

Effect of exogenous fibrolytic enzymes cocktail incorporation on *in vitro* degradation and fermentation characteristics of oats straw based total mixed ration

YASIR AFZAL BEIGH^{1⊠}, ABDUL MAJEED GANAI¹, HAIDAR ALI AHMAD¹, JAVID FAROOQ¹, GOWHER GULL SHEIKH², PARVAIZ AHMAD RESHI¹ and ZULFAQARUL HAQ¹

Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir 190 006 India

Received: 10 January 2023; Accepted: 21 August 2023

ABSTRACT

The study was conducted to evaluate the effects of increasing doses: 0 (control), 0.20, 0.40, 0.60, 0.80 and 1.00 % DM of an exogenous fibrolytic enzymes (EFE) cocktail preparation on *in vitro* gas production (GP), nutrient degradability and fermentation characteristics of oats straw based Total Mixed Ration (TMR) with 60:40 roughage to concentrate ratio using sheep rumen liquor. The chemical composition of all the feed ingredients used for preparation of the experimental TMR (containing 16.63% crude protein and 90.51% organic matter) were within the normal ranges. Increasing the incorporation level of enzyme cocktail linearly as well as quadratically increased net GP, metabolisable energy content, short chain fatty acid concentrations and microbial crude protein production up to 0.60% DM level (L3) with no additional improvement at further higher levels. There were significant improvements in degradability of dry matter, organic matter and neutral detergent fibre up to the enzyme dose of 0.60% DM (L3) with constant values thereafter. Fermentation characteristics response to varying incorporation doses of EFE cocktail also revealed improvements up to 0.60% DM level (L3) with no effect on non-protein nitrogen contents. It is recommended that EFE cocktail incorporation dose of 0.60% DM to be used for efficient utilisation of oats straw based complete feed; however, this requires further testing by *in vivo* studies.

Keywords: Complete feed, Fermentation kinetics, Fibrolytic enzymes, In vitro assay, Nutrient degradability

Fibrous crop residues like straws, stovers and other agroindustrial byproducts form bulk and indispensable part are used as source of roughage in ruminant feeding throughout world particularly in developing countries like India (Beigh *et al.* 2017). However, their utilization efficiency in ruminants is limited owing to incomplete ruminal digestion of plant cell walls due to presence of complex links limiting the degradation of nutritional compounds (Kumar *et al.* 2022), therefore it cannot support even the maintenance nutrient requirement of the animals. There is a growing need to improve the feeding value of locally available fodder resources for supplementary feeding. To optimize the nutrient availability from these feedstuffs, incorporation of biologically active enzymes as animal feed additives in ration of farm animals has received considerable attention.

Exogenous Fibrolytic Enzymes (EFE) applications have shown to increase degradation of animal feeds *in vitro* (Eun *et al.* 2007, Wang *et al.* 2012, Abid *et al.* 2022),

Present address: ¹Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir. ²Mountain Livestock Research Institute, Manasbal.

□ Corresponding author email: vetyasir1@gmail.com

in situ (Salvo et al. 2022, Tirado-Gonzalez et al. 2017, Bassiouni et al. 2011) as well as in vivo (Beauchemin et al. 2003 Bala et al. 2009, Pech-Cervantes et al. 2021), although results with EFE addition are variable and somewhat inconsistent (Sujan and Seresinhe 2015), making their biological response difficult to predict. Responses to enzyme addition are non linear, as some studies have shown substantial improvement of nutrient digestibility (Pech-Cervantes et al. 2021), while others reported either negative effects (Baloyi 2008) or none at all (Tseu et al. 2022). Moreover, the optimum dose level for EFE addition to improve fibre utilization by ruminants is not yet well established. These inconsistent responses to the addition of enzymes indicate that further studies are required to demonstrate the effects of EFE on in vitro kinetic parameters. It is important to assess the optimum level of EFE for crop residues based diets before the technology can be used cost effectively in ruminant rations for bringing out consistent improvement in utilization of high roughage based diets. The present investigation was undertaken with the aim to study the effect of EFE cocktail addition at different levels on in vitro nutrient degradability and fermentation characteristics of oats straw based total mixed ration (TMR) using rumen liquor of sheep.

MATERIALS AND METHODS

Experimental feed additive and basal diet: Prior to use in the current study, the EFE cocktail preparation (ALLENZIMIX-EP, supplied by Mitushi Pharma, Ahmedabad, Gujarat, India) was assayed for its enzyme activities according to the methods of Valdes *et al.* (2015). Analysis showed its enzyme activity as: 800000 IU/g cellulase, 400000 IU/g phytase, 450000 IU/g β-glucanase, 400000 IU/g xylanase and 350000 IU/g pectinase obtained through an anaerobic fermentation process.

The basal TMR for *in vitro* assay was based on oats straw (*Avena sativa*)-40 parts, mixed grass hay-20 parts and concentrate mixture-40 parts formulated with roughage: concentrate ratio of 60:40 to meet nutrient requirements (ICAR 2013b) recommended for growing sheep. Mixed grass hay comprised of clover (*Trifolium repens*) and rye (*Lolium perenne*) in equal proportions (1:1 ratio). The basal TMR was added with EFE cocktail at five different levels of 0.20 (L_1), 0.40 (L_2), 0.60 (L_3), 0.80 (L_4) and 1.00 (L_5) per cent substrate dry matter (DM), while the basal feed without additive (L_0) served as control.

In vitro assay: The study was taken up to determine the dose response effect of incorporating EFE cocktail as feed additive on nutrient degradability and fermentation pattern to select the effective dose that could be recommended for in vivo applicability. Around 250 mL of rumen liquor was collected in early morning before feeding through a stomach tube (FG-20) from each of the three adult donor Corriedale sheep fed ad lib. on a diet of oats straw and concentrate mixture in a ratio of 60:40 with free access to fresh water. The collected rumen liquor were mixed on a volume basis, and filtered through four layers of cheesecloth. The incubation inoculum was prepared by diluting the rumen liquor in a 1:4 (v/v) ratio as per Tilley and Terry (1963) method with a buffer medium (consisted per liter of 0.45 g dipotassium phosphate, 0.45 g potassium dihydrogen phosphate, 0.9 g ammonium sulfate, 0.12 g calcium chloride dihydrate, 0.9 g sodium chloride, 0.19 g magnesium sulfate heptahydrate, 1.0 g trypticase peptone, 1.0 g yeast extract, and 0.6 g L-cysteine hydrochloride, which was autoclaved for 15 min at 121°C while adjusting its pH to 6.9 using 10 N sodium hydroxide solution). Mixed inoculum was stirred in a water bath at 39°C with purging CO₂ until its use (10-15 min later). In 100 mL sterile prewarmed incubation flasks fitted with calibrated syringes, 500 mg (<1 mm ground) of each sample was placed without (L0) or with 1 (L1), 2 (L2), 3 (L3), 4 (L4) and 5 (L5) mg EFE cocktail to which 40 mL of the incubation inoculum was added. The flasks were stoppered with Bunsen valves and incubated for 48 h at 39°C. Flasks were gently swirled every 8 h by hand. Each sample was incubated in four replicates.

At the end of the 48 h of the incubation period, flask contents were acidified using 6 M HCL to reach a final pH of 1.3-1.5. After a few seconds, when the foam subsided, pepsin powder was added to a final concentration of 0.2%

(w/v). The flasks were re-incubated for an additional 48 h period at the end of which the fermentation process was stopped by swirling the flasks in ice. The flasks were then uncapped, contents were transferred into tubes and centrifuged at 2500 rpm for 15 min to obtain supernatant for estimation of fermentation parameters and pellet as non-fermented residue for determination of degraded substrate.

The pH was measured from supernatant immediately after centrifugation using a portable digital pH meter (ECOPHTEST 1, EuTech Instruments, India). The pellets were dried in a forced air oven at 65°C overnight to determine the residual DM weights. Then, to determine ash content, the residues were kept at 600°C for 1 h to estimate organic matter (OM). Besides, NDF content of the residue left after 48 h incubation was estimated. In vitro DM, OM and NDF degradability were calculated, respectively as the DM, OM and NDF which disappeared from the initial weight inserted into the respective flask. In vitro gas production was measured at 24 h postincubation by syringes fitted to the incubation flasks.

Sample analysis and calculations: Samples of feeds and basal diets were dried, ground and subjected to different chemical analysis in triplicate according to AOAC (2000). Also, the non-fermented residues left after 48 h of incubation were analysed for DM, OM and NDF contents. Nitrogen content was estimated by Kjeldahl method (AOAC 2000). Concentrations of cellulose were determined as per Crampton and Maynard (1938), while neutral detergent fibre (NDF) and acid detergent fibre (ADF) as per Van Soest *et al.* (1991).

Metabolizable energy (ME, MJ/kg DM) content of the diets was estimated according to Menke *et al.* (1979). The partitioning factor at 24 h of incubation (PF₂₄) and microbial CP biomass production (MCP) were calculated according to Blummel *et al.* (1997). Net gas production (NGP) for the incubated dietary samples was determined by subtracting the average blank gas volumes from the cumulative gas volumes of each sample. Gas yield (GY₂₄) was calculated as the volume of gas (mL gas/g DM) produced after 24 h of incubation divided by the amount of DMD (g) as per Elghandour *et al.* (2013). Short chain fatty acid concentration (SCFA) was calculated according to Getachew *et al.* (2002).

The supernatant samples left after separation of nonfermented residues from incubation media were preserved after adding few drops of saturated solution of mercuric chloride and kept in labeled polypropylene bottles at -20°C for further analysis. The samples were analysed for total volatile fatty acids (TVFA) according to the method of Barnett and Reid (1957) using Markham steam distillation apparatus, total nitrogen (Total-N) and tricarboxylic acid-precipitable nitrogen (TCA-ppt-N) by micro-Kjeldahl method as per AOAC (2000), and ammonia nitrogen (NH₃-N) as per Weatherburn (1967). Non-protein-N (NPN) was calculated by subtracting the TCA-ppt-N from total-N contents.

Statistical analysis: The in vitro experiment was

Hemicellulose

Cellulose

completed in one run, using single ruminal inoculum (a pool from three animals) for all the levels of EFE cocktail. Each level (statistical treatment) was incubated in quadruplet (statistical replicates) which added upto 24 flasks for all the levels (4 flasks × 6 TMR's). The orthogonal contrasts were designed to test linear and quadratic responses of the degradability parameters and fermentation characteristics to gradual increasing levels of EFE using statistical software program SPSS (version 20.0) for Windows (SPSS Inc., Chicago, Illinois, USA). Any p value less than 0.05 (p<0.05) was taken as statistically significant.

RESULTS AND DISCUSSION

Chemical composition: The chemical composition (on % DM basis) of experimental basal TMR along with few individual feed ingredients and the feed additive are presented in Table 1. The chemical composition of oats straw was comparable to those of the earlier reports by Afzal et al. (2009). The basal TMR contained 16.63% crude protein and 90.51% OM which is comparable with the findings of Sachan et al. (2014). The crude protein and OM content in EFE cocktail were 16.84 and 100.00%, respectively which are in agreement with the reports of Ganai et al. (2011). The chemical composition of all the feed ingredients used for preparation of the experimental TMR under present study were within the normal range as prescribed for Indian feeds and fodders (ICAR 2013a) with slight variations which might be due to differences in geographical location, stage of maturity, nutrient profile

21.10

31.90

of soils where they were grown and plant part (i.e. twigs, leaves, soft stem) sampled, and method of harvesting. Inconsistencies in chemical composition could also be due to sampling site and climatic influences on species growth and plant nutrient accumulation.

Fermentation kinetics: Increasing EFE dose level improved (p<0.01) NGP, ME content, SCFA and MCP production linearly as well as quadratically up to 0.60% incorporation level (L3); however, PF24 and GY24 were not affected by EFE additions (Table 2). EFE in ruminant diets increases the rate of fermentation and probably degradation of feedstuffs which is evidenced by increase in gas production at 24 h incubation. Gas production response to varying levels of enzyme addition differed in agreement to the findings of Gado et al. (2017) who attributed GP response to enzyme level×feed type interactions to different nutrient contents. In the present study, EFE addition to TMR produced more gas at 0.60% DM than the lower incorporation levels, which is expected because the greater the enzyme level, the higher the enzymatic activity (Elghandour et al. 2016). However, further higher enzyme level had no additional effect because higher enzyme level may have prevented binding of all enzymes to substrate receptors, which reduced proportional attachment by ruminal microorganisms to fibre (Togtokhbayar et al. 2015). Colombatto et al. (2003) concluded that increasing the level of enzyme from $1 \times$ to $5 \times$ increased the rate and extent of GP, but that addition at the 10× levels was not effective. Increased in vitro GP with EFE addition may

16.40

17.90

Table 1. Ingredients and chemical composition (on % dry matter basis) of the experimental diets

Physical composition					
Ingredients					Parts
Oats straw					40.00
Mixed grass hay					20.00
Crushed maize					11.00
Wheat bran					5.00
De-oiled rice bran					4.00
Mustard oil cake					6.00
Soybean					11.40
Molasses					1.00
Mineral mixture‡					0.60
Common salt					0.40
Urea					0.60
Chemical composition					
Attribute	Oats straw	Mixed grass hay	Concentrate mixture	EFE cocktail	Basal TMR
OM	92.08	91.45	89.52	100.00	90.51
CP	6.78	15.97	26.47	16.84	16.63
NDF	69.20	39.20	22.20	-	44.80
ADF	48.10	25.80	11.20	-	28.40

[‡] Mineral mixture: 18 Calcium (g/100 g), 12 Phosphorous (g/100 g), 2 Magnesium (g/100 g), 2.3 Sulphur (g/100 g), 210 Zinc (mg/100 g), 55 Iron (mg/100 g), 10 Iodine (mg/100 g), 60 Copper (mg/100 g), 210 Manganese (mg/100 g), 8 Cobalt (mg/100 g), 30 Fluorine (mg/100 g). ADF, Acid Detergent Fibre; CP, Crude Protein; EFE, Exogenous Fibrolytic Enzymes cocktail; NDF, Neutral Detergent Fibre, OM, Organic Matter; TMR, Total Mixed Ration.

11.00

5.40

13.40

18.50

Table 2. In vitro fermentation kinetics of basal TMR incorporated with gradual increasing levels of EFE cocktail at 48h of incubation

Attribute		EFE level [‡]						<i>p</i> -value	
	L_0	$L_{_1}$	L_2	L_3	L_4	L_5		L	Q
NGP (mL/500 mg)	58.17ª	60.17 ^b	63.93°	67.90 ^d	68.13 ^d	68.03 ^d	0.975	< 0.001	< 0.001
ME (MJ/kg DM)	6.31a	6.42b	6.62°	6.84 ^d	6.85^{d}	6.85^{d}	0.053	< 0.001	< 0.001
PF_{24} (mg/mL)	4.28	4.43	4.23	4.27	4.31	4.34	0.018	0.930	0.180
GY_{24} (mL/g DM)	233.92	225.81	236.65	234.56	231.88	230.63	0.967	0.976	0.151
SCFA (mmol/g DM)	2.56a	2.65b	2.82°	3.00^{d}	3.01^d	3.00^{d}	0.044	< 0.001	< 0.001
MCP (mg/g DM)	241.40a	268.27bc	259.03ab	280.24^{cd}	287.88d	290.65d	4.319	< 0.001	0.092

 ‡ Levels of incorporation of EFE in basal TMR comprising of : L_0 , Control (basal diet without EFE); L_1 , basal diet incorporated with 0.20% DM of EFE; L_2 , basal diet incorporated with 0.40% DM of EFE; L_3 , basal diet incorporated with 0.60% DM of EFE; L_4 , basal diet incorporated with 0.80% DM of EFE, L_5 , basal diet incorporated with 1.00% DM of EFE. EFE, Exogenous Fibrolytic Enzymes cocktail; GY_{24} , Gas Yield at 24 h of incubation; MCP, Microbial CP Biomass Production; ME, metabolizable energy; NGP, net gas production; PF $_{24}$, partitioning factor at 24 h of incubation; SCFA: Short Chain Fatty Acid concentrations; SEM: Standard Error Mean; L: Linear Response; Q: Quadratic Response. Means with different lowercase superscripts in a row differ significantly among the levels.

increase the net energy density of the diets and stimulate MCP production which is positively correlated with high activities of the rumen microbes (Oba and Allen 2000). Enzyme incorporation stimulates rumen microbial growth and activity causing improvement in MCP, SCFA production and ME concentration in the diet (Vallejo et al. 2016). These results are in conformity with those of Elghandour et al. (2016) who observed that the addition of EFE to feeds improved fermentation kinetics, ME, SCFA and MCP.

In vitro nutrient degradability: The results of dietary EFE incorporation effects on in vitro nutrient degradability are summarised in Table 3. Addition of EFE cocktail was effective in improving (p<0.01) DM, OM and NDF degradability in vitro linearly as well as quadratically; however, the effect was significant only upto 0.60% DM incorporation level (L3). Enzyme application to the substrate enhances the attachment and colonization of rumen microorganisms to the feed particles (Wang et al. 2001), increase fibre digestion and alter ruminal fermentation (Nsereko et al. 2002), and/or act synergistically with endogenous ruminal enzymes to increase hydrolytic capacity of the rumen (Morgavi et al. 2001). Other workers (Togtokhbayar et al. 2015, Vallejo et al. 2016) also reported improvement in nutrient degradability pattern either in vitro or in sacco by application of exogenous enzymes. At higher EFE incorporation levels (>0.60% incorporation level), no

further additional improvement in nutrient degradability was evident which might be due to the fact that beneficial disruption of the feed area may get diminished because the excess exogenous enzyme attached to feed may have restricted microbial attachment and limited digestion of feed.

Dietary application with EFE improves fermentation of feeds through fibre hydrolysis and/or solubilization which causes enhancement in fibre degradation (Elsiddig 2019). Increased NDF degradability enhances the energy density of diets as depicted by higher ME contents, and stimulates the microbial production as reflected by higher MCP production at corresponding levels in the present study. Besides, higher nutrient (OM) degradability due to enzyme addition suggest a stimulated rate of fermentation which is closely correlated with gas production, as reported by Diaz *et al.* (2013) who evaluated *in vitro* commercial fibrolytic enzymes for improving the nutritive value of low-quality forages.

Fermentation characteristics: EFE incorporated at gradual increasing levels altered all the fermentation metabolites except NPN (Table 4). Increased TVFA with increased EFE level was opposite of the pH response, but was consistent with the increase of SCFA concentrations, nutrient degradability and ME contents; however, the prominent (p<0.01) effect was observed only up to 0.60% DM incorporation level (L3). This might be due

Table 3. *In vitro* nutrient degradability (% DM) of basal TMR incorporated with gradual increasing levels of EFE cocktail at 48h of incubation

Attribute	EFE level [‡]						SEM	<i>p</i> -value	
-	L_0	L	L ₂	L_3	L_4	L_5	•	L	Q
Dry matter	49.95ª	52.62ab	54.22 ^b	57.85°	58.75°	58.92°	0.717	< 0.001	< 0.001
Organic matter	51.32a	53.13a	56.54 ^b	63.30°	63.87°	63.92°	1.591	< 0.001	0.009
Neutral detergent fibre	31.41a	33.36^{b}	35.80°	39.63^{d}	39.87^{d}	40.44^{d}	1.052	< 0.001	0.001

 ‡ Levels of incorporation of EFE in basal TMR comprising of : L_0 : Control (basal diet without EFE) ; L_1 , basal diet incorporated with 0.20% DM of EFE; L_2 , basal diet incorporated with 0.60% DM of EFE; L_4 basal diet incorporated with 0.60% DM of EFE; L_5 basal diet incorporated with 1.00% DM of EFE. EFE, Exogenous Fibrolytic Enzymes cocktail; SEM, Standard Error Mean; L, Linear Response; Q, Quadratic Response. Means with different lowercase superscripts in a row differ significantly among the levels.

Table 4. *In vitro* fermentation characteristics of basal TMR incorporated with gradual increasing levels of EFE cocktail at 48 h of incubation

Attribute	EFE level [‡]						SEM	<i>p</i> -value	
	L_0	$L_{_1}$	L_2	L_3	L ₄	L_5		L	Q
pН	6.92°	6.88°	6.83 ^b	6.79ab	6.80ab	6.77a	0.014	< 0.001	0.014
TVFA (mmol/L)	82.67a	84.51ab	87.02 ^b	90.50°	91.31°	91.40°	0.862	< 0.001	0.028
Nitrogen fractions (mg/dL)									
Ammonia-N	27.33a	27.24a	27.51ab	28.00b	28.04b	28.03b	0.094	< 0.001	0.675
Total-N	87.73a	90.94 ^b	95.16°	98.93 ^d	99.47 ^d	100.03 ^d	1.139	< 0.001	< 0.001
TCA- precipitable-N	30.80^{a}	31.93a	35.16 ^b	41.07°	41.87°	41.65°	1.141	< 0.001	0.007
Non protein-N	56.93	59.00	60.00	57.87	57.61	58.38	0.315	0.851	0.055

 ‡ Levels of incorporation of EFE in basal TMR comprising of : L_0 , Control (basal diet without EFE); L_1 , basal diet incorporated with 0.20% DM of EFE; L_2 , basal diet incorporated with 0.60% DM of EFE; L_4 , basal diet incorporated with 0.60% DM of EFE; L_4 , basal diet incorporated with 0.80% DM of EFE; L_5 , basal diet incorporated with 1.00% DM of EFE. EFE, Exogenous Fibrolytic Enzymes cocktail; TVFA, Total Volatile Fatty Acids; SEM: Standard Error Mean, L, Linear Response; Q, Quadratic Response. Means with different lowercase superscripts in a row differ significantly among the levels.

to greater enzymatic hydrolysis of feeds into readily fermentable substrates that depressed pH and raised the TVFA concentration when fermented with addition of EFE (Vallejo et al. 2016). In the present study, this was also confirmed by increased nutrient degradability with gradual increasing levels of EFE incorporation up to L3 level. Elghandour et al. (2013) reported decreased ruminal pH values when incubated various fibrous feeds with different levels of exogenous fibrolytic enzymes. These results are in conformity with the findings of Almaraz et al. (2010) who also reported an increase in TVFA concentration by exogenous enzymes application in vitro. Also, Omar et al. (2009) concluded that supplementation of enzymes to steer rations improved digestibility and rumen SCFA concentrations.

In nitrogen fractions, increased (p<0.01) content of ammonia-N at higher EFE incorporation levels compared to control (L0) and lowest level (L1) represents the faster rate of nutrient degradation and/or fermentation by EFE addition. Ammonia-N content at all the levels was sufficient for optimum microbial growth which is reported to be 5-7 mg/dL (Satter and Slyter 1974), suggesting sufficient protein content of the feed as growth ration for sheep. Increased (p<0.01) concentration of total-N as well as TCA-precipitable-N with increasing levels of EFE addition has been observed. Enzyme addition might have stimulated and/or increased total rumen microbial numbers, which is reflected by the increase in TCA-precipitable-N and thus in total-N contents as an indicator of enhanced rumen microbial protein synthesis, which is also confirmed by increased levels of MCP to the corresponding EFE incorporation levels. These results corroborates well with the findings of Vallejo et al. (2016) who also observed increased microbial protein production by enzyme application in vitro.

Increasing the exogenous fibrolytic enzymes cocktail incorporation dose in TMR linearly increased gas production, fermentation rate, microbial CP production, nutrient degradability and fermentation characteristics up to the level of 0.60% DM with no further additional improvement at higher levels, suggesting the EFE cocktail

dose of 0.60% DM to be used for efficient utilisation of oats straw based complete feeds, which although needs further testing by *in vivo* studies.

REFERENCES

Abid K, Jabri J, Yaich H, Malek A, Rekhis J and Kamoun M. 2022. *In vitro* study on the effects of exogenic fibrolytic enzymes produced from *Trichoderma longibrachiatum* on ruminal degradation of olive mill waste. *Archives Animal Breeding* **65**: 79–88.

Afzal Y, Ganai A M, Mattoo F A and Shad F I. 2009. Comparative dietary evaluation of oats straw and tree leaf based complete feed in block and mash form in sheep. *Indian Journal of Small Ruminants* **15**: 212–16.

Almaraz I, Gonzalez S S, Pinos-Rodriguez J M and Miranda L A. 2010. Effects of exogenous fibrolytic enzymes on *in sacco* and *in vitro* degradation of diets and on growth performance of lambs. *Italian Journal of Animal Science* **9**(e2): 6–10.

AOAC. 2000. Official Methods of Analysis. Association of Analytical Communities International. 17th Ed, Washington, D.C.

Bala P, Malik R and Srinivas B. 2009. Effect of fortifying concentrate supplement with fibrolytic enzymes on nutrient utilization, milk yield and composition in lactating goats. *Animal Science Journal* 80: 265–72.

Baloyi T F. 2008. 'Effects of exogenous fibrolytic enzymes on in vitro fermentation kinetics of forage and mixed feed substrates.' MSc(Agric.) thesis, Stellenbosch University, Stellenbosch, South Africa.

Bassiouni M I, Gaafar H M, Saleh M S, Mohi El-Din, A M and Elshora M A H. 2011. Evaluation of rations supplemented with fibrolytic enzyme on dairy cows performance 2. *In situ* ruminal degradability of rations containing different roughages at two concentrate to roughage ratios. *Researcher* 3: 21–33.

Barnett A J G and Reid R L. 1957. Studies on the production of volatile fatty acids from grass by rumen liquor in artificial rumen. 1. The Volatile fatty acid production of fresh grass. *Journal of Agricultural Science* **48**: 315–21.

Beauchemin K A, Colombatto D, Morgavi D P and Yang W Z. 2003. Use of exogenous fibrolytic enzymes to improve feed utilization by ruminants. *Journal of Animal Science* 81 (E. Suppl. 2): 37–47.

Beigh Y A, Ganai A M, Sheikh G G, Ahmad H A, Bilal S, Amin U and Mir M S. 2017. Effect of feeding complete diet

- supplemented with feed additives alone and in combination on nutritional and hepatorenal function test profile in crossbred lambs. *The Haryana Veterinarian* **56**(1): 58–62.
- Blummel M, Steingass H and Becker K. 1997. The relationship between *in vitro* gas production, *in vitro* microbial biomass yield and N incorporation and its implications for the prediction of voluntary feed intake of roughages. *British Journal of Nutrition* 77(6): 911–21.
- Colombatto D, Mould F L, Bhat M K, Morgavi D P, Beauchemin K A and Owen E. 2003. Influence of fibrolytic enzymes on the hydrolysis and fermentation of pure cellulose and xylan by mixed ruminal micro organisms *in vitro*. *Journal of Animal Science* 81: 1040–50.
- Crampton E W and Maynard L A. 1938. The relation of cellulose and lignin content to the nutritive value of animal feeds. *Journal of Nutrition* **15**: 383–95.
- Diaz A, Carro M D, Saro C, Mateos I, Odongo E and Ranilla M J. 2013. *In vitro* evaluation of commercial fibrolytic enzymes for improving the nutritive value of low-quality forages. *Animal Nutrition and Feed Technology* 13: 461–76.
- Elghandour M M Y, Kholif A E, Hernandez J, Mariezeurrena M D, Lopez S, Camacho L M, Marquez O and Salem A Z M. 2016. Influence of the addition of exogenous xylanase with or without pre-incubation on the *in vitro* ruminal fermentation of three fibrous feeds. *Czech Journal of Animal Science* **61**(6): 262–72.
- Elghandour M M Y, Salem A Z M, Ronquillo M, Borquez J L, Gado H M, Odongo N E and Penuelas C G. 2013. Effect of exogenous enzymes on *in vitro* gas production kinetics and ruminal fermentation of four fibrous feeds. *Animal Feed Science and Technology* 179: 46–53.
- Elsiddig M A. 2019. A review on effects of exogenous fibrolytic enzymes in ruminant nutrition. *Merit Research Journal of Agricultural Science and Soil Science* 7: 170–76.
- Eun J S, Beauchemin K A and Schulze H. 2007. Use of exogenous fibrolytic enzymes to enhance *in vitro* fermentation of alfalfa hay and corn silage. *Journal of Dairy Science* **90**: 1440–51.
- Gado H M, Elghandour M M Y, Cipriano M, Odongo N E, Salem A Z M. 2017. Rumen degradation and nutritive utilization of wheat straw, corn stalks and sugarcane bagasse ensiled with multienzymes. *Journal of Applied Animal Research* 45: 485– 89.
- Ganai A M, Sharma T and Dhuria R K. 2011. Influence of exogenous fibrolytic enzymes on *in vitro* fermentation of bajra straw in goats. *Veterinary Practitioner* 12: 138–41.
- Getachew G, Makkar H P S and Becker K. 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. *The Journal of Agricultural Science* 139: 341–52.
- ICAR. 2013a. *Nutrient composition of Indian feeds and fodders*. Indian Council of Agricultural Research, New Delhi. India.
- ICAR. 2013b. *Nutrient requirements of sheep, goat and rabbit*. Indian Council of Agricultural Research, New Delhi. India.
- Kumar V P, Sridhar M and Rao R G. 2022. Biological depolymerization of lignin using laccase harvested from the autochthonous fungus *Schizophyllum commune* employing various production methods and its efficacy in augmenting *in vitro* digestibility in ruminants. *Science Reporter* 12: 11170.
- Menke K H, Raab L, Salewski A, Steingass H, Fritz D and Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor

- in vitro. The Journal of Agricultural Science 93: 217-22.
- Morgavi D P, Beauchemin K A, Nsereko V L, Rode L M, McAllister T A, Iwaasa A D, Wang Y and Yang W Z. 2001. Resistance of feed enzymes to proteolytic inactivation by rumen micro organisms and gastrointestinal proteases. *Journal* of Animal Science 79: 1621–30.
- Oba M and Allen M S. 2000. Effects of brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 3. Digestibility and microbial efficiency. *Journal of Dairy Science* 83: 1350–58.
- Omar H A A, Abd El-Rahman H H, Fatma M, Salman S S, Abdel-Magid M I M and Awadalla I M. 2009. Response of growing calves to diets containing different levels of exogenous enzymes mixture. *Egyptian Journal of Nutrition and Feeds* 12 (3): 385–401.
- Pech-Cervantes A A, Ogunade I M, Jiang Y, Estrada-Reyes Z M, Arriola K G, Amaro F X, Staples C R, Vyas D, Adesogan A. 2021. Effects of a xylanase-rich enzyme on intake, milk production, and digestibility of dairy cows fed a diet containing a high proportion of bermudagrass silage. *Journal of Dairy Science* 104(7): 7671–681.
- Sachan J, Kumar R, Vaswani S, Kumar V and Roy D. 2014. Effect of addition of herbs on *in vitro* rumen fermentation and digestibility of feed. *Indian Journal of Animal Research* 48(1): 91–93.
- Salvo P, Gritti V, da-Silva E, Nadeau E, Daniel J, Spindola M and Nussio L. 2022. Exogenous fibrolytic enzymes and length of storage affect the nutritive value and fermentation profile of maize silage. *Agriculture* 12(9): 1358. Satter L D and Slyter L L. 1974. Effect of ammonia concentration on rumen microbial protein production *in vitro*. *British Journal of Nutrition* 32:199–208.
- SPSS. 2011. Statistical Package for Social Sciences (version 20.0). Software products, Marketing Department, IBM SPSS Inc, New York, USA.
- Sujani S and Seresinhe R T. 2015. Exogenous enzymes in ruminant nutrition: a review. *Asian Journal of Animal Sciences* **3**: 85–99.
- Tilley J M A and Terry R A. 1963. A two stage technique for *invitro* digestion of forage crops. *Journal of British Grassland Society* **18**: 104–11.
- Tirado-Gonzaleza D N, Miranda-Romeroa L A, Ruíz-Floresa A, Medina-Cuéllarb S E, Ramírez-Valverdea R and Tirado-Estrada G. 2017. Meta-analysis: effects of exogenous fibrolytic enzymes in ruminant diets. *Journal of Applied Animal Research* **46**(1): 771–83.
- Togtokhbayar N, Cerrillo S M A, Jigjidpurev S, Shinekhuu J, Urantulkhuur D, Nergui D, Elghandour M M Y, Odongo N E and Kholif A E. 2015. Effect of exogenous xylanase on rumen *in vitro* gas production and degradability of wheat straw. *Animal Science Journal* **86**: 765–71.
- Tseu R J, Paucar L L C, Junior F P, Carvalho R F, Nogueira R G S, Cassiano E C O, Vasquez D C Z, Solorzano L A R and Rodrigues P H M. 2022. Effect of exogenous enzymes on feed digestion and anaerobic digestion of Holstein cow faeces. *Iranian Journal of Applied Animal Science* 12(2): 223–36.
- Valdes K I, Salem A Z M, Lopez S, Alonso M U, Rivero N, Elghandour M M Y, Dominguez I A, Ronquillo M G and Kholif A E. 2015. Influence of exogenous enzymes in presence of Salix babylonica extract on digestibility, microbial protein synthesis and performance of lambs fed maize silage. *The*

- Journal of Agricultural Science 153(4): 732–42.
- Vallejo L H, Salem A Z M, Kholif A E, Elghangour M M Y, Fajardo R C, Bastida A Z and Mariezcurrena M D. 2016. Influence of cellulase or xylanase on the *in vitro* rumen gas production and fermentation of corn stover. *Indian Journal of Animal Sciences* 86(1): 70–74.
- Van Soest P J, Robertson J B and Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber and non starch polysaccharides in relation to animal nutrition. *Journal of Dairy Science* 74: 3583–97.
- Wang Y, McAllister TA, Rode LM, Beauchemin KA, Morgavi DP,
- Nsereko V L, Iwaasa A D and Yang W. 2001. Effects of an exogenous enzyme preparation on microbial protein synthesis, enzyme activity and attachment to feed in the rumen simulation technique (Rusitec). *British Journal of Nutrition* **85**: 325–32.
- Wang Y, Ramirez-Bribiesca J E, Yanke L J, Tsang A and McAllister T A. 2012. Effect of exogenous fibrolytic enzyme application on the microbial attachment and digestion of barley straw in vitro. Asian-Australasian Journal of Animal Sciences 25(1): 66–74.
- Weatherburn M W. 1967. Estimation of ammonia nitrogen by colorimetric method. *Analytical Chemistry* **39**: 971–74.