, Krishi Anusandhan Bhavan, Pusa, New Delhi.
- Jangam A K and Wadekar P N. 2004. Web-based Agriculture Statistic software Package-WASP 2.0. Central Coastal Agricultural Research Institute, Indian Council of Agricultural Research, Goa, India. (https://ccari.icar.gov.in/wasp2.0/index. php)
- Jayaprakash G, Sathiyabarathi M, Robert M A and Tamilmani T. 2016. Rumen-protected choline: A significance effect on dairy

- cattle nutrition. Veterinary World 9(8): 837-41.
- Leiva T, Cooke R F, Brandão A P, Marques R S and Vasconcelos J L M. 2015. Effects of rumen-protected choline supplementation on metabolic and performance responses of transition dairy cows. *Journal of Animal Science* 93: 1896– 1904.
- Mohsen M K, Gaafar H M A, Khalafalla M M, Shitta A A and Yousif A M. 2011. Effect of rumen protected choline supplementation on digestibility, rumen activity and milk yield in lactating Friesian cows. Slovak Journal of Animal Science 44(1): 13–20.
- Pawar S P, Kewalramani N, Thakur S S and Kaur J. 2015. Effect of dietary rumen protected choline supplementation on milk choline content in crossbred cows. *Indian Journal of Animal Nutrition* 32(1): 30–35.
- Pinotti L, Campagnoli A, Sangalli L, Rebucci R, Dell'Orto V and Baldi A. 2004. Metabolism in periparturient dairy cows fed rumen-protected choline. *Journal of Animal and Feed Sciences* **13**(Suppl. 1): 551–54.
- Pirestani A and Aghakhani M. 2018. The effects of rumenprotected choline and L-carnitine supplementation in the transition period on reproduction, production, and some metabolic diseases of dairy cattle. *Journal of Applied Animal Research* 46(1): 435–40.
- Potts S B, Scholte C M, Moyes K M and Erdman R A. 2020. Production responses to rumen-protected choline and methionine supplemented during the periparturient period differ for primi- and multiparous cows. *Journal of Dairy Science* 103: 6070–86.
- Sharma B K and Erdman R A. 1989. *In vitro* degradation of choline from selected feedstuffs and choline supplements. *Journal of Dairy Science* **72**: 2772–76.
- Snedecor G W and Cochran W G. 2014. Statistical Methods. 8th ed. The Iowa State University Press, Ames, Iowa, USA.
- Soltan M A, Mujalli A M, Mandour M A and Abeer M E. 2012. Effect of dietary rumen protected methionine and/or choline supplementation on rumen fermentation characteristics and productive performance of early lactating cows. *Pakistan Journal of Nutrition* 11(3): 221–30.
- Souissi W and Bouraoi R. 2019. Relationship between body condition score, milk yield, reproduction, and biochemical parameters in dairy cows. *Lactation in Farm Animals Biology, Physiological Basis, Nutritional Requirements and Modelization*. Published by IntechOpen (DOI: 10.5772/intechopen.85343).
- Xu G, Ye J, Liu J and Yu Y. 2006. Effect of rumen-protected choline addition on milk performance and blood metabolic parameters in transition dairy cows. *Asian Australasian Journal of Animal Science* **19**(3): 390–95.
- Zom R L G, van Baal J, Goselink R M A, Bakker J A, de Veth M J and van Vuuren A M. 2011. Effect of rumen-protected choline on performance, blood metabolites, and hepatic triacylglycerols of periparturient dairy cattle. *Journal of Dairy Science* 94: 4016–27.